

Data structures and Applications BCS304

Page 1

MODULE-1

INTRODUCTION

TOPICS:

1. INTRODUCTION

Basic Terminology of Data Organization:

 Data: value or a set of values. These values may present

anything about something, like it may be roll no of a student, marks, name of an employee,

address of person etc.

 Data item: A data item refers to a single unit of value.

 For eg. roll no of a student, marks, name of an employee, address of person

etc. are data items.

 Data items that can be divided into sub items are called group items (Eg.

Address, date, name),

 Data items which cannot be divided in to sub items are called elementary items

(Eg. Roll no, marks, city, pin code etc.).

 Entity - with similar attributes (e.g all employees of an organization) form an entity set.

 Information: Data with given attribute or processed data.

 Field is a single elementary unit of information representing an attribute of an entity.

 Record is the collection of field values of a given entity.

 File is the collection of records of the entities in a given entity set.

 Each record in a file may contain many field items but the value in a certain field may uniquely

determine the record in the file. Such a field K is called a primary key, and the values K1, K2,

eld are called keys or key values.

 Records can be classified as fixed-length records or variable-length records. In fixed length

records, all the records contain the same data items with the same amount of space assigned to

each data item .In variable length records, file records may contain different lengths.

Module 1: Introduction: Data Structures, Classifications (Primitive & Non Primitive), Data structure

Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers and Dynamic

Memory Allocation Functions. Representation of Linear Arrays in Memory, Dynamically allocated arrays.

Array Operations: Traversing, inserting, deleting, searching, and sorting. Multidimensional Arrays,

Polynomials and Sparse Matrices.

Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms. Programming Examples.

Data structures and Applications BCS304

Page 2

EXAMPLE:

Attributes: Name Age Sex Roll Number Branch

Values:
A 17 M 109cs0132 CSE

B 18 M 109ee1234 EEE

Here, it is an example of student details where STUDENT is the given entity. Then

name, age, sex, roll number, branch are attributes and their values are properties (A, 17, M,

109cs0132, CSE). Collection of student details is student entity set and Roll number is the primary

key which uniquely indicates each student details.

DATA STRUCTURE

 ta Structure is a way of collecting and organizing data in such a way that the operations

on these data can be performed in an effective

 can be defined as logical or mathematical model of a particular organization

of

 cture is a representation of logical relationship existing between individual elements

 data structure defines a way of organizing all data items that

considers not only the elements stored but also their relationship to each other. The term data

structure is used to describe the way data is stored.

 Data Structures is about rendering data elements in terms of some relationship, for better

organization and storage in computer.

To develop a program of an algorithm we should select an appropriate data structure for that

algorithm. Therefore, data structure is represented as:

Algorithm + Data structure = Program

For example, data can be player's name "Virat" and age 26. Here "Virat" is of String data type

and 26 is of integer data type. This data can be recorded as a Player record. Now, it is possible to

"Gambhir" 31, "Sehwag" 33.

Data Structures are structures programmed to store ordered data, so that

Algorithms manipulate the data in these structures in order to accomplish some task

Data structures and Applications BCS304

Page 3

1.1 CLASSIFICATION OF DATA STRUCTURES

The logical or mathematical model of a particular organization of data is called a Data

Structure.

Data structures can be classified as

 Primitive data structure

 Non-Primitive data structure

Anything that can store data can be called as a data structure, hence Integer, Float,

Boolean, Char etc, all are data structures. They are known as Primitive Data Structures and some

complex Data Structures, which are used to store large and connected data. They are called Non-

primitive DataStructures.

Examples:

 Array

 Stack

 Queue

 Linked List

 Tree

 Graph

All these data structures allow us to perform different operations on data. The selection of these

data structures is based on which type of operation is required.

Figure 1: Classification of data structure

Data structures and Applications BCS304

Page 4

Figure 1 gives the complete classification of the data structure.

Definitions:

 A primitive data structure used to represent the standard data

types of any one of the c

structures. Simple data structure can be constructed with the help of primitive data structure.

Non- -Primitive data structure can be constructed with the

help of any one of the primitive data structure and it is having a specific functionality. It can be designed

primitive data structures.

Non primitive data structures can be further classified as

1) Linear data structure

2) Non-linear data structure

Linear Data Structures:

 can be constructed as a continuous arrangement of data elements in the

memory. In linear data structure the elements are stored in sequential order. In the linear Data Structures

the relationship of adjacency is maintained between the Data elements .It can be represented by using

array data type or linked list”. Each element has one successor and one predecessor.

The linear data structures are:

 Array: Array is a collection of data of same data type stored in consecutive memory location

and is referred by common name

 Stack: A stack is a Last-In-First-Out (LIFO) linear data structure in which insertion and deletion

takes place at only one end called the top of the stack.

 Queue: A Queue is a First in First-Out (FIFO) linear data structure in which insertions takes

place one end called the rear and the deletions takes place at one end called the Front.

 Linked list: Linked list is a collection of data of same data type but the data items need not be

stored in consecutive memory locations.

Data structures and Applications BCS304

Page 5

Non-Linear Data Structures:

Non-linear data structure can be constructed as a collection of randomly distributed set of

data item joined together by using a special pointer (tag). In non-linear Data structure the relationship of

adjacency is not maintained between the Data items. Elements are stored based on the hierarchical

relationship among the data.” Each node doesn’t have exactly one predecessor and one successor. It may

contain more than 1 predecessor or successor.

The following are some of the Non-Linear data structure

 Trees: Trees are used to represent data that has some hierarchical relationship among the data

elements.(as shown in figure 2)

Figure 2: Trees

 Graph: Graph is used to represent data that has relationship between pair of elements not

necessarily hierarchical in nature. For example electrical and communication networks, airline

routes, flow chart, graphs for planning projects.(as shown in figure 3)

Figure 3: Graph

1.2 DATA STRUCTURE OPERATIONS

The data in the data structures are processed by certain operations. The particular data structure

chosen largely depends on the frequency of the operation that needs to be performed on the data

structure.

Traversing

Searching

Insertion

Data structures and Applications BCS304

Page 6

 Deletion

 Sorting

 Merging

(1) Traversing: Accessing each record exactly once so that certain items in the record may be

processed.

(2) Searching: Finding the location of a particular record with a given key value, or finding the

location of all records which satisfy one or more conditions.

(3) Inserting: Adding a new record to the structure.

(4) Deleting: Removing the record from the structure.

(5) Sorting: Managing the data or record in some logical order (Ascending or descending order).

(6) Merging: Combining the record in two different sorted files into a single sorted file.

Operations on linear data structures

1. Add an element

2. Delete an element

3. Traverse all the elements

4. Sort the list of elements

5. Search for a data element

Apply one or more functionality to create different types of data structures.

For example Stack, Queue, and Linked Lists.

Operations applied on non-linear data structures

The following list of operations applied on non-linear data structures.

1. Add elements.

2. Delete elements

3. Display the elements

4. Sort the list of elements

5. Search for A data element by applying one or more functionalities and different ways of joining

randomly distributed data items to create different types of data structures.

For example Tree, Graphs and Files.

1.3 REVIEW OF STRUCTURES, UNIONS AND POINTERS

STRUCTURE DEFINITION

 is a collection of data items of same or dissimilar data type. Each data item is

identified by its name and type. (Or) A Structure is a user defined data type that can store related

information together. (Or) A structure is a collection of different data items / heterogeneous data items

Data structures and Applications BCS304

Page 7

under a single name. The variable within a structure are of different data types and each has a name

that is used to select it from the structure.

C arrays allow you to define type of variables that can hold several data items of the same kind

but structure is another user defined data type available in C programming, which allows you to

combine data items of different kinds.

Structures are used to represent a record, Suppose, track of books are kept in a library are

recorded then it is required to track the following attributes about each book:

 Title

 Author

 Subject

 Book ID

STRUCTURE DECLARATION

It is declared using a keyword struct followed by the name of the structure. The members of the

structure are declared within the structure.

Example:

struct struct-name

{

data_type1 member_name1;

data_type2 member_name2;

.. ..

data_typen member_namen;

}structurevariablename;

STRUCTURE INITIALIZATION

Assigning values to the data members of the structure is called initializing of structure.

Syntax:

struct struct_name

{

data _type member_name1;

data _type member_name2;

} structure variable={constant1,constant2};

Data structures and Applications BCS304

Page 8

Accessing the Members of a structure :-

A structure member variable is generally accessed using a .

Syntax: structurevariable.member_name;

The dot operator is used to select a particular member of the structure. To assign value to the individual

Data members of the structure variable stud, it is written as,

stud.roll=01;

To input values for data members of the structure variable stud, can be written as,

tud.roll);

To print the values of structure variable stud, can be written as:

Example for structure:

struct employee

{

char name[10];

int age;

float salary;

}person;

Here struct is a keyword.

This example creates a variable whose name is person and that has three fields

A name that is a character array

An integer value Age

A float value salary

The . (Dot operator) is used as the structure member operator to select a particular member of the

structure.

Example:

person.age=20;

person.salary=40000;

Data structures and Applications BCS304

Page 9

Program to create a struct person , initializes its data member and print their values

#include<stdio.h>

#include<conio.h>

void main()

{

struct person{

char name[10];

int age;

float salary;

};

struct person p1;

clrscr();

strcpy(p1.name,"james");

p1.age=10;

p1.salary=35000;

printf("\n name=%s age=%d salary=%f",p1.name,p1.age,p1.salary);

getch();

}

ARRAY OF STRUCTUREs

An array of structure can also be declared. Each element of the array representing a structure

variable.

Example : struct employee emp[5];

The above code define an array emp of size 5 elements. Each element of array emp is of type employee

#include<stdio.h>

#include<conio.h>

struct employee

{

char ename[10];

int sal;

};

struct employee emp[5];

int i,j;

void ask()

{

for(i=0;i<3;i++)

{

printf("\nEnter %dst employee record\n",i+1);

printf("\nEmployee name\t");

scanf("%s",emp[i].ename);

printf("\nEnter employee salary\t");

scanf("%d",&emp[i].sal);

}
printf("\nDisplaying Employee record\n");

for(i=0;i<3;i++)

{

printf("\nEmployee name is %s",emp[i].ename);

Data structures and Applications BCS304

Page 10

printf("\nSlary is %d",emp[i].sal);

}

}

void main()

{

clrscr();

ask();

getch();

}

TYPE DEFINITIONS AND STRUCTURES

The structure definition associated with keyword typedef is called Type-Defined Structure.

Syntax 1: typedef struct

{

Where,

data_type member 1;

data_type member 2;

……………………… ………………………

data_type member n;

}Type_name;

 typedef is the keyword used at the beginning of the definition and by using typedef user defined data

type can be obtained.

 struct is the keyword which tells structure is defined to the complier The members are declare with

their data_type

 Type_name is not a variable, it is user defined data_type.

Syntax 2: struct struct_name

{

data_type member 1;

data_type member 2;

……………………… ………………………

data_type member n;

};

typedef struct struct_name Type_name;

Example: It is possible to create our own data types (user defined)by using typedef statement as below

typedef struct

{

char name[10];

int age;

} humanbeing;

Here humanbeing is the name of the type defined by structure definition and we may follow

this definition with declarations of variables such as

humanbeing person1, person2;

Data structures and Applications BCS304

Page 10

This statement declares the variable person1 and person2 are of type humanbeing.

 Structures cannot be directly checked for equality or nor equality. i.e. directly using

person1==person2 is not allowed. If each individual data member is checked for equality then

the entire structure can be checked for equality.

Function to Check equity of two structures

#define FALSE 0

#define TRUE 1

int humansEqual(humanBeing person1, humanBeing person2))

{

if(strcmp(person1.name, person2.name))

return FALSE;

if((person1.age != person2.age)

return FALSE;

if((person1.salary != person2. salary)

return FALSE;

return TRUE;

}

void main()

{

if(humansEqual(person1, person2))

else

}

\

Data structures and Applications BCS304

Page 1

Program to check equality to structure variables.

#include<stdio.h>

#include<conio.h>

#define FALSE 0

#define TRUE 1

typedef struct

{

char name[10];

int age;

float salary;

}humanbeing;

int humansEqual(humanbeing p1,humanbeing p2)

{

if(strcmp(p1.name,p2.name))

return FALSE;

if(p1.age!=p2.age)

return FALSE;

if(p1.salary!=p2.salary)

return FALSE;

}

void main()

{

else
return TRUE;

humanbeing p1,p2;

clrscr();

strcpy(p1.name,"hiiiii");

p1.age=12

;p1.salary=12000;

strcpy(p2.name,"hi");

p2.age=12;

p2.salary=12000;

if(humansEqual(p1,p2))

printf("\n persons are same ");

else

getch();

}

printf("\n persons are not same");

POINTERS TO STRUCTURES

Pointer to a structure is a variable that holds the address of a structure. The syntax to declare

pointer to a structure can be given as:

strcut struct_name *ptr;

eg: struct stud *ptr_stud;

To assign address of stud to the pointer using address operator(&) we would write ptr_stud=&stud; To

access the members of the structure (->) operator is used.

for example ptr_stud->name=Raj;

Data structures and Applications BCS304

Page 1

Example program (pass the address of structure as an argument)

#include<stdio.h>

Struct point

{

int x;

int y;

};

void print(struct point *ptr)

{

Printf(“%d%d\n”, ptr->x, ptr->y);

}

int main()

{

Struct point p1 = {23, 45};

Struct point p1 = {23, 45};

print(&p1);

print(&p2);

return 0;

}

Output: 23 45

56 90

NESTED STRUCTURES

It is possible to embed a structure within a structure.

structure variable as its members is called a nested structure or a structure within a structure is

 The structure should be declared separately and then be grouped into high level structure. The

data members of the nested structures can be accessed using (.) Dot operator.

 Syntax to follow while accessing the data members of inner structure in nested structure with dot

operator is

outer most structure variable. inner most structure variable. inner data member;

 Syntax to followed while accessing the data members of outer structure in nested structure with

dot operator is

outer most structure variable .outer data member ;

Data structures and Applications BCS304

Page 1

Type1: declaring structure within a structure

Example :

struct student

{

char name[20];

int marks;

float per;

struct dob

{

int day,month,year;

}date;

}s1;

void main()

{

\n enter the student details-

\

s1.date.day,s1.date.month,s1. date.year);

getch();

}

,&s1.date.month,

&s1.date.year);

Type 2: declaring a structure variable of one within another structure

Example :

struct dob

{

int day,month,year;

};

struct student

{

char name[20];

int marks;

float per;

struct dob date;

}s1;

void main()

{

Data structures and Applications BCS304

Page 1

\n enter the student details-

sc

&s1.date.year);

\

s1.date.day,s1.date.month,s1.date.year);

getch();

}

Nested structures with typedef

Example :

typedef struct

{

}date;

int month;

int day;

int year;

typedef struct

{

char name[10];

int age;

salary;

date dob;

}humanbeing;

humanbeing person1,person2;

If humanbeing person1 and person2 declares person1 and person2 variables of type humanbeing.

Then consider a person born on feb 11, 1944, can have the values for the date struct set as:

person1.dob.month=2;

person1.dob.day=11;

person1.dob.year=1944;

Similarly for considering person2, his dob is 3
rd

 December 1956 then

person2.dob.month=12;

person2.dob.day=3;

person2.dob.year=1956;

Data structures and Applications BCS304

Page 1

Program for illustration of nested structures with typedef

#include<stdio.h>

#include<conio.h>

void main()

{

typedef struct
{

}date;

int month;

int day;

int year;

typedef struct

{

char name[10];

int age;

salary;

date dob;

}humanbeing;

humanbeing person1;

strcpy(person1.name,"james");

person1.age=10;

person1.salary=35000;

Person1.dob.month=2;

Person1.dob.day=11;

Person1.dob.year=1944;

\n details of t

printf("\n name=%s age=%d salary=%f dob=%d-%d-%d",person1.name,

person1.age,person1.salary,Person1.dob.day,Person1.dob.month,Person1.dob.year);

getch();

}

UNIONS

Union is a collection of variables of different data types. Union information can only be stored in

one field at any one time.

A union is a special data type available in C that enables you to store different

data types in the same memory location.

union can define many members, but only one member can contain a value at any given time.

Unions provide an efficient way of using the same memory location for multi-purpose.

Declaring Union:

union union-name

{

data_type1 member_name1;

Data structures and Applications BCS304

Page 1

data_type2 member_name2;

.. ..

data_typen member_namen;

}union variablename;

Example:

union data

{

char a;

int x;

float f;

}mydata;

The union tag is optional and each member definition is a normal variable definition, such as int

i; or float f; or any other valid variable definition.

At the end of the union's definition, before the final semicolon, you can specify one or more

union variables but it is optional. The memory occupied by a union will be large enough to hold the

largest member of the union. For example, in above example Data type will occupy 4 bytes of memory

space because this is the maximum space which can be occupied by float data.

Accessing a Member of a Union

#include <stdio.h>

#include <string.h>

union Data

{

int i;

float f;

char str[20];

};

int main()

{

union Data data;

data.i = 10;

data.f = 220.5;

strcpy(data.str, "C Programming");

printf("data.i : %d\n", data.i);

printf("data.f : %f\n", data.f);

printf("data.str : %s\n", data.str); return 0;

}

Data structures and Applications BCS304

Page 1

Dot operator can be used to access a member of the union. The member access operator is coded

as a period between the union variable name and the union member that we wish to access.

Program to illustrate union with in a structure.

#include<stdio.h>

#include<conio.h>

typedef struct

{

enum tagfield {female,male} sex;

union

{

}u;

}sextype;

typedef struct

{

int child;

int beard;

int m,d,y;

}date;

typedef struct

{

char name[10];

int age;

float salary;

date dob;

sextype sexinfo;

}humanbeing;

void main()

{

humanbeing p1;

p1.dob.m=2;

p1.dob.d=11;

p1.dob.y=1994;

p1.sexinfo.sex=female;

p1.sexinfo.u.child=4;

printf("year=%d/%d/%d",p1.dob.m,p1.dob.d,p1.dob.y);

printf("\n sex=%d b=%d",p1.sexinfo.sex,p1.sexinfo.u. child);

getch();

}

Data structures and Applications BCS304

Page 1

1.4 SELF REFERENTIAL STRUCTURES

referential structures are those structures that contain a reference to data of its same

type as that of structure. i.e one or more of the components of the structure will be a pointer to

Example 1

struct node

{

int val;

struct node*next;

}list;

Example 2:

typedef struct

{

}list;

char data;

struct list * link;

In this example each instance of the structure list have two components data and link.

Data is a single character, while link is a pointer to a list structure.

The value of link is either the address in memory of an instance of list or NULL pointer.

Program to illustrate self-referential structures

#include <stdio.h>

#include <conio.h>

typedef struct

{

}list;

char data;

struct list *link;

void main()

{

list l1,l2,l3;

l1.data='a';

l2.data='b';

l3.data='c';

l1.link=l2.link=l3.link =NULL;

l1.link=&l1;

l2.link=&l2;

printf("\n data values of l1=%d,l2=%d,l3=%d",l1.data,l2.data,l3.data);

printf("\n link of l1,l2,l3=%d %d %d",l1.link,l2.link,l3.link);

getch();

}

Data structures and Applications BCS304

Page 1

Difference between structure and union

1.The keyword struct is used to define a
Structure

1. The keyword union is used to define a union.

2. When a variable is associated with a

structure, the compiler allocates the memory

for each member.

The size of structure is greater than or equal to

the sum of sizes of its members. The smaller

members may end with unused slack bytes.

2. When a variable is associated with a union,

the compiler allocates the memory by

considering the size of the largest memory.

So, size of union is equal to the size of largest

member.

3. Each member within a structure is assigned
unique storage area of location.

3. Memory allocated is shared by individual
members of union.

4. The address of each member will be in

ascending order. This indicates that memory

for each member will start at different offset

values.

4. The address is same for all the members of a

union. This indicates that every member begins

at the same offset value.

5 Altering the value of a member will not
affect other members of the structure.

5. Altering the value of any of the member will
alter other member values.

6. Individual member can be accessed at a time 6. Only one member can be accessed at a time.

7. Several members of a structure can initialize

at once.

Ex: struct Book

{

int isbn;

float price;

char title[20];

}book;

Total memory reserved will be

Sizeof(int)+sizeof(float)+(20*sizeof(char))

7. Only the first member of a union can be

initialized.

Ex: union Book

{

int isbn;

float price;

char title[20];

}book;

Total memory reserved will be

Max(Sizeof(int)+sizeof(float)+(20*sizeof(char))

1.5 POINTERS

 are variables that hold address of another variable of same dat

Pointers are one of the most distinct and exciting features of C language. It provides power and

flexibility to the language.

Benefit of using pointers

 Pointers are more efficient in handling Array and Structure.

 Pointer allows references to function and thereby helps in passing of function as arguments to

other function.

 It reduces length and the program execution time.

 It allows C to support dynamic memory management.

Data structures and Applications BCS304

Page 1

Concept of Pointer

Whenever a variable is declared, system will allocate a location to that variable in the memory,

to hold value. This location will have its own address number. Let us assume that system has allocated

memory location 80F for a variable a.

Example : int a = 10 ;

The value 10 can be accessed by either using the variable name a or the address 80F.Since the

memory addresses are simply numbers they can be assigned to some other variable. The variable that

holds memory address are called pointer variables. A pointer variable is therefore nothing but a

variable that contains an address, which is a location of another variable. Value of pointer variable will

be stored in another memory location.

Figure 5: Pointer variable

Declaring a pointer variable

General syntax of pointer declaration is, data-type *pointer_name;

Data type of pointer must be same as the variable, which the pointer is pointing. void type

pointer works with all data types, but isn't used oftenly.

Initialization of Pointer variable

Pointer Initialization is the process of assigning address of a variable to pointer variable.

Pointer variable contains address of variable of same data type. In C language address operator & is

used to determine the address of a variable. The & (immediately preceding a variable name) returns the

address of the variable associated with it.

int a = 10 ;
int *ptr ; //pointer declaration

Data structures and Applications BCS304

Page 20

ptr = &a ; //pointer initialization

or,

int *ptr = &a ; //initialization and declaration together

Pointer variable always points to same type of data.

float a;

float *ptr;

ptr = &a;

Dereferencing of Pointer

Once a pointer has been assigned the address of a variable. To access the value of variable, pointer is

dereferenced, using the indirection operator *.

void main()

{

int a,*p;

a = 10;

p = &a;

printf("%d",*p); //this will print the value of a.

printf("%d",*&a); //this will also print the value of a.

printf("%u",&a); //this will print the address of a.

printf("%u",p); //this will also print the address of a.

printf("%u",&p); //this will also print the address of p.

}

Pointer and Arrays

When an array is declared, compiler allocates sufficient amount of memory to

contain all the elements of the array. Base address which gives location of the first element is also

allocated by the compiler.

Suppose we declare an array arr,

int arr[5]={ 1, 2, 3, 4, 5 };

Assuming that the base address of arr is 1000 and each integer requires two byte,

the five element will be stored as follows in figure 6

Figure 6: Array Representation

Here variable arr will give the base address, which is a constant pointer pointing to

the element, arr[0]. Therefore arr is containing the address of arr[0] i.e 1000.

We can declare a pointer of type int to point to the array arr.

Data structures and Applications BCS304

Page 21

int *p;

p = arr;

or p = &arr[0]; //both the statements are equivalent.

Now we can access every element of array arr using p++ to move from one element to another. NOTE

: You cannot decrement a pointer once incremented. p-- won't work.

Pointer to 1-D Array

As studied above, we can use a pointer to point to an Array, and then we can use

that pointer to access the array.

Lets have an example,

int i;

int a[5] = {1, 2, 3, 4, 5};
int *p = a; // same as int*p = &a[0]

for (i=0; i<5; i++)

{

printf("%d", *p);

p++;

}

In the above program, the pointer *p will print all the values stored in the array one by one. We can also

use the Base address (a in above case) to act as pointer and print all the values.

what will be the result

ting index

array

a[0] only

array

array

 a++; compile time error, we cannot change base address of the array.

Pointers to multidimensional array

A multidimensional array is of form, a[i][j] . Lets see how we can make a pointer point to such

an array. As we know now, name of the array gives its base address. In a[i][j] , a will give the base

address of this array, even a+0+0 will also give the base address, that is the address of a[0][0] element.

Here is the generalized form for using pointer with multidimensional arrays.

((ptr + i) + j) is same as a[i][j]

Example program for pointers 2D-array

#include<stdio.h>

int main()

Data structures and Applications BCS304

Page 22

{
int a[][3] = {1,2,3,4,5,6};

int (*ptr)[3] = a; //passing the address of 1
st
 1-D array to pointer

printf(“%d%d”, (*ptr)[1], (*ptr)[2]);

++ptr; //points to 2
nd

 1-D array

printf(“%d%d”, (*ptr)[1], (*ptr)[2]);

return 0;

}

Output: 2 3 5 6

2. ARRAYS

Array is a container which can hold fix number of items and these items should be of same

type. Most of the data structures make use of array to implement their algorithms. Following are

important terms to understand the concepts of Array.

An array is a data structure that is a collection of variables of one type that are accessed

through a common name. Each element of an array is given a number by which we can access that

element which is called an index.To refer to a particular location or element in the array we specify the

name to the array and position number of particular element in the array.

Element

Index of an element in an array has a numerical index which is used to identify

the element.

2.1 LINEAR ARRAYREPRESENTATION

Arrays can be declared in various ways in different languages. For illustration, let's take

C array declaration

Figure 8a: Array with 10 elements

Figure 8b: Array index

Data structures and Applications BCS304

Page 23

As per above shown illustration, following are the important points to be considered.(As shown in

figure 8a and figure 8b)

 Index starts with 0.

 Array length is 10 which mean it can store 10 elements.

 Each element can be accessed via its index. For example, we can fetch element at index 6 as

27.

ADT ARRAY

Objects: A set of pairs<index,value > where for each of index there is a value from the set item. Index

is a finite ordered set of one or more dimensions , for example -1} for one dimension, { (0 ,0

),(0,1),(0.2),(1,0),(1,2),(1,1),(2,1),(2,2),(2,0))} for two dimensions etc.

Functions:

For all A C Array, I C index, x C item, j, size C integer

1. Array create (j, list) = return an array of j dimensions where list is a j-tuple whose ith element is the

size of ith dimension. Items are undefined.

2. Item retrieve (A, i) = if (I C index) return the item associated with index value i in array A else return

error.

3. array store (A, i, x) = if (i in index) return an array that is identical to array A expect the new pair

<i,x> has been inserted else return error.

end Array

One Dimensional Array

Declaration:

Before using the array in the program it must be declared

Syntax: data_type array_name[size];

Where , data_type represents the type of elements present in the array. array_name represents the

name of the array. Size represents the number of elements that can be stored in the array.

Example: int age[100]; float sal[15]; char grade[[20];

Here age is an integer type array, which can store 100 elements of integer type. The array sal is

floating type array of size 15, can hold float values. Grade is a character type array which holds 20

characters.

Data structures and Applications BCS304

Page 24

Initialization:

Initialize arrays at the time of declaration.

Syntax:

Where ,value1, value2, valueN are the constant values known as initializers, which are assigned

to the array elements one after another.

Example: int marks[5]={10,2,0,23,4};

The values of the array elements after this initialization are:

marks[0]=10, marks[1]=2, marks[2]=0, marks[3]=23, marks[4]=4;

NOTE:

1. address of an data element in the array can be calculated as:

A[K]=BA(A)+W(K-LOWERBOUND);

Where, A is an array, K is the index of the element for which address has to be calculated ,BA is

the base address of the array A,and W is the size of one element in memory

2. calculating the length of an array

Length = Upperbound-Lowerbound+1

Where , upperbound is index of the last element and lowerbound is index of the first element in

the array

Processing: For processing arrays we mostly use for loop. The total no. of passes is equal to the no. of

elements present in the array and in each pass one element is processed.

Example: This program reads and displays 3 elements of integer type.

#include<stdio.h>

main()

{

int a[3],i;

for(i=0;i<=2;i++) //Reading the array values

{

}

for(i=0;i<=2;i++) //display the array values

{

}

}

\

Data structures and Applications BCS304

Page 25

Example: C Program to Increment every Element of the Array by one & Print Incremented

Array.

#include <stdio.h> void main()

{

int i;

int array[4] = {10, 20, 30, 40};

for (i = 0; i < 4; i++)

arr[i]++;

for (i = 0; i < 4; i++)

printf("%d\t", array[i]);

}

2.2 OPERATIONS ON ARRAYS

Following are the basic operations supported by an array.

 Traversal processing each element in the list.

 Insertion adding a new element at given index to the list.

 Deletion removing an element at givenindex from the list.

 Search given key

 Sorting: arranging the elements in some type of order.

 Merging: Combing two lists into a single list.

1. Traversing linear arrays

Let A be the array in the memory of the computer. If the operation requied is to print the

contents of each element of A OR Count the number of elements of A. Then this is accomplished by

traversing A.

Traversing is accessing and processing each element in the array A exactly once.

Algorithm: (Traversing a Linear Array)

Hear LA is a linear array with the lower bound LB and upper bound UB. This algorithm

traverses LA applying an operation PROCESS to each element of LA using while loop.

1. [Initialize Counter] set K:= LB

2. Repeat step 3 and 4 while K ≤ UB

3. [Visit element] Apply PROCESS to LA [K]

4. [Increase counter] Set K:= K + 1

[End of step 2 loop]

5. Exit

Data structures and Applications BCS304

Page 26

2. Inserting

 Let A be a collection of data elements stored in the memory of the computer. Inserting refers to

the operation of adding another element to the collection A.

 Inserting an element at the “end” of the linear array can be easily done provided the memory

space allocated for the array is large enough to accommodate the additional element.

 Inserting an element in the middle of the array, then on average, half of the elements must be

moved downwards to new locations to accommodate the new element and keep the order of the

other elements.

Algorithm:

INSERT(LA,N,K,ITEM)

HERE LA is a linear array with N elements and K is a positive integer such that K<=N. this

algorithm inserts an element ITEM into Kth position in LA.

1.[Initalize the counter]. Set J=N.

2.repeat steps 3 and 4 while J>=K

3.[move jth element downward] set LA[J+1]=LA[J].

4.[Decrease the counter] set J=J-1

[end of step 2 loop]

5.[insert element] set LA[K]A=ITEM

6.[reset N] set N=N+1

7.Exit

3. Deleting

Algorithm:

DELETE(LA,N,K,ITEM)

HERE LA is a linear array with N elements and K is a positive integer such that K<=N. this

algorithm deletes an element ITEM into Kth position in LA.

1. Set ITEM=LA[K]

2. repeat for J=K to N-1

3.[move j+1st element upward] set LA[J]=LA[J+1].

4.[end of step 2 loop]

5.[reset N] set N=N-1

6.Exit

Data structures and Applications BCS304

Page 27

4. Sorting

Algorithm:

BUBBLE SORT(DATA,N)

Here DATA is an array with N elements . THIS Algorithm sorts the elemts in DATA.

1. repeat steps 2 and 3 for k=1 to N-1

2. [Initalize the pass pointer PTR]. Set PTR=1.

3. Repeat while PTR<=N-K :[Executes pass]

(a) if DATA[PTR]>DATA[PTR+1] then

Interchange DATA[PTR] and DATA[PTR+1]

[end of IF structure]

(b) set PTR=PTR+1

[End of inner loop]

[end of step1 outer loop]

4.Exit

5. Searching

Algorithm:

 LINEAR SEARCH(DATA,N,ITEM,LOC)

Here DATA is a linear array with N elements and ITEM is a given item of information. this

algorithm finds the location LOC of item in DATA or set LOC=0 if the search is unsuccessful

1.[Insert ITEM at the end of DATA]. Set DATA[N+1]=ITEM.

2.[initialize the counter] set LOC=0,FOUND=0

3.[Search for ITEM]

Repeat for j=0 to N-1

If(ITEM=DATA[J]) then SET FOUND=1 and break

[end of loop]

4.[Succesful?] if FOUND=1Then SUCCESSFUL

else UNSUCCESSFUL

6. Exit

 BINARY SEARCH(DATA,LB,UB,ITEM,LOC)

Here DATA is a sorted array with lower bound LB and upper bound UB and ITEM is a given

item of information. The variables BEG, END and MID denote respectively the beginning, end and

middle locations of a segment of elements of data. This algorithm finds the location LOC of item in

DATA or sets LOC=NULL

Data structures and Applications BCS304

Page 28

1.[Initialize segment variables].

Set BEG=LB,END=UB and MID=INT((BEG+END)/2);

2. repeat steps 3 and 4 while BEG<=END and DATA[MID]!=ITEM

3. if ITEM<DATA[MID] then

Set END=MID-1

ELSE

Set BEG=MID+1

[end of loop]

4. set MID=INT(BEG+END)/2

5. if DATA[MID]=ITEM Then

set LOC=MID

else

set LOC=NULL

6. Exit

Data structures and Applications BCS304

Page 29

TWO DIMENSIONAL ARRAYS

Arrays that we have considered up to now are one dimensional array, a single line of elements.

Often data come naturally in the form of a table, e.g. spreadsheet, which need a two-dimensional array.

Declaration: The syntax is same as for 1-D array but here 2 subscripts are used.

Syntax: data_type array_name[rowsize][columnsize];

Where, Rowsize specifies the no.of rows Columnsize specifies the no.of columns.

Example: int a[4][5];

This is a 2-D array of 4 rows and 5 columns. Here the first element of the array is a[0][0] and last

element of the array is a[3][4] and total no.of elements is 4*5=20.

 Col 0 Col 1 Col 2 Col 3 Col 4

Row 0 a[0][0] a[0][1] a[0][2] a[0][3] a[0][4]

Row 1 a[1][0] a[1][1] a[1][2] a[1][3] a[1][4]

Row 2 a[2][1] a[2][2] a[2][2] a[2][3] a[2][4]

Row 3 a[3][0] a[3][1] a[3][2] 3a[3][3] a[3][4]

Initialization:

2-D arrays can be initialized in a way similar to 1-D arrays.

Example: int m[4][3]={1,2,3,4,5,6,7,8,9,10,11,12};

Example: int m[][3]={ {1,10}, {2,20,200}, {3}, {4,40,400} };

2D ARRAY REPRESENTATION USING COLUMN MAJOR ORDER AND ROW MAJOR

ORDER

1. In case of Column Major Order:

The formula is:

Data structures and Applications BCS304

Page 30

LOC (A [J, K]) = Base (A) + w [M (K-1) + (J-1)]

Here

LOC (A [J, K]) : is the location of the element in the Jth row and Kth column.

Base (A) : is the base address of the array A.

w : is the number of bytes required to store single element of the array A.

M : is the total number of rows in the array.

J : is the row number of the element.

K : is the column number of the element.

E.g.

A 3 x 4 integer array A is as below:

Subscript Elements Address

(1,1) 10 1000

(2,1) 20 1002

(3,1) 50 1004

(1,2) 60 1006

(2,2) 90 1008
(3,2)

40 1010

(1,3) 30 1012

(2,3)

80 1014

(3,3)

75 1016

(1,4) 1018 55
(2,4) 1020 65
(3,4) 1022 79

Suppose we have to find the location of A [3, 2]. The required values are:

Base (A) :

w :

1000

2 (because an integer takes 2 bytes in memory)

M : 3

J : 3

K : 2

Now put these values in the given formula as below:

LOC (A [3, 2]) = 1000 + 2 [3 (2-1) + (3-1)]
= 1000 + 2 [3 (1) + 2]

= 1000 + 2 [3 + 2]

= 1000 + 2 [5]

= 1000 + 10 = 1010

2. In case of Row Major Order:

The formula is:

LOC (A [J, K]) = Base (A) + w [N (J-1) + (K-1)]

Here

Data structures and Applications BCS304

Page 31

LOC (A [J, K]) : is the location of the element in the Jth row and Kth column.

Base (A) : is the base address of the array A.

w : is the number of bytes required to store single element of the array A.

N : is the total number of columns in the array.

J : is the row number of the element.

K : is the column number of the element.

E.g.

A 3 x 4 integer array A is as below:

Subscript Elements Address

(1,1) 10 1000

(1,2) 60 1002

(1,3) 30 1004

(1,4) 55 1006

(2,1) 20 1008

(2,2) 90 1010

(2,3) 80 1012

(2,4) 65 1014

(3,1) 50 1016

(3,2) 40 1018

(3,3) 75 1020

(3,4) 79 1022

Suppose we have to find the location of A [3, 2]. The required values are:

Base (A) :

w :

1000

2 (because an integer takes 2 bytes in memory)

N : 4

J : 3

K : 2

Now put these values in the given formula as below:

LOC (A [3, 2]) = 1000 + 2 [4 (3-1) + (2-1)]

= 1000 + 2 [4 (2) + 1]

= 1000 + 2 [8 + 1]

= 1000 + 2 [9]

= 1000 + 18

= 1018

Example 1:

Write a C program to find sum of two matrices

#include <stdio.h>

#include<conio.h>

Data structures and Applications BCS304

Page 30

void main()

{

float a[2][2], b[2][2], c[2][2];

int i,j;

clrscr();

printf("Enter the elements of 1st matrix\n");

/* Reading two dimensional Array with the help of two for loop. If there is an array of 'n'

dimension, 'n' numbers of loops are needed for inserting data to array.*/

for(i=0;i<2;I++)

for(j=0;j<2;j++)

{

scanf("%f",&a[i][j]);

}

printf("Enter the elements of 2nd matrix\n");

for(i=0;i<2;i++)

for(j=0;j<2;j++)

{

scanf("%f",&b[i][j]);

}

/* accessing corresponding elements of two arrays. */ for(i=0;i<2;i++)

for(j=0;j<2;j++)

{

c[i][j]=a[i][j]+b[i][j]; /* Sum of corresponding elements of two arrays. */

}

/* To display matrix sum in order. */

printf("\nSum Of Matrix:");

for(i=0;i<2;i++)

{

for(j=0;j<2;j++)

printf("%f\t", c[i][j]);

printf("\n");

}

getch();

}

Example 2: Program for multiplication of two matrices

#include<stdio.h>

#include<conio.h>

int main()

{

int i,j,k;

int row1,col1,row2,col2,row3,col3;

int mat1[5][5], mat2[5][5], mat3[5][5];

clrscr();

Data structures and Applications BCS304

Page 3

if(col1 != row2)

{

\n The number of columns in the first matrix must be equal to the number of rows

getch(); exit();

}

row3= row1; col3= col2;

\

for(i=0;i<row1;i++)

{

for(j=0;j<col1;j++)

}

\

[i][j]);

for(i=0;i<row2;i++)

{

for(j=0;j<col2;j++)

}

for(i=0;i<row3;i++)

{

for(j=0;j<col3;j++)

{

mat3[i][j]=0;

for(k=0;k<col3;k++)

mat3[i][j] +=mat1[i][k]*mat2[k][j];

}

}

prin \

for(i=0;i<row3;i++)

{

\

for(j=0;j<col3;j++)

\

}

\

\n enter the nu

\

\

Data structures and Applications BCS304

Page 3

return 0;

}

Output:

Enter the number of rows in the first matrix: 2

Enter the number of columns in the first matrix: 2

Enter the number of rows in the second matrix: 2

Enter the number of columns in the second matrix: 2

Enter the elements of the first matrix

1 2 3 4

Enter the elements of the second matrix

5 6 7 8

The elements of the product matrix are

19 22

43 50

Example 3: Program to find transpose of a matrix.

#include <stdio.h>

int main()

{

int a[10][10], trans[10][10], r, c, i, j;

printf("Enter rows and column of matrix: ");

scanf("%d %d", &r, &c);

printf("\nEnter elements of matrix:\n");

for(i=0; i<r; i++)

for(j=0; j<c; j++)

{

printf("Enter elements a%d%d: ",i+1,j+1);

scanf("%d", &a[i][j]);

}

/* Displaying the matrix a[][] */ printf("\n Entered Matrix: \n");

for(i=0; i<r; i++)

for(j=0; j<c; j++)

{

printf("%d ",a[i][j]);

if(j==c-1)

printf("\n\n");

}

/* Finding transpose of matrix a[][] and storing it in array trans[][]. */

for(i=0; i<r;i++)

for(j=0; j<c; j++)

{

trans[j][i]=a[i][j];

}

Data structures and Applications BCS304

Page 3

/* Displaying the array trans[][]. */ printf("\nTranspose of Matrix:\n");

for(i=0; i<c;i++)

for(j=0; j<r;j++)

{

printf("%d ",trans[i][j]);

if(j==r-1)

printf("\n\n");

}

return 0;

}

4. DYNAMIC MEMORY ALLOCATION

The memory allocation which is used till now was static memory allocation. So the memory that

could be used by the program was fixed. So it is not possible to allocate or de allocate memory during

the execution of the program. It is not possible to predict how much memory will be needed by the

program at run time.

For example assume an array with size 20 elements is declared, which is fixed. So if at run time

values to be stored in array are less than 20 then wastage of memory occur or our program may fail if

more than 20 values are to be stored in to that array. To solve the above problems and allocate memory

during runtime dynamic memory allocation is used.

The process of allocating memory during the runtime is called as DMA (dynamic memory

allocation) and memory gets allotted in heap area of program stack.

Example : a new area of memory is allocated using malloc().On success, malloc() returns a

pointer to the first byte of allocated memory. The returned pointer is of type void, which can be type

cast to appropriate type of pointer. The memory allocated by malloc() contains garbage value . when

the requested memory is not available, the pointer NULL is returned. when allocated memory is no

longer required , it is freed by using another function free().

void main()

{

int i,*pi;

float f,*pf;

pi=(int*)malloc(sizeof(int));

pf=(float*)malloc(sizeof(float));

*pi=1024;

*pf=3.14;

free(pi);

Data structures and Applications BCS304

Page 3

free(pf);

getch();

}

The following functions are used in C for dynamic memory allocation and are defined in <stdlib.h>

1. malloc(size): Memory Allocation

This function is used to allocate memory dynamically. malloc() allocate a single large block of

contiguous memory according to the size specified. The argument size specifies the number of bytes to

be allocated.

On success, malloc() returns a pointer to the address of first byte of allocated memory. The

returned pointer is of type void, which can be type cast to appropriate type of pointer. The memory

allocated by malloc() contains garbage value .

If there is insufficient memory to make the allocation, the returned value is NULL.

Declaration: void *malloc(size_t size);

(datatpe*) ptr = (datatpe*)malloc(sizeof(datatype));

Where,

ptr is a pointer variable of data_type

size is the number of bytes

Ex: int *ptr;

ptr = (int *) malloc(100*sizeof(int));

2. calloc(n, size): Contiguous Allocation

This function is used to allocate multiple blocks of contiguous memory.

It takes 2 arguments. The first argument specifies the number of blocks and the second one

specifies the size of each block. The memory allocated by calloc() is initialized to zero.

On success, calloc() returns a pointer to the address of first byte of allocated memory. The

returned pointer is of type void, which can be type cast to appropriate type of pointer

If there is insufficient memory to make the allocation, the returned value is NULL.

Declaration: void *calloc(size_t n, size_t size);

(datatype*) ptr=(datatype*)calloc(n,sizeof(datatype));

Where,

Data structures and Applications BCS304

Page 3

ptr is a pointer variable of type int

n is the number of block to be allocated

size is the number of bytes in each block

Ex: int *x =(int*) calloc (10, sizeof(int));

The above example is used to define a one-dimensional array of integers. The capacity of this

array is n=10 and x [0: n-1] (x [0, 9]) are initially 0

 Macro CALLOC

#define CALLOC (p, n, s)

if (! ((p) = calloc (n, s)))\

{ fprintf(stderr, “Insuffiient memory”);

exit(EXIT_FAILURE);}

3. realloc(): realloc(ptr, size)

The function realloc() is used to change the size of the memory block. It alters the size of the

memory block without losing the old data. This function takes two arguments, first is a pointer to the

block of memory that was previously allocated by malloc() or calloc() and second one is the new size for

that block.

 Before using the realloc() function, the memory should have been allocated using malloc() or

calloc() functions.

 The function relloc() resizes memory previously allocated by either mallor or calloc, which means,

the size of the memory changes by extending or deleting the allocated memory.

 If the existing allocated memory need to extend, the pointer value will not change.

 If the existing allocated memory cannot be extended, the function allocates a new block and copies

the contents of existing memory block into new memory block and then deletes the old memory

block.

 When realloc() is able to do the resizing, it returns a pointer to the address of first byte of the new

block and when it is unable to do the resizing, the old block is unchanged and the function returns

the value NULL

Declaration: void *realloc(void *ptr ,size_t newsize);

(datatype*)ptr=(datatype*)realloc(ptr, newsize)

Example: (int *)ptr = (int *) malloc(sizeof(int));

ptr = (int *) realloc(ptr, 2*sizeof(int));

Data structures and Applications BCS304

Page 3

Macro REALLOC

#define REALLOC(p,S)\

if (!((p) = realloc(p,s)))

{ \ fprintf(stderr, "Insufficient memory");

exit(EXIT_FAILURE);\ }\

4. free()

Dynamically allocated memory with either malloc() or calloc () does not return on its own. The

programmer must use free() explicitly to release space.

This function is used to release the memory space allocated dynamically. The memory released by free()

is made available to the heap again and can be used for some other purpose. We should not try to free

any memory location that was not allocated by malloc(), calloc() or realloc().

Syntax: free(ptr);

ptr = NULL;

This statement cause the space in memory pointer by ptr to be deallocated

The following program illustrates Dynamic memory allocation.

void main()

{

int *p,n,i;

/* If we

dynamically*/

if(p==NULL)

{

}

for(i=0;i<n;i++)

{

}

for(i=0;i<n;i++)

}

i)); \

Data structures and Applications BCS304

Page 3

2.4 DYNAMICALLY ALLOCATED ARRAYS

Array can be dynamically allotted using malloc(), calloc() or realloc() functions, similarly the

allotted memory can be freed after the use of array using free() function.

One dimensional array

When large programs are written, it is difficult to determine how large array to use. So, solution

to this problem is to defer this decision to runtime and allocate the required array size. The advantage of

dynamic array is that the memory for the array of any desired size can be allotted. There is no need to

declare a fixed size array.

During the use of dynamically allocated arrays the following changes are required in first few

lines of main function of program

int i ,n,*list;

if(n<1)
{

}

 \

exit(EXIT_FAILURE);

MALLOC(list,n*sizeof(int));

This above main function fails only when n<1 or when sufficient memory is not allotted.

Example program for illustration of use of dynamic array:-

#include<stdio.h>

#include<stdlib.h>

void main()

{

int i,n;

int *ptr;

\n enter the number of elements\

ptr=(int*)malloc(sizeof(int)*n);

if(ptr==NULL)

{

\
return;

}

\

for(i=0;<n;i++)

 \

for(i=0;i<n;i++)

getch();

}

\n ent

Data structures and Applications BCS304

Page 3

Two dimensional array

A two dimensional array is represented as a one dimensional array in which each element is itself

a one dimensional array.(As shown in figure 9)

int x[3][5];

Here, actually a one dimensional array x is created whose length is 3 and each element of x is a one

dimensional array whose length is 5.

[0] [1] [2] [3] [4]

x[0]

x[1]

x[2]

Figure 9: Two dimensional array

C finds the element x[i][j] by first accessing the point in x[i].this pointer gives the address in memory of

the zeroth element of row I of the array. Then by adding j*sizeof(int) to this pointer , the address of the

[j]th elemnt of row i is determined.

Example program for allocating memory dynamically for 2D array

#include<stdio.h>

#include<conio.h>

#include<alloc.h>

void main()

{
int **a;

int p, q;

int **make2darray();

\

sc

\

a=make2darray(p,q);

getch();

}

int **make2darray(int rows ,int cols)

{

int **x, i;

x=malloc(rows*sizeof(*x));

for(i=0;i<rows;i++)

x[i]=malloc(cols*sizeof(**x));

return x;

}

Data structures and Applications BCS304

Page 3

2.4 APPLICATIONS OF ARRAYS

The two major applications of the arrays are polynomial and sparse matrix

1. POLYNOMIALS

Polynomial is a sum of terms where each term has a form ax
e
, where x is the variable, a is the

coefficient and e is the exponent.

Examples :

A(x) = 3x
20

+2x
5
+4

B(x) = x
4
+10x

3
+3x

2
+1

The largest exponent of a polynomial is called its degree.

In the above example, degree of first polynomial is 20 and for the second polynomial it is 4.

Note: Coefficients that are zero are not displayed, the term with exponent zero does not show the

variable i.e. 4x
2
+5x+1 where 1 is a term having exponent zero so variable is not displayed.

Operations on polynomials

 Addition

 Subtraction

 Multiplication

 But division is not allowed.

Polynomial addition is defined as :

Assume ix
i
 and jx

i
 then i+bj)x

i

ix
i

jx
i
))

Polynomial representation

In c, typedef is used to create the polynomial as below:-

#define MAX_DEGREE 101

typedef struct
{

int degree;

float coef[MAX_DEGREE];

}polynomial;

polynomial a;

Conisder a is of type polynomial and n>MAX_DEGREE then polynomial ix
i
 for i=0 to n

would be represented as

a.degree=n;

a.coef[i]=an-i,0<=i<=n.

Data structures and Applications BCS304

Page 3

Useful polynomial representation

To preserve space, an alternative polynomial representation is given below which uses only one

global array, terms to store all polynomials

#define MAX_TERMS 100

typedef struct

{

float coeff;

int expon;

}polynomial;

polynomial terms[MAX_TERMS];

int avail=0;

ADT polynomial

Data structures and Applications BCS304

Page 3

Polynomial addition

Function which adds two polynomials A and B giving D, represented as D=A+B. using previous

polynomial representation the following figure 10 shows how two polynomials are represented

Ex: A(x)=2x1000+1

B(x) =x4+10x3+3x2+1

Figure 10: Array representation of polynomial

The index of the first term of A and B is given by startA and startB respectively,while finishA

and finishB give the index of the last term of A and B. the index of the next free location in the array is

given by avail.

Example startA=0,finishA=1,startB=2,finish=5 and avail=6.

This representation ha no limitation on the number of terms in a polynomial but total number of

non-zero terms should not exceed MAX_TERMS.

Poly is used to refer a polynomial and is translated poly into a <start,finish>pair. Any polynomial

A that has n nonzero terms has startA and finishA such that finishA=startA+n-1.

Function To Add Two Polynomials

void padd(int startA,int finishA,int startB, int finish,int *startD,int *FINISHd)
{

float coefficient;

*startd=avail;

while(startA<=finiSHs && startb<=finish)

switch(COMPARE(terms[startA].expon,terms[startB].expon))

{

case -1: /* a.expon<b.expon)*/

attach(terms[startB].coef,terms[startB].expon);

startB++;

break;

case 0:/* equal exponents*/

coefficient=terms[startA].coef+terms[startB].coef;

if(coefficient)

attach(coefficient , terms[startA].expon);

startA++;

startB++;

break;

case 1: /*a.expon>b.expon*/

attach(terms[startA].coef,terms[startA].expon);

startA++;

Data structures and Applications BCS304

Page 3

}

for(;startA<=finishA;startA++)

attach(terms[startA].coef,terms[startA].expon);

for(;startB<=finishB;startB++)

attach(terms[startB].coef,terms[startB].expon);

*finishD=avail-1;

}

Function To Add a new term

void attach(float coefficient ,int exponent)

{

if(avail>=MAX_TERMS)

{

\

exit(0);

}

terms[avail].coef=coefficient;

terms[avail++].expon=exponent;

}

2. SPARSE MATRICES

Matrix contains m rows and n columns of elements. it has m rows and n columns. In general

mxn, is used to designate a matrix with m rows and n columns. The total no of elements in such matrix

is m*n. If m equals n then matrix is square.

 A matrix containing more number of zero entries, such matrices is called as

In figure11, since this matrix contains many zeros it is called as sparse matrix. Here 8 of 36

elements are only having non-zero values so it is called as sparse matrix. When sparse matrix is

represented as two dimensional array hence space is wasted so need another form of representation to

save memory where only non-zero values are stored.

Figure 11: sparse matrix

Data structures and Applications BCS304

Page 3

ADT sparse matrix

Sparse Matrix representation

A array of triples <row,col,value> is used to represent sparse matrix. In triples the row indices

are in ascending order as well as column indices are also in ascending order.(as shown in figure 12).

First row in triplet representation gives the total number of rows, total number of columns and total

number of non-zero values in sparse matrix.

Create operation of sparse matrix is written as

#define MAX_TERMS 101

typdef struct
{

int col;

int rows;

int value;

}term A[MAX_TERMS];

The above Sparse matrix is represented as triples.

Data structures and Applications BCS304

Page 40

Figure 12: Triple representation

Function: Triplet of a sparse matrix.

create_triplet_matrix(term a[],term b[]){

int k=1;

for(int i=0; i<rows; i++){

for(int j=0; j<col; j++){

if(a[i][j]!=0){

b[k].row = i;

b[k].col = j;

b[k].value =a[i][j] ;

k++ }

}

}

B[0].row = rows;

B[0].col = col;

B[0].value = k-1;

}

Transposing a Matrix

Transpose of a given matrix is obtained rows and columns. each element a[i][j].In the original

matrix becomes element b[j][i] in the transpose matrix.

The following algorithm is given by

Data structures and Applications BCS304

Page 41

The algorithm indicates that find all the elements in column 0 and store them in row 0 of the

transpose matrix, find all the elements in column1 and store them in row1 etc. Since the original matrix

ordered the rows, the columns within each row of incorporated in transpose. The first array a is the

original array which the second array b holds the transpose.(As shown in figure13)

Figure 13: Transpose of matrix

Data structures and Applications BCS304

Page 42

Data structures and Applications BCS304

Page 43

Fast Transpose of a Sparse Matrix

 This algorithm, fast-transpose proceeds by first determining the number of elements in each column of the orig

 This gives us the number of elements in each row of the transpose matrix. From this information, we can determ

matrix.

 We now can move the elements in the original matrix one by one into their correct position in the transpose ma

Data structures and Applications BCS304

Page 44

3. STRINGS

Strings are one-dimensional array of characters terminated by a null character '\0'. Thus a null-

terminated string contains the characters that comprise the string followed by a null. The following

declaration and initialization create a string consisting of the word "Hello". To hold the null character at

the end of the array, the size of the character array containing the string is one more than the number of

characters in the word "Hello."

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization then you can write the above statem

char greeting[] = "Hello";

Following is the memory presentation of the above defined string in C

Note: Actually, you do not place the null character at the end of a string constant. The C compiler

automatically places the '\0' at the end of the string when it initializes the array.

#include <stdio.h>

int main ()

{

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

printf("Greeting message: %s\n", greeting);

return 0;

}

When the above code is compiled and executed, it produces the following result:

Greeting message: Hello

Data structures and Applications BCS304

Page 45

ADT STRING

Objects: a finite set of zero or more characters

Functions:

For all s, t C string,i,j,m C non-negative intergers

String Null(m) = return a string whose maximum length is m characters , but is initally set to NULL we

Integer Compare(s,t) = if s equals t return 0

 else if s precedes t return -1

 else retun +1

Boolean IsNull(s) = if(Compare(s,NULL)) return FALSE

 else return TRUE

Integer Length(s) = if(Compare(s,NULL)) return the number of characters in s

 else return 0

String Concat(s,t) = if(Compare(t,NULL)) return a string whose elements are those of s followed by

 those of t

else return 0

String Substr(s,i,j) = if((j>0) && (i+j-1) < Length (s)) return the string containing the characters of s at

 positions i, i+1, , i+j-1

 else return NULL

Data structures and Applications BCS304

Page 46

3.2 STRING OPERATIONS

C supports a wide range of built in functions that manipulate null-

strcpy(s1, s2):- Copies string s2 into string s1.

strcat(s1, s2):- Concatenates string s2 onto the end of string s1.

strlen(s1):- Returns the length of string s1.

strcmp(s1, s2):- Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if

s1>s2.

strchr(s1, ch); Returns a pointer to the first occurrence of character ch in string s1

Function Description

char *strcat (char *dest, char *src) Concatenate dest and src strings; return result in
dest

char *strncat (char *dest, char *src, int n) Concatenate dest and n characters from src; return
result in dest

int strcmp (char *str1, char *str2) Compare 2 strings;

return < 0 if str1<str2;

0 if str1 = str2;
>0 if str1 > str2

int strncmp (char *str1, char *str2, int n) Compare first n characters;

return < 0 if str1<str2;

0 if str1 = str2;
>0 if str1 > str2

char *strcpy (char *dest, char *src) Copy src into dest; return dest

char *strncpy (char *dest, char *src, int n) Copy n characters from src into dest; return dest

size_t strlen (char *s)

char *strchr(char *s, int c) Return pointer to the first occurrence of c in s;
return NULL if not present

char *strrchr(char *s, int c) Return pointer to the last occurrence of c in s;
return NULL if not present

char *strtok(char *s, char *delimiters) Return a token from s;token is surrounded by
delimiters

char *strstr(char *s, char *pat) Return pointer to start of pat in s

size_t strspn (char *s, char *spanset) Scan s for characters in spanset; return length of
span

size_t strcspn (char *s, char *spanset) Scan s for characters not in spanset; return length
of span

char *strpbrk (char *s, char *spanset) Scan s for characters in spanset; return pointer to
first occurrence of a character from spanset

Data structures and Applications BCS304

Page 47

#include <stdio.h>

#include <string.h>

int main ()

{

char str1[12] = "Hello";

char str2[12] = "World";

char str3[12];

int len ;

/* copy str1 into str3 */

strcpy(str3, str1);

printf("strcpy(str3, str1) : %s\n", str3);

strcat(str1, str2);

printf("strcat(str1, str2): %s\n", str1);

/* total lenghth of str1 after concatenation */

len = strlen(str1);

printf("strlen(str1) : %d\n", len);

return 0;

}

When the above code

strcpy(str3, str1) : Hello

strcat(str1, str2): HelloWorld

strlen(str1) : 10

STRING INSERTION FUNCTION

void strnins(char *s,char *t,int i)

{

Char string[MAX_SIZE],*temp = string;

if(i < 0 && i > strlen(s))

 \

exit(EXIT_FAILURE);

}

if(! strlen(s))

strcpy(s,t);

else if if(strlen(t))

Data structures and Applications BCS304

Page 48

{

strncpy(temp, s, i);

strcat(temp, t);

strcat(temp, (s+i));

strcpy(s,temp);

}

}

3.3 PATTERN MATCHING ALGORITHMS

C programming code to check if a given string is present in another string, For example the

string "programming" is present in "c programming". If the string is present then it's location (i.e. at

which position it is present) is printed. We create a function match which receives two character pointers

and return the position if matching occurs otherwise returns -1. naive string search algorithm is

implemented in this c program

Brute Force Pseudo-Code

-code
do

if (text letter == pattern letter)

compare next letter of pattern to next

letter of text

else

move pattern down text by one letter

while (entire pattern found or end of text)

1. PATTERN MATCHING BY CHECKING END INDICES FIRST

int nfind(char *string, char *pat)

{

int i , j , start = 0;

int lasts = strlen(string)-1;

int lastp = strlen(pat)-1;

int endmatch=lenp;

for(i = 0; endmatch<=lasts ; endmatch++, start++)

{

if(string[endmatch] == pat[lastp])

for(j = 0 , i = start; j< lastp && string[i] == pat[j]; i++, j++)

;

if(j == lastp)

return start;

} return -1;

}

2. KNUTH MORRIS PRATT STRING MATCHING ALGORITHMS

int pmatch(char *string,char *pat)

Data structures and Applications BCS304

Page 49

{

int i = 0,j = 0;

int lens = strlen(string);

int lenp = strlen(pat);

while(i < lens && j < lenp)

{

if(string[i] == pat[j])

{

i++,j++;

}

else if(j == 0) j++;

else j = failure[j-1]+1;

}

return (if(j == lenp) ? (i-lenp):-1);

}

Differences between malloc() and calloc()

S.No. malloc() calloc()

1. malloc() function creates a single block of memory of a

specific size.

calloc() function assigns multiple blocks of

memory to a single variable.

2. The number of arguments in malloc() is 1. The number of arguments in calloc() is 2.

3. malloc() is faster. calloc() is slower.

4. malloc() has high time efficiency. Because no

initialization takes place.

calloc() has low time efficiency. Because of

zero filling.

5. The memory block allocated by malloc() has a garbage

value.

The memory block allocated by calloc() is

initialized by zero.

6. malloc() indicates memory allocation. calloc() indicates contiguous allocation.

7.
Syntax:

ptr=(datatpe*)malloc(sizeof(datatype));

Syntax:

ptr=(datatpe*)calloc(n, sizeof(datatype));

Data structures and Applications BCS304

Page 50

Pointers Can Be Dangerous

Because pointers provide access to a memory location. Data and executable code exist in memory together,

misuses of pointers can lead to both bizarre effects and very subtle errors.

Potential Problems with Pointers

 uninitialized pointers,

 memory leakage and

 dangling pointers.

Uninitialized pointers (wild ponters)

 Uninitialized pointer pose a significant thread.

o the value stored in an uninitialized pointer could be randomly pointing anywhere in memory.
o Storing a value using an uninitialized pointer has the potential to overwrite anything in your

program, including your program itself

 Never write a declaration like int *p;

Always give your pointers an initial value or Null if you can’t make it point to a real data value. So,

best practice is to pointers to NULL like

Int *p=NULL;

Memory Leakage

A memory leak occurs when all pointers to a value allocated on the heap has been lost.

Over time, memory leaks can cause programs to slow down and, eventually, crash.

Worse, a leaky program may come to take up so much of a systems memory that it interferes with the

operation of other programs on the same system.

Ex: Programmer creates a memory in heap and forget to delete it. This unused un-accessible memory

results in memory leakage.

void main(){

int *p;

p = (int *) malloc(sizeof(int));

Return;}

Dangling Pointers

Dangling pointers refer to a pointer which was pointing at an object that has been deleted.

The pointer still has the address of the object even though the memory for that object has been removed.

Data structures and Applications BCS304

Page 51

Ex: int main(){

int *ptr = (int *) malloc(sizeof(int));

……………………….

…………………………..

free(ptr); // ptr is still pointing to the deallocated memory ie non-existing memory

return 0;}

Data structures and Applications BCS304

Page 52

PROGRAMMING EXAMPLES

1) Write a C program to sort N numbers in ascending order using Bubble sort and print both the

given and the sorted array

#include <stdio.h>

#define MAXSIZE 10

void main()

{

int array[MAXSIZE];

int i, j, num, temp;

printf("Enter the value of num \n");

scanf("%d", &num);

printf("Enter the elements one by one \n");

for (i = 0; i < num; i++)

{

scanf("%d", &array[i]);

}

printf("Input array is \n");

for (i = 0; i < num; i++)

{

printf("%d\n", array[i]);
}

/* Bubble sorting begins */

for (i = 0; i < num; i++)

{

for (j = 0; j < (num - i - 1); j++)

{

if (array[j] > array[j + 1])
{

temp = array[j];

array[j] = array[j + 1];

array[j + 1] = temp;

}

}

}

printf("Sorted array is...\n");

for (i = 0; i < num; i++)

{
printf("%d\n", array[i]);

}

}

2) Write a C program to input N numbers and store them in an array. Do a linear search for a

given key and report success or failure.

#include <stdio.h>

void main()

{
int array[10];

int i, num, keynum, found = 0;

clrscr();

printf("Enter the value of num \n");

Data structures and Applications BCS304

Page 53

scanf("%d", &num);

printf("Enter the elements one by one \n");

for (i = 0; i < num; i++)

{

scanf("%d", &array[i]);
}

printf("Input array is \n");

for (i = 0; i < num; i++)

{

printf("%d\n", array[i]);

}

printf("Enter the element to be searched \n");

scanf("%d", &keynum);

/* Linear search begins */

for (i = 0; i < num ; i++)

{

if (keynum == array[i])

{

found = 1;

break;

}

}

if (found == 1)

printf("Element is present in the array\n");

else

printf("Element is not present in the array\n");

}

3) Write a C program to input N numbers and store them in an array. Do a binary search for a

given key and report success or failure.

#include<stdio.h>

main()

{

int a[20],i,j,d,t,x,l=0,low,mid,high;

printf("\nEnter the number of elements\n");

scanf("%d",&d);

printf("Enter the numbers\n");

for(i=0;i<d;i++)

scanf("%d",&a[i]);

for(i=0;i<d;i++)

{

for(j=i+1;j<d;j++)

{

if(a[i]>a[j])

{

t=a[i];

a[i]=a[j];

a[j]=t;

}

}

}

Data structures and Applications BCS304

Page 54

printf("\nThe sorted list :");

for(i=0;i<d;i++)

printf("%d ",a[i]);

printf("\nEnter the number to be searched\n");

scanf("%d",&x);

low=0;

high=d-1;

while(low<=high)

{

mid=(low+high)/2;

if(x<a[mid])

high=mid-1;

else if(x>a[mid])

low=mid+1;

else

{

if(x==a[mid])

{

l++;

printf("The item %d is found at location %d\n",x,mid+1);

exit(0);

}
}

}

if(l==0)

printf("Item not found\n");

}

4. Program to illustrate union inside structure

#include <stdio.h>

struct student

{
union

{

};

char name[20];

int roll_no;

int marks;

};

int main()
{

struct student stud;

char choice;

\n you can enter the name or roll number of the st

\

gets(choice);

{

gets(stud.name);

}

Data structures and Applications BCS304

Page 55

\

else

{

}

\n e

\

else

\

\

return 0;

}

\

Data Structures and Applications (BCS304)

QUEUES

DEFINITION

 “A queue is an ordered list in which insertions (additions, pushes) and deletions

(removals and pops) take place at different ends.”

 The end at which new elements are added is called the rear, and that from which old

elements are deleted is called the front.

If the elements are inserted A, B, C, D and E in this order, then A is the first element deleted

from the queue. Since the first element inserted into a queue is the first element removed,

queues are also known as First-In-First-Out (FIFO) lists.

QUEUE REPRESENTATION USING ARRAY

 Queues may be represented by one-way lists or linear arrays.

 Queues will be maintained by a linear array QUEUE and two pointer variables:

FRONT-containing the location of the front element of the queue

REAR-containing the location of the rear element of the queue.

 The condition FRONT = NULL will indicate that the queue is empty.

Figure indicates the way elements will be deleted from the queue and the way new elements

will be added to the queue.

 Whenever an element is deleted from the queue, the value of FRONT is increased by 1;

this can be implemented by the assignment FRONT := FRONT + 1

 When an element is added to the queue, the value of REAR is increased by 1; this can

be implemented by the assignment REAR := REAR + 1

Data Structures and Applications (BCS304)

QUEUE OPERATIONS

Implementation of the queue operations as follows.

1. Queue Create

Queue CreateQ(maxQueueSize) ::=

#define MAX_QUEUE_SIZE 100 /* maximum queue size */

typedef struct

{

int key; /* other fields */

} element;

element queue[MAX_QUEUE_SIZE];

int rear = -1;

int front = -1;

2. Boolean IsEmptyQ(queue) ::= front ==rear

3. Boolean IsFullQ(queue) ::= rear == MAX_QUEUE_SIZE-1

In the queue, two variables are used which are front and rear. The queue increments rear in

addq() and front in delete(). The function calls would be

addq (item); and item =delete();

Data Structures and Applications (BCS304)

1. addq(item)

void addq(element item)

{ /* add an item to the queue */

if (rear == MAX_QUEUE_SIZE-1)

queueFull();

queue [++rear] = item;

}

Program: Add to a queue

2. deleteq()

element deleteq()

{ /* remove element at the front of the queue */

if (front == rear)

return queueEmpty(); /* return an error key */

return queue[++front];

}

Program: Delete from a queue

3. queueFull()

The queueFull function which prints an error message and terminates execution

void queueFull()

{

fprintf(stderr, "Queue is full, cannot add element");

exit(EXIT_FAILURE);

}

Example: Job scheduling

 Queues are frequently used in creation of a job queue by an operating system. If the

operating system does not use priorities, then the jobs are processed in the order they

enter the system.

 Figure illustrates how an operating system process jobs using a sequential representation for

its queue.

Figure: Insertion and deletion from a sequential queue

Data Structures and Applications (BCS304)

Drawback of Queue
When item enters and deleted from the queue, the queue gradually shifts to the right as shown

in figure.

In this above situation, when we try to insert another item, which shows that the queue is full .

This means that the rear index equals to MAX_QUEUE_SIZE -1. But even if the space is

available at the front end, rear insertion cannot be done.

Overcome of Drawback using different methods

Method 1:

 When an item is deleted from the queue, move the entire queue to the left so that the

first element is again at queue[0] and front is at -1. It should also recalculate rear so

that it is correctly positioned.

 Shifting an array is very time-consuming when there are many elements in queue &
queueFull has worst case complexity of O(MAX_QUEUE_SIZE)

Data Structures and Applications (BCS304)

Method 2:

Circular Queue

 It is “The queue which wrap around the end of the array.” The array positions are arranged

in a circle.

 In this convention the variable front is changed. front variable points one position

counterclockwise from the location of the front element in the queue. The convention

for rear is unchanged.

CIRCULAR QUEUES

 It is “The queue which wrap around the end of the array.” The array positions are arranged
in a circle as shown in figure.

 In this convention the variable front is changed. front variable points one position

counterclockwise from the location of the front element in the queue. The convention

for rear is unchanged.

Implementation of Circular Queue Operations

 When the array is viewed as a circle, each array position has a next and a previous position.

The position next to MAX-QUEUE-SIZE -1 is 0, and the position that precedes 0 is

MAX-QUEUE-SIZE -1.

 When the queue rear is at MAX_QUEUE_SIZE-1, the next element is inserted at position

0.

 In circular queue, the variables front and rear are moved from their current position to the

next position in clockwise direction. This may be done using code

if (rear = = MAX_QUEUE_SIZE-1)

rear = 0;

else rear++;

Data Structures and Applications (BCS304)

Addition & Deletion

 To add an element, increment rear one position clockwise and insert at the new position.

Here the MAX_QUEUE_SIZE is 8 and if all 8 elements are added into queue and that

can be represented in below figure (a).

 To delete an element, increment front one position clockwise. The element A is deleted

from queue and if we perform 6 deletions from the queue of Figure (b) in this fashion,

then queue becomes empty and that front =rear.

 If the element I is added into the queue as in figure (c), then rear needs to increment

by 1 and the value of rear is 8. Since queue is circular, the next position should be 0

instead of 8.

This can be done by using the modulus operator, which computes remainders.

(rear +1) % MAX_QUEUE_SIZE

void addq(element item)

{ /* add an item to the queue */

rear = (rear +1) % MAX_QUEUE_SIZE;

if (front == rear)

queueFull(); /* print error and exit */

queue [rear] = item;

}

Program: Add to a circular queue

element deleteq()

{ /* remove front element from the queue */

element item;

if (front == rear)

return queueEmpty(); /* return an error key */

front = (front+1)% MAX_QUEUE_SIZE;

return queue[front];

}

Program: Delete from a circular queue

Data Structures and Applications (BCS304)

Note:

 When queue becomes empty, then front =rear. When the queue becomes full and

front =rear. It is difficult to distinguish between an empty and a full queue.

 To avoid the resulting confusion, increase the capacity of a queue just before it

becomes full.

CIRCULAR QUEUES USING DYNAMIC ARRAYS

 A dynamically allocated array is used to hold the queue elements. Let capacity be the

number of positions in the array queue.

 To add an element to a full queue, first increase the size of this array using a function

realloc. As with dynamically allocated stacks, array doubling is used.

Consider the full queue of figure (a). This figure shows a queue with seven elements in an

array whose capacity is 8. A circular queue is flatten out the array as in Figure (b).

Figure (c) shows the array after array doubling by relloc

To get a proper circular queue configuration, slide the elements in the right segment (i.e.,

elements A and B) to the right end of the array as in figure (d)

Data Structures and Applications (BCS304)

To obtain the configuration as shown in figure (e), follow the steps

1) Create a new array newQueue of twice the capacity.

2) Copy the second segment (i.e., the elements queue [front +1] through queue

[capacity-1]) to positions in newQueue beginning at 0.

3) Copy the first segment (i.e., the elements queue [0] through queue [rear]) to positions in

newQueue beginning at capacity – front – 1.

Below program gives the code to add to a circular queue using a dynamically allocated array.

void addq(element item)

{ /* add an item to the queue

rear = (rear +1) % capacity;

if(front == rear)

queueFull(); /* double capacity */

queue[rear] = item;

}

Below program obtains the configuration of figure (e) and gives the code for queueFull. The

function copy (a,b,c) copies elements from locations a through b-1 to locations beginning at c.

void queueFull()

{ /* allocate an array with twice the capacity */

element *newQueue;

MALLOC (newQueue, 2 * capacity * sizeof(* queue));

/* copy from queue to newQueue */

int start = (front +) % capacity;

if (start < 2) /* no wrap around */

copy(queue+start, queue+start+capacity-1,newQueue);

else

{ /* queue wrap around */

copy(queue, queue+capacity, newQueue);

copy(queue, queue+rear+1, newQueue+capacity-start);

}

Data Structures and Applications (BCS304)

/* switch to newQueue*/

front = 2*capacity – 1;

rear = capacity – 2;

capacity * =2;

free(queue);

queue= newQueue;

}

Program: queueFull

DEQUEUES OR DEQUE

A deque (double ended queue) is a linear list in which elements can be added or removed at

either end but not in the middle.

Representation

 Deque is maintained by a circular array DEQUE with pointers LEFT and RIGHT, which

point to the two ends of the deque.

 Figure shows deque with 4 elements maintained in an array with N = 8 memory

locations.

 The condition LEFT = NULL will be used to indicate that a deque is empty.

DEQUE

 AAA BBB CCC DDD

1 2 3 4 5 6 7 8

LEFT: 4 RIGHT: 7

There are two variations of a deque

1. Input-restricted deque is a deque which allows insertions at only one end of the list

but allows deletions at both ends of the list

2. Output-restricted deque is a deque which allows deletions at only one end of the list

but allows insertions at both ends of the list.

Data Structures and Applications (BCS304)

PRIORITY QUEUES

A priority queue is a collection of elements such that each element has been assigned a priority

and such that the order in which elements are deleted and processed comes from the following

rules:

(1) An element of higher priority is processed before any element of lower priority.

(2) Two elements with the same priority are processed according to the order in which they

were added to the queue.

A prototype of a priority queue is a timesharing system: programs of high priority are processed

first, and programs with the same priority form a standard queue.

Representation of a Priority Queue

1. One-Way List Representation of a Priority Queue

One way to maintain a priority queue in memory is by means of a one-way list, as follows:

1. Each node in the list will contain three items of information: an information field INFO,

a priority number PRN and a link number LINK.

2. A node X precedes a node Y in the list

a. When X has higher priority than Y

b. When both have the same priority but X was added to the list before Y. This means

that the order in the one-way list corresponds to the order of the priority queue.

Example:

 Below Figure shows the way the priority queue may appear in memory using linear arrays
INFO, PRN and LINK with 7 elements.

 The diagram does not tell us whether BBB was added to the list before or after DDD. On

the other hand, the diagram does tell us that BBB was inserted before CCC, because BBB

and CCC have the same priority number and BBB appears before CCC in the list.

Data Structures and Applications (BCS304)

The main property of the one-way list representation of a priority queue is that the element in

the queue that should be processed first always appears at the beginning of the one-way list.

Accordingly, it is a very simple matter to delete and process an element from our priority

queue.

Algorithm to deletes and processes the first element in a priority queue

Algorithm: This algorithm deletes and processes the first element in a priority queue which

appears in memory as a one-way list.

1. Set ITEM:= INFO[START] [This saves the data in the first node.]

2. Delete first node from the list.

3. Process ITEM.

4. Exit.

Algorithm to add an element to priority queue

Adding an element to priority queue is much more complicated than deleting an element from

the queue, because we need to find the correct place to insert the element.

Algorithm: This algorithm adds an ITEM with priority number N to a priority queue which is

maintained in memory as a one-way list.

1. Traverse the one-way list until finding a node X whose priority number exceeds N. Insert

ITEM in front of node X.

2. If no such node is found, insert ITEM as the last element of the list.

Data Structures and Applications (BCS304)

The main difficulty in the algorithm comes from the fact that ITEM is inserted before node X. This

means that, while traversing the list, one must also keep track of the address of the node preceding

the node being accessed.

Example:

Consider the priority queue in Fig (a). Suppose an item XXX with priority number 2 is to be

inserted into the queue. We traverse the list, comparing priority numbers.

Fig (a)

Fig(b)

Observe that DDD is the first element in the list whose priority number exceeds that of XXX.

Hence XXX is inserted in the list in front of DDD, as pictured in Fig(b).

Observe that XXX comes after BBB and CCC, which have the same priority as XXX. Suppose

now that an element is to be deleted from the queue. It will be AAA, the first element in the

List. Assuming no other insertions, the next element to be deleted will be BBB, then CCC, then

XXX, and so on.

Data Structures and Applications (BCS304)

Array Representation of a Priority Queue

 Another way to maintain a priority queue in memory is to use a separate queue for each

level of priority (or for each priority number).

 Each such queue will appear in its own circular array and must have its own pair of

pointers, FRONT and REA R.

 If each queue is allocated the same amount of space, a two-dimensional array QUEUE
can be used instead of the linear arrays.

Observe that FRONT[K] and REAR[K] contain, respectively, the front and rear elements of

row K of QUEUE, the row that maintains the queue of elements with priority number K.

The following are outlines or algorithms for deleting and inserting elements in a priority

queue

Algorithm: This algorithm deletes and processes the first element in a priority queue

maintained by a two-dimensional array QUEUE.

1. [Find the first non-empty queue.]

Find the smallest K such that FRONT[K] ≠ NULL.

2. Delete and process the front element in row K of QUEUE.

3. Exit.

Algorithm: This algorithm adds an ITEM with priority number M to a priority queue

maintained by a two-dimensional array QUEUE.

1. Insert ITEM as the rear element in row M of QUEUE.

2. Exit.

Data Structures and Applications (BCS304)

MULTIPLE STACKS AND QUEUES

 In multiple stacks, we examine only sequential mappings of stacks into an array. The array

is one dimensional which is memory[MEMORY_SIZE]. Assume n stacks are needed, and

then divide the available memory into n segments. The array is divided in proportion if the

expected sizes of the various stacks are known. Otherwise, divide the memory into equal

segments.

 Assume that i refers to the stack number of one of the n stacks. To establish this stack, create

indices for both the bottom and top positions of this stack. boundary[i] points to the

position immediately to the left of the bottom element of stack i, top[i] points to the top

element. Stack i is empty iff boundary[i]=top[i].

The declarations are:
#define MEMORY_SIZE 100 /* size of memory */

#define MAX_STACKS 10 /* max number of stacks plus 1 */

element memory[MEMORY_SIZE]; /* global memory declaration */

int top [MAX_STACKS];

int boundary [MAX_STACKS] ;

int n; /*number of stacks entered by the user */

To divide the array into roughly equal segments

top[0] = boundary[0] = -1;

for (j= 1;j<n; j++)

top[j] = boundary[j] = (MEMORY_SIZE / n) * j;

boundary[n] = MEMORY_SIZE - 1;

Figure: Initial configuration for n stacks in memory [m].

In the figure, n is the number of stacks entered by the user, n < MAX_STACKS, and

m =MEMORY_SIZE. Stack i grow from boundary[i] + 1 to boundary [i + 1] before it is full.

A boundary for the last stack is needed, so set boundary [n] to MEMORY_SIZE-1.

Data Structures and Applications (BCS304)

Implementation of the add operation

void push(int i, element item)

{ /* add an item to the ith stack */

if (top[i] == boundary[i+l])

stackFull(i);

memory[++top[i]] = item;

}

Program: Add an item to the ith stack

Implementation of the delete operation

element pop(int i)

{ /* remove top element from the ith stack */

if (top[i] == boundary[i])

return stackEmpty(i);

return memory[top[i]--];

}

Program: Delete an item from the ith stack

The top[i] == boundary[i+1] condition in push implies only that a particular stack ran out of

memory, not that the entire memory is full. But still there may be a lot of unused space between

other stacks in array memory as shown in Figure.

Therefore, create an error recovery function called stackFull , which determines if there is any free

space in memory. If there is space available, it should shift the stacks so that space is allocated to

the full stack.

Data Structures and Applications (BCS304)

Method to design stackFull

 Determine the least, j, i < j < n, such that there is free space between stacks j and j+1. That

is, top[j] < boundary[j+l]. If there is a j, then move stacks i+l,i+2, .., j one position to the

right (treating memory[O] as leftmost and memory[MEMORY_SIZE - 1] as rightmost). This

creates a space between stacks i and i+1.

 If there is no j as in (1), then look to the left of stack i. Find the largest j such that 0 ≤ j

≤ i and there is space between stacks j and j+ 1 ie, top[j] < boundary[j+l]. If there is a

j, then move stacks j+l, j+2, ... , i one space to the left. This also creates space between

stacks i and i+1.

 If there is no j satisfying either condition (1) or condition (2), then all MEMORY_SIZE

spaces of memory are utilized and there is no free space. In this case stackFull terminates

with an error message.

DATA STURUCTURES AND APPLICATIONS (BCS304)

LINKED LISTS

TOPICS

MODULE – 2:

Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation;

Garbage Collection.

Singly Linked list, SLL operations: Traversing, Searching, Insertion, and Deletion, Lists
and Chains, Representing Chains in C, Circular linked lists, and header linked lists, Linked
Stacks and Queues, Polynomials.

MODULE – 3:
Additional List operations, Doubly Linked lists, Sparse matrix representation.

LINKED LISTS In this chapter, the list data structure is presented. This structure can be used

as the basis for the implementation of other data structures (stacks, queues etc.). The basic linked list

can be used without modification in many programs. However, some applications require enhancements

to the linked list design. These enhancements fall into three broad categories and yield variations on

linked lists that can be used

The disadvantages of arrays are:

 The size of the array is fixed. Most often this size is specified at compile time. This makes the

programmers to allocate arrays, which seems "large enough" than required.

 Inserting new elements at the front is potentially expensive because existing elements need to be

shifted over to make room.

 Generally array's allocates the memory for all its elements in one block whereas linked lists use an

entirely different strategy. Linked lists allocate memory for each element separately and only when

necessary.

Here is a quick review of the terminology and rules of pointers. The linked list code will depend

on the following functions:

 malloc() is a system function which allocates a block of memory in the "heap" and returns a pointer

to the new block. The prototype of malloc() and other heap functions are in stdlib.h. malloc() returns

NULL if it cannot fulfill the request. It is defined by: void *malloc (number_of_bytes) Since a void *

is returned the C standard states that this pointer can be converted to mple, any type.

DATA STURUCTURES AND APPLICATIONS (BCS304)

LINK DATA

 For ex: char *cp; cp = (char *) malloc (100); Attempts to get 100 bytes and assigns the starting

address to cp. We can also use the sizeof() function to specify the number of bytes. For example, int

*ip; ip = (int *) malloc (100*sizeof(int));

 free() is the opposite of malloc(), which de-allocates memory. The argument to free() is a pointer to

a block of memory in the heap — a pointer which was obtained by a malloc() function. The syntax

is: free (ptr); The advantage of free() is simply memory management when we no longer need a

block.

1.1. LINKED LIST CONCEPTS

A linked list is a non-sequential collection of data items. It is a dynamic data structure. For every data

item in a linked list, there is an associated pointer that would give the memory location of the next data

item in the linked list. The data items in the linked list are not in consecutive memory locations. They

may be anywhere, but the accessing of these data items is easier as each data item contains the address

of the next data item.

Figure 1: Representation of node

Figure 2: Example of Linked list

Advantages of linked lists: Linked lists have many advantages. Some of the very important advantages

are:

 Linked lists are dynamic data structures. i.e., they can grow or shrink during the execution of a

program.

 Linked lists have efficient memory utilization. Here, memory is not pre-allocated. Memory is

allocated whenever it is required and it is de-allocated (removed) when it is no longer needed.

 Insertion and Deletions are easier and efficient. Linked lists provide flexibility in inserting a data

item at a specified position and deletion of the data item from the given position.

 Many complex applications can be easily carried out with linked lists.

DATA STURUCTURES AND APPLICATIONS (BCS304)

Disadvantages of linked lists:

 It consumes more space because every node requires a additional pointer to store address of the next

node.

 Searching a particular element in list is difficult and also time consuming.

Comparison between array and linked list:

1.2. TYPES OF LINKED LISTS

Basically we can put linked lists into the following four items:

1. Single Linked List.

2. Double Linked List.

3. Circular Linked List.

4. Circular Double Linked List.

 A single linked list is one in which all nodes are linked together in some sequential manner. Hence,

it is also called as linear linked list.

 A double linked list is one in which all nodes are linked together by multiple links which helps in

accessing both the successor node (next node) and predecessor node (previous node) from any

arbitrary node within the list. Therefore each node in a double linked list has two link fields

(pointers) to point to the left node (previous) and the right node (next). This helps to traverse in

forward direction and backward direction.

 A circular linked list is one, which has no beginning and no end. A single linked list can be made a

circular linked list by simply storing address of the very first node in the link field of the last node.

 A circular double linked list is one, which has both the successor pointer and predecessor pointer in

the circular manner.

DATA STURUCTURES AND APPLICATIONS (BCS304)

1.3. SINGLE LINKED LIST:

Singly linked lists are the basic type of linked lists where each node has exactly one pointer field.

A singly linked list is comprised of zero/ more number of nodes when the number of nodes is

zero , the list is empty otherwise if the linked list is non-empty, the list is pictorially represented as 1
st

node links to 2
nd

 node and 2
nd

 node links to 3
rd

 node and so on. the last node has zero link whose value

of address is set to NULL.

REPRESENTING SLL IN C LANGUAGE / MEMORY ALLOCATION

The following features are used to represent SLL. Use the following 3 steps to create a SLL.

1. Define node’s structure

To define a node, self-referential structures are used

2. Create a new node

malloc() or MALLOC macro is used to allocate memory for the defined structures nodes

of the size needed for structure node considered.

3. Removal of nodes

At any point if the allocated nodes are not in use, they are removed by free().

Example: To create a linked list of words following the above steps follow the steps given below.

1. Defining a node

Using self-referential structures nodes are created. for a list of words , in every node the data field

should store words, so define datatype accordingly.

typedef struct listnode *listpointer;

typedef struct

{

char data[4];

listpointer link;

}listNode;

This definition will result into a node by name listNode containing char data field of size 4 and a

field by name link , which is a pointer variable of type listpointer , where listpointer is a pointer to whole

structure.

listpointer->

Data

listNode

 Here, first is a variable of type pointer i.e. listpointer, initially making it as NULL and hence , a

new list is created by name first and it is empty,

 link

DATA STURUCTURES AND APPLICATIONS (BCS304)

 To create a new node in list, malloc() function is used.

first = malloc(sizeof(*first));

3. To assign the value to the fields of the node. Here, the operator is used, which is referred as the

structure member operator.

strcpy(first->data,”BAT”);

first->link=NULL;

These statements are represented as below:

first->Data first->link

first

Here, B = first-> data [0];

A = first-> data [1];

T = first-> data [2];

\0 = first-> data [3];

NULL=first link;

GARBAGE COLLECTION

 When the memory is allocated to the linked lists, a special list is maintained which consists of

unused memory cells. This list, which has its own pointer, is called the list of available space/ the

free storage list or the free pool.

 Thus, the memory is allocated from free pool.

 When node is deleted from a list or a entire list is deleted from a program, the memory space has to

be inserted into free storage list, so that it will be reusable.

 The operating system of a computer may periodically collect all the deleted space onto the free-

storage list. Any technique which does this collection is called garbage collection.

 Garbage collection usually takes place in 2 steps:

1. The computer runs through all list, tagging those cells which are currently in use and then the

computer runs through the memory, collecting all untagged space onto the free – storage list.

2. the garbage collection may take place when there is only some minimum amount of space or

no space at all left in the free-storage list or when the CPU is idle and has time to do the

collection

The garbage collection is invisible to the programmer.

B A T \0 NULL

DATA STURUCTURES AND APPLICATIONS (BCS304)

LINKED LIST OPERATIONS

The following operations are performed on the linked list

1. INSERTION

Insertion operation is used to insert new node to the list created. This operation is performed

depending on many scenarios of linked lists like

 If the linked list is empty, then new node after insertion becomes the first node.

 If the list already contains nodes the new node is attached either at front end of the list or at the last

end.

 If the insertion is based on the data element/position, then search the list to find the location and then

insert the new node.

NOTE: same conditions are checked for deleting a node from the list as well.

\0

temp

Figure 4: Insertion Operation

newnode

Here, if we need to insert the data item GAT between FAT and HAT, the following steps are

followed.

 Get a node temp

 Set the data field to GAT

 Set the link field of temp to point to the node after FAT, which contains HAT

 Set FAT link field to temp

In figure, if we need to delete FAT, then find the element that immediately precedes the element to be

deleted.

EX :- Here, identify EAT.

 Set that element link to the position of GAT i.e. EAT link should point to GAT.

 Use free() to delete FAT node.

Function to create a two-node SLL

listpointer create2()

{

listpointer first,second;
first = malloc(sizeof(*first));

second = malloc(sizeof(*second));

firstdata=10;

seconddata=20;

firstlink=second;

secondlink=NULL;

return first;

BAT

FAT EAT CAT BAT HAT

DATA STURUCTURES AND APPLICATIONS (BCS304)

\0

}

C function to insert new node with data value 50 into the SLL by name first after the node X.

void insert(listpointer *first, listpointer X)

{

listpointer temp;

temp=malloc(sizeof(*temp));

temp->data = 50;

if(*first)

{

temp-> link = x->link;

x->link = temp;

}

else
{

temp-> link = NULL;

*first=temp;

}

}

from main function, call this function as insert(*first , x);

Node to be inserted

temp

 If it is empty, then will be the first node in SLL first.

first->

 So, here we are passing the address of first, the second argument is the X.

X

temp

Insert at front of the SLL, insert at end of SLL and Insert at mid of the SLL

Refer PPT

50

50

70 40 20 10

\0 50

DATA STURUCTURES AND APPLICATIONS (BCS304)

ta va

20 50 10

\0 20 50 10

\0

2. LIST DELETION

Example deletes X from the list first , where trail is the preceding node of X.
void delete(listpointer *first, listpointer trail, listpointer X)

{

if(trail)

trail->link = x->link;

else

*first = (*first) ->link;
free(x);

}

From main function call this function as below:-

delete (&first, NULL, first);

OR

delete (&first, y, y->link);

 Any node is deleted from a linked list by another function delete.

 Assuming that we have 3 pointers, first which points to the start of the list, x points to the node

that we wish to delete, &trail points to the node that precedes x node

first-> first->

 In this example, the node x , which has to be deleted is the first node itself. so, after deleting that

node, resultant linked list should be like , next figure. so, we must change the value of first to

point to node with data 50.
y

first-> first->

\0 20 50

\0 50 10

DATA STURUCTURES AND APPLICATIONS (BCS304)

 In above example, deletion corresponds to the function call, delete (&first, y, y->link); where, y

is the trail node for the deleting node x, which is y->link, i.e, the next node after y. so deleting

node containing data 20 is performed and y->link set to NULL.

Deletion at front of SLL, Deletion at End of SLL, Deletion at Mid of List

Refer PPT

3. TRAVESING/PRINTING THE LIST

To print the data fields of the nodes in a list. First print the contents of first’s data field. Then,

replace first with the address in its link field. So, continue printing out the data field and moving to the

next node until end of the list is reached.

void printlist (listpointer first)
{

printf(“\n The list contains”);

for(; first ; first->link)

printf(“%4d”, first->data);

}

3. SEARCHING

 Searching operation performs the process of finding the node containing the desired value in

linked list.

 Searching starts from the first node of the linked list, so that the complete linked list can be

searched to find the element. if found search is successful, else unsuccessful.

DATA STURUCTURES AND APPLICATIONS (BCS304)

void search(listpointer first, int key)

{

int found = 0;
while(first!=NULL && found = = 0)

{

if(first->data!=key)

first=first->next;

else

}

}

found = = 1;

DOUBLY LINKED LISTS

 Doubly linked list contains the node which contains the following fields: data field and two link

fields, one linking in forward direction and other linking in backward direction.

 figure below shows the DLL

Figure 5: DLL

 In singular linked list, it is possible to traverse in only one direction (forward) in the linked list.

 If we are pointing to a specific node say p, then we can move only in the direction of the links.

 To find a node before p, i.e. preceding node p is difficult unless we start from beginning to reach

its previous node.

 Same problem exists, when delete or insertion operations are done on any arbitrarily node in

SLL.

 These problems can be overcome using DLL, as they have both direction links, from any node p,

where we can find next node/ preceding node easily.

C Representation of DLL

A node in a doubly linked list has at least three fields, a left link field (llink), a data field(data), and a

right link field(rlink).

typedef struct node *nodepointer;

typedef struct

{

nodepointer llink;

element data;

DATA STURUCTURES AND APPLICATIONS (BCS304)

Figure 6: Insertion in DLL

nodepointer rlink;

}node;

if ptr points to a node in a DLL, then ptr=ptr->llink->rlink= ptr->rlink->llink;

Operations performed on DLL

1. Insert

Insertion into a doubly linked list is fairly easy. Assume there are two nodes, node and newnode, node

may be either a header node or an interior node in a list. The function dinsert performs the insertion

operation in constant time.

It inserts new node to the right of the node.

void dinsert (nodepointer node,nodepointer newnode)

{
newnode->llink=node;

node->rlink=newnode;

}

2. Deletion

Deletion from a doubly linked list is equally easy. The function ddelete deletes the node deleted from

the list pointed to by node.

To accomplish this deletion, we only need to change the link fields of the nodes that precede

(deleted→llink→rlink) and follow (deleted→rlink→llink) the node we want to delete.

It deleted the node from the list pointed to by node.

void delete(nodepointer node,nodepointer deleted)

{

if(node == deleted)

printf(“\n deletion of header node is not permitted”);

else
{

}

}

deleted->llink->rlink=deleted->rlink;

deleted->rlink->llink=deleted->llink;

free(deleted);

Figure 7: Deletion in DLL

DATA STURUCTURES AND APPLICATIONS (BCS304)

CIRCULAR LINKED LISTS

A linked list whose last node points back to the first node instead of containing a null pointer is

called circular list.

1. Circular singly linked list

Figure 8: CSLL

In a singly linked circular list, the pointer field of the last node stores the address of the starting node In

the list. Hence it is easy to traverse the list given the address of any node in the list.

2. Circular doubly linked list

A doubly linked list whose last node rlink points to first node and first node llink points to last node,

making it is a circular called as circular DLL.

Figure 9: CDLL

To insert a new node into circular DLL at the end

void dinsert(nodepointer node,nodepointer newnode)

{

newnode->llink=node;

newnode->rlink=node->rlink;

node->rlink->llink=newnode;

node->rlink=newnode;

}

Figure 10: Insertion in CDLL

Advantages of CLL

 Linked list made as circular can connect to the first node easily.

 Insertion/deletion operations can be performed quickly.

 Accessing previous node of any node X, can be achieved from Xend of the list and end to that

particular node.

 Circular linked list even can be adapted for DLL, which are doubly linked CLL.

DATA STURUCTURES AND APPLICATIONS (BCS304)

HEADER LINKED LIST

A header linked list is a linked list which always contains a special node called the header node

at the beginning of the list. It is an extra node kept at the front of a list. Such a node does not represent

an item in the list. The information portion might be unused.

This header node allows us to perform operations more easily and also differentiaties the

nodes,first/last especially when the list is circular.The header node may contain some useful about

linked list such as number of nodes in the list , address of last node/ some specific distinguishing

information . the address of starting node is refereed by headerpointer.

There are two types of header list

1. Grounded header list: is a header list where the last node contains the null pointer.

2. Circular header list: is a header list where the last node points back to the header node.

Figure 11: Grounded and Circular header Linked List

Observe that the list pointer START always points to the header node.

 If START→LINK = NULL indicates that a grounded header list is empty

 If START→LINK = START indicates that a circular header list is empty.

The first node in a header list is the node following the header node, and the location of the first node is

START→LINK, not START, as with ordinary linked lists.

Below algorithm, which uses a pointer variable PTR to traverse a circular header list

1. Begins with PTR = START→LINK (not PTR = START)

2. Ends when PTR = START (not PTR = NULL).

The two properties of circular header lists:

1. The null pointer is not used, and hence all pointers contain valid addresses.

2. Every (ordinary) node has a predecessor, so the first node may not require a special case.

DATA STURUCTURES AND APPLICATIONS (BCS304)

Linked Stacks and Queues:-

 To represent several queues and stacks sequentially, linked list is the efficient way.

 The linked stack and linked queue are pictorially shown below:

Figure 12: (a) Linked Stack and (b) Linked queue

DATA STURUCTURES AND APPLICATIONS (BCS304)

 The directions of arrows in both stack queue representation help us to easily understand the

operations i.e insertion and deletion of nodes. i.e in stack, push/pop operation performed from ht

etop of the stack.

 In Figure (b) above, in linked queue, node is easily inserted and deleted using rear and front

respectively.

 C declarations to represent ‘n’, number of stacks in memory simultaneously, where n<=

MAX_STACKS.

typedef struct

{

int key;

}Element;
typedef struct stack * stackPointer;

typedef struct

{

Element data;

stackPointer link;

}stack;

stackPointer top[MAX_STACKS];

 The initial condition for the stack is top[i]=NULL, 0<i<=MAX_STACKS.

 Boundary condition is top[i]=NULL if the ith stack is empty.

Operations on Mulitple stacks (Linked stack):-

1) PUSH:-

 The push function creates a new node by name temp & places item in the data field & top in the link

field. The variable top is then changed to point to temp.

void push(int i, Element item)

{

stackPointer temp;
temp = malloc(sizeof(*temp));

temp->data = item;

temp->link = tep[i];

top[i] = temp;

}

 The above C function is to add item to the ith stack.

2) POP:-

Element pop(int i)

{

stackPointer temp = top[i];

Element item;

if(!temp)

return stackEmpty();

item = temp->data;

top[i] = temp->link;

free(temp);

return item;

}

DATA STURUCTURES AND APPLICATIONS (BCS304)

 The above C function is used to delete top element from ith stack.

LINKED QUEUES:-

 To represent ‘m’ queues simultaneously, declarations are as follows:- where m<=MAX_QUEUES.

#define MAX_QUEUES 10

typedef struct queue *queuePointer;
typedef struct
{

Element data;
queuePointer link;

}queue;

queuePointer front[MAX_QUEUES], rear[MAX_QUEUES];

 In initial condition for the queue, front[i] = NULL, 0<=i<MAX_QUEUES and the boundary is

front[i] = NULL iff the ith queue is empty.

Operations of Linked queue:-

1) Insert:- add an item to the rear end of a linked queue.

void addq(i, item)

{
queuePointer temp;
temp = malloc(sizeof(*temp));

temp->data = item;

temp->link = NULL;

if(front[i])

rear[i]->link = temp;

else
front[i] = temp;

rear[i] = temp;

}

Function addq is more complex than push because we must check for an empty queue. If the

queue is empty, then change front to point to the new node; otherwise change rear's link field to

point to the new node. In either case, we then change rear to point to the new node.

2) Delete:- Deletes an item from the front of a linked queue.

Element deleteq(int i)

{
queuePointer temp = front[i];

Element item;

if(!temp)

return queueEmpty();

item = temp->dtaa;

front[i] = temp->link;

free(temp);

return item;

}

Function deleteq is similar to pop since nodes are removing that is currently at the start of

the list. Typical function calls would be addq (i, item); and item = deleteq (i);

DATA STURUCTURES AND APPLICATIONS (BCS304)

APPLICATIONS OF LINKED LISTS

1) Polynomial Addition:-

 For adding 2 polynomials, the following terms are compared and checked starting at the nodes

pointed to by a & b.

o If the exponents are equal – add 2 coefficients and create new term for the result.
Move a & b to point to next nodes.

o If the exponent of the term in a is less than the exponent of current item in b, then,
 Create a duplicate term b.

 Attach this term to the result called c.

 Advance the pointer to the next term only in b.

o If the exponent of the term in a is greater then the exponent of curret item in b, then,
 Create a duplicate term a.

 Attach this term to the result, called c.

 Advance the pointer to next term only in a.

Polynomial is represented as:-

A(x) = am-1 x
cm-1

 + ... +a0x
c0

where, ai are non zero co- efficients and the ci are non negative integer exponents such that cm-1 > cm-2

>...>c1>c0>=0.

C Declaration:-

typedef struct polyNode *polyPointer;

typedef struct

{

int coef;

int expon;

polyPointer link;

}polyNode;

polyPointer a, b;

polyNodes looks as:-

coef expon link

a= 3x
14

+2x
8
+1, b = 8x

14
-3x

10
+10x

6

a

b

Figure 13: Representaion of a & b polynomials.

14 3

10 3 14 8

2 8

1 0

10 6

DATA STURUCTURES AND APPLICATIONS (BCS304)

C Function for polynomial addition is given below:-

polyPointer padd(polyPointer a, polyPointer b)

{ /* return a polynomial which is the sum of a & b */

polyPointer c, rear, temp;

int sum;

MALLOC(rear, sizeof(*rear));

c=rear;

while(a && b)

switch(COMPARE (a->expon, b->expon))

{

case -1:/* a->expon < b->expon */

attach(b->coef, b->expon, & rear);

b=b->link;

break;

case 0: /*a->expon == b->expon */

sum = a->coef + b->coef;

if(sum)

attach(sum, a->expon, & rear);
a=a->link;

b=b->kink;

break;

case 1: /* a -> expon > b->expon */

attach(a->coef, a->expon, & rear);

a=a->link;

}

/* copy rest of the list a and then list b */

for(;a;a->link)

attach(a->coef, a->expon, & rear);

for(;b;b->link)

attach(b->coef, b->expon, & rear);

rear->link = NULL;

/* delete extra initial node */

temp = c;

c=c->link;

free(temp);

return c;

}

 The above function uses streaming process, that moves along the 2 polynomials, either copying

terms directly / adding them to the result.

 Thus, while loop has 3 cases, depending on whether next pair of elements are =, < or >.

 To create a new node and append it to the end of c, the above addition function uses attach().

DATA STURUCTURES AND APPLICATIONS (BCS304)

void attach(float coefficient, int exponent, polyPointer *ptr)

{ /* create a new node with coef = coefficient & expon = exponent, attach is to the node pointed to
by ptr. ptr is updated to point to this new nodes */

polyPointer temp;

MALLOC(temp, sizeof(*temp));

temp->coef = coefficient;

temp->expon = exponent;

(*ptr)->link = temp;

*ptr = temp;

}

Erasing Polynomials:-

 While using polynomials for different computations, temporary nodes which are having actually

waste data can be erased.

 Example:- For performing e(x) = a(x) * b(x) + d(x);

 Main function is as below:-

polyPointer a,b,d,e;

a=readPoly();

b=readPoly();

d=readPoly();

temp=pmult(a,b);

e=padd(temp,d);

printPoly(e);

 Here, temp is a node, which need to be erased. So, the following function is used to erasenodes.

void erase(polyPointer *ptr)

{
polyPointer temp;

while(*ptr)

{
temp=*ptr;
*ptr=(*ptr)->link;

free(temp);

}

}

DATA STURUCTURES AND APPLICATIONS (BCS304)

Circular list representation of polynomials:-

 In a linked structure, the link of the last node points to the first node in the list, it is called as circular

list.

 Nodes of a polynomial can be freed efficiently if circular list representation is used.

last

Figure 14: Circular representation of 3x14+2x8+1

 Free nodes that is no longer in use can be reused by maintaining our own list of nodes that have been

freed.

 When we need a new node, freed nodes list is examined, if it is not empty, then use those nodes. If

not, use malloc() to create a new node.

 getNode() & retNode() functions are used to use a node and free the node as malloc() and free().

polyPointer getNode(void)

{
polyPointer node;

if(avail)

{

}

else

node=avail;

avail=avail->link;

MALLOC(node, sizeof(*node));

return node;

}

void retNode(polyPointer node)

{

/*return a node to the available list */

node->link=avail;

avail = node;

}

14 2 8

DATA STURUCTURES AND APPLICATIONS (BCS304)

‐‐ ‐‐

1 0

‐‐ ‐‐

Erasing Circular list:-

 We can erase circular list in a fixed amount of time independent of the number of nodes in the list

using cerase() function

void cerase(polyPointer *ptr)

{

polyPointer temp;

if(*ptr)

temp=(*ptr)->link;

(*ptr)->link = avail;

avail = temp;

*ptr = NULL;

}

Circular lists with header nodes:-

 In order to handle the zero polynomial, each polynomial with a header node is introduced i.e. each

polynomial zero / non-zero contains 1 additional node.

 The expon & coef fields of this node are irrelavant.

Figure 15: Zero Polynomial

Figure 16: Polynomial 3x14+2x8+1

polyPointer cpadd(polyPointer a, polyPointer b)
{

polyPointer startA, c, lastC;

int sum, done=FALSE;

startA=a;

a=a->link;

b=b->link;

c=getNode();

c->expon = -1, lastC=c;

do

{

switch(COMPARE(a->expon, b->expon))
{

case -1: attach(b->coef, b->expon, &lastC);

b=b->link;

break;

case 0: if(startA == a)

done = TRUE;

else

{

sum=a->coef+b->coef;

if(sum)

8 2 14 3

DATA STURUCTURES AND APPLICATIONS (BCS304)

}

break;

attach(sum, a->expon, &lastC);
a=a->link;

b=b->link;

case 1: attach(a->coef, a->expon, lastC);

a=a->link;

}

}while(!done);

lastC->link=c;

return c;

}

SPARSE MATRIX:-

 Sparse Matrix is a matrix with more number of zero enteries than non-zero enteries.

 Each non-zero term is represented by a node with 3 fields:- row, column and value.

 Linked list representation for sparse matrix are more efficient than array representation.

 In this represenation, each column of a sparse matrix is represented as a circularly linked list with a

header node.

 Similarly, representation is used for each row of the sparse matirx.

 Each node has a tag field, which distinguish between header nodes and entry nodes. Each header

node has 3 additional fields:- down, right & next.

o down field to link into a column list.

o right field to link into a row list.

o next field links the header nodes together.

 Each element entry node has 3 fields in addition to the tag field:- row, col, down, right value.

o down field to link to next non-zero term in the same column.

o right field to link to next non-zero term in the same row.
 Thus, if aij ≠ 0, there is a node into tag field = entry, value =aij, row=i & cal=j.

C declarations to represent sparse matrix using likked list.

#define MAX_SIZE 50

typedef Enum {head,entry} tagfield;

typedef struct matrixNode *matrixpointer;

typedef struct

{

int row;

int col;

int value;

} entryNode;

typedef struct

{

matrix pointer down;

matrix pointer right;

tag field tag;

union

DATA STURUCTURES AND APPLICATIONS (BCS304)

{

matrix pointer next;

entry nodes entry;

}u;

}matrix Node;

matrix pointer hnode[MAX_SIZE];

The figure shows linked representation of sparse matrix for the following sparse matrix shown

below:-

0 0 0 0 6 0

0 4 0 0 0 0

4 0 0 8 0 0

0 0 0 0 0 4

0 0 7 0 0 0

Figure 17:-Linked representation of the sparse matrix

Sparse Matrix Operations:- Input, Output & Erase.

1. Sparse Matrix Input:-

 The first operation is of reading in a sparse matrix and obtaining it’s linked representation. The

first input line consists of the number of rows, number of columns and the number of non zero

DATA STURUCTURES AND APPLICATIONS (BCS304)

next

down right

row col value

down right

terms. This line is followed by numTerms, lines of input, each of which is of the form:- row, col,

value.

 The sample input for sparse matrix is given below:-

(a) Header Node (b) Element Node

Figure 18:- Node Structure for sparse Matrices

 The function mread first sets up the header nodes & then sets up each row list while

simultaneously building the column lists. The next field of a header node,i,is initially used to

keep track of the last node in column i.

matrixPointer mread(void)
{

/* read in a matrix & sets up its linked representation */

int num Rows,numCols,numTerms,numHead,i;

int row,col,value,currentRow;

matrix pointer temp,last,node;

printf(“enter the number of rows,columns,non-zero terms”);

scanf(“%d%d%d”,&numRows,&numCols,&numTerms);

numHeads=(numcols>numRows) ? numCols:numRows;

node=newNode();

nodetag=entry;
nodeu .entry.row=numRows;

nodeu.entry.col=numCols;

if(!numHeads)

noderight=node;

else

/*initialize the header nodes8/

{

for(i=0;i<numHeads;i++)

{

temp=newNode;

hdnode[i]=temp;

hdnode[i]->tag = head;

hdnode[i]->right = temp;

hdnode[i]->u.next = temp;

}

currentRow = 0;

last = hdnode[0];

for(i=0;i<numTerms;i++)

{

printf(“Enter row, column & value”);

scanf(“%d %d %d”, & row, & col, & value);

if(row>currentRow)

{

last->right = hdnode[currentRow];

currentRow = row;

last=hdnode[row];

DATA STURUCTURES AND APPLICATIONS (BCS304)

}

MALLOC(temp, sizeof(*temp));

temp->tag = entry;

temp->u.entry.row=row;

temp->u.entry.col=col;

temp->u.entry.value=value;

last->right = temp;

hdnode[col]->u.next->down= temp;

hdnode[col]->u.next = temp;

}

last->right = hdnode[currentRow];

for(i=0;i<numCols;i++)

hdnode[i]->u.next->down = hdnode[i];

hdnode[numHeads-1]->u.next=node;

node->right = hdnode[0];

}

return node;
}

2. Sparse Matrix Output:-

To print out the contents of a sparse matrix in a form. The function mwrite is written as below:

void mwrite(matrixPointer node)

{

/*print out the matrix in row major form */

int i;

matrixPointer temp, head=node->right;

printf(“numRows=%d, numCols=%d\n”, node->u.entry.row, node->u.entry.col);

for(i=0;i<node->u.entry.row;i++)

{

for(temp=head->right;temp!=head;temp=temp->right)

printf(“%5d %5d %5d\n”, temp->u.entry.row, temp->u.entry.col,

temp->u.entry.value);

head=head->u.next;

}

}

DATA STRUCTURES AND APPLICATIONS BCS304

Module 4
GRAPHS

Topics:
Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Traversal
methods: Breadth First Search and Depth First Search.
Hashing: Hash Table organizations, Hashing Functions, Static and Dynamic Hashing.

INTRODUCTION: GRAPH
• A graph G consists of 2 sets, V and E.

V is a finite, on empty set of vertices.
E is a set of pairs of vertices, these pairs are called edges. V(G) and E(G) represents the set of

vertices and edges respectively of graph G (Figure 1).

Figure 1: Three sample graphs

There are two types of graphs
1. Undirected graph
2. Directed graph
• In an undirected graph, the pair of vertices representing any edge is unordered. Thus, the pairs (u,v)
and (v,u) represent the same edge.
• In a directed graph, each edge is represented by a directed pair <u,v>; u is the tail and v is the head of
the edge. Therefore, <u,v> and <v,u> represent two different edges.
Following are the restrictions on graphs
1) A graph may have an edge from a vertex v back to itself. Such edges are known as self loops (Fig 2).
2) A graph may not have multiple occurrences of the same edge. If we remove this restriction, a data
object referred to as multigraph.

DATA STRUCTURES AND APPLICATIONS BCS304

Figure 6.3: Examples of graph like structures
• Maximum number of edges in any n-vertex, undirected graph is n(n-1)/2.
• Maximum number of edges in any n-vertex, directed graph is n(n-1).

TERMINOLOGIES USED IN A GRAPH
• Subgraph of G is a graph G' such that V(G') belongs V(G) and E(G') belongs E(G) (Figure 3).

Figure 3:Some subgraphs

• A path from vertex u to vertex v in graph G is a sequence of vertices u,i1,i2 . . . ik, v such that
(u,i1),(i1,i2) (ik, v) are edges in E(G).
• A simple path is a path in which all vertices except possibly the first and last are distinct.
• A cycle is a simple path in which the first and last vertices are the same.
• A undirected graph is said to be connected iff for every pair of distinct vertices u & v in V(G) there is
a path from u to v in G.
• A connected component H of an undirected graph is a maximal connected subgraph. (Figure 4).

Figure 4:A graph with two connected components
• A tree is a connected acyclic(i.e. has no cycles) graph.
• A directed graph G is said to be strongly connected iff for every pair of distinct vertices u and v in
V(G),there is a directed path from u to v and also from v to u (Figure 5). The graph G3 is not
strongly connected as there is no path from vertex2 to 1. A strongly connected component is a
maximal subgraph that is strongly connected. G3 has two strongly connected components.

DATA STRUCTURES AND APPLICATIONS BCS304

Figure 5: Strongly connected components of G3

• The degree of a vertex is the number of edges incident to that vertex. (Degree of vertex 0 is 3)
• In a directed graph G, in-degree of a vertex v defined as the number of edges for which v is the head.
The out-degree is defined as the number of edges for which v is the tail. (Vertex 1 of G3 has in-degree 1,
out-degree 2 and degree 3).

GRAPH REPRESENTATIONS
• Three commonly used representations are:
1) Adjacency matrices,
2) Adjacency lists and
3) Adjacency Multilists
1) Adjacency Matrix
• Let G=(V,E) be a graph with n vertices, n>=1.
• The adjacency matrix of G is a two-dimensional n*n array(say a) with the property that a[i][j]=1 iff
the edge (i,j) is in E(G). a[i][j]=0 if there is no such edge in G (Figure 6).

• The space needed to represent a graph using its adjacency matrix is n2 bits.
• About half this space can be saved in the case of undirected graphs by storing only the upper or lower
triangle of the matrix. Figure 6 Adjacency matrices

 2) Adjacency Lists
• The n rows of the adjacency matrix are represented as n chains.
• There is one chain for each vertex in G.
• The data field of a chain node stores the index of an adjacent vertex (Figure 6.8).
• For an undirected graph with n vertices and e edges, this representation requires an array of size n and
2e chain nodes.

DATA STRUCTURES AND APPLICATIONS BCS304

Figure 7 adjacency lists.
3) Adjacency Multilist
An edge in an undirected graph is represented by two nodes in adjacency list representation.
Adjacency Multilists are lists in which nodes may be shared among several lists.
(an edge is shared by two different paths). For each edge there will be exactly one node, but this node
will be in two lists(i,e, the adjacency lists for each of the two nodes to which it is incident). The node
structure is

 Where m is single bit field to indicate whether the edge has been examined or not.

m vertex1 vertex2 link1 link2

DATA STRUCTURES AND APPLICATIONS BCS304

GRAPH ABSTRACT DATA TYPE

ADT OF GRAPH

DATA STRUCTURES AND APPLICATIONS BCS304

ELEMENTARY GRAPH OPERATIONS/ GRAPH TRAVERSALS

1. Depth First Search (DFS)

2. Breadth First Search (BFS)

DFS and BFS are common methods of graph traversal, which is the process of visiting every

vertex of a graph. Stacks and queues are two additional concepts used in the DFS and BFS algorithms.

A stack is a type of data storage in which only the last element added to the stack can be

retrieved. It is like a stack of plates where only the top plate can be taken from the stack.

The three stacks operations are:

• Push – put an element on the stack

• Peek – look at the top element on the stack, but do not remove it

• Pop – take the top element off the stack.

A queue is a type of data storage in which the elements are accessed in the order they were added. It is

like a cafeteria line where the person at the front of the line is next.

The two queues operations are:

• Enqueue – add an element to the end of the queue.

• Dequeue – remove an element from the start of the queue.

 Depth First Search (DFS) (It is similar to a preorder tree traversal)

• We begin the search by visiting the start vertex, v.

• Next, we select an unvisited vertex, w, from v’s adjacency list and carry out a depth first search on w.

• We preserve our current position in v’s adjacency list by placing it on a stack.

• Eventually our search reaches a vertex, u, that has no unvisited vertices on its adjacency list.

• At this point, we remove a vertex from the stack and continue processing its adjacency list.

• Previously visited vertices are discarded; unvisited vertices are visited and places on the stack.

The recursive implementation of dfs is presented below. This function uses a global array,

visited[MAX_VERTICES], that is initialized to FALSE.

When we visit a vertex, I, we change visited[i] to TRUE. The declarations are:

DATA STRUCTURES AND APPLICATIONS BCS304

DATA STRUCTURES AND APPLICATIONS BCS304

Easy understanding steps with diagram
Note: This is just for understanding you have to write above dfs function and
adjacency list

DFS will visit the child vertices before visiting siblings using this algorithm:
• Mark the starting node of the graph as visited and push it onto the stack
• While the stack is not empty
• Peek at top node on the stack
• If there is an unvisited child of that node Mark the child as visited and push the child node

onto the stack
• Else Pop the top node off the stack.

DATA STRUCTURES AND APPLICATIONS BCS304

Step Traversal Description

1.

Initialize the stack.

2.

Mark S as visited and put it onto
the stack. Explore any unvisited
adjacent node from S. We have
three nodes and we can pick any
of them. For this example, we
shall take the node in an
alphabetical order.

3.

Mark A as visited and put it onto
the stack. Explore any unvisited
adjacent node from A.
Both Sand D are adjacent
to A but we are concerned for
unvisited nodes only.

DATA STRUCTURES AND APPLICATIONS BCS304

4.

Visit D and mark it as visited and
put onto the stack. Here, we
have B and C nodes, which are
adjacent to D and both are
unvisited. However, we shall
again choose in an alphabetical
order.

5.

We choose B, mark it as visited
and put onto the stack.
Here B does not have any
unvisited adjacent node. So, we
pop B from the stack.

6.

We check the stack top for return
to the previous node and check if
it has any unvisited nodes. Here,
we find D to be on the top of the
stack.

DATA STRUCTURES AND APPLICATIONS BCS304

As C does not have any unvisited adjacent node so we keep popping the stack until we find a node that
has an unvisited adjacent node. In this case, there's none and we keep popping until the stack is empty.

Breadth First Search (BFS) (It is similar to a level order tree traversal)

• BFS starts at vertex v and marks it as visited. It then visit each of the vertices on v’s adjacency list.
• When we have visited all the vertices on v’s adjacency list, we visit all the unvisited vertices that are

adjacent to the first vertex on v’s adjacency list.
• As we visit each vertex we place the vertex in a queue.
• When we have exhausted an adjacency list, we remove a vertex from the queue and proceed by

examining each of the vertices on its adjacency list.
• Unvisited vertices are visited and then placed on the queue; visited vertices are ignored.
• We have finished the search when the queue is empty.

The bfs function is implemented below:

DATA STRUCTURES AND APPLICATIONS BCS304

Easy understanding steps with diagram
Note: This is just for understanding you have to write above bfs function and
adjacency list

BFS will visit the sibling vertices before the child vertices using this algorithm:
• Mark the starting node of the graph as visited and enqueue it into the queue.
• While the queue is not empty.
• Dequeue the next node from the queue to become the current node.
• While there is an unvisited child of the current node .
• Mark the child as visited and enqueue the child node into the queue.

Step Traversal Description

1.

Initialize the queue.

DATA STRUCTURES AND APPLICATIONS BCS304

2.

We start from visiting S(starting
node), and mark it as visited.

3.

We then see an unvisited adjacent
node from S. In this example, we
have three nodes but
alphabetically we choose A, mark
it as visited and enqueue it.

4.

Next, the unvisited adjacent node
from S is B. We mark it as visited
and enqueue it.

5.

Next, the unvisited adjacent node
from S is C. We mark it as visited
and enqueue it.

DATA STRUCTURES AND APPLICATIONS BCS304

6.

Now, S is left with no unvisited
adjacent nodes. So, we dequeue
and find A.

7.

From A we have D as unvisited
adjacent node. We mark it as
visited and enqueue it.

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm we keep on
dequeuing in order to get all unvisited nodes. When the Queue Gets Emptied, The Program Is Over.

Connected components:
DFS or BFS functions can be used to check if the graph is connected or not.
Spanning Trees:
A spanning tree is any tree that consists solely of edges in G and that includes all the vertices in G.

Biconnected Components:
An articulation point is a vertex v of G such that the deletion of v, together with all edges incident on v,
produces a graph G’, that has atleast 2 connected components. Ex: 1,3,5 and 7 are the articulation points
in the following graph.
A biconnected graph is a connected graph that has no articulation points.

DATA STRUCTURES AND APPLICATIONS BCS304

Graph Biconnected components

Difference between BFS and DFS

DATA STRUCTURES AND APPLICATIONS BCS304

Module 5

HASHING

Hashing is an effective way to store the elements in some data structure. It allows to reduce the

number of comparisons. Using the hashing technique we can obtain the concept of direct access of stored

record.

The dictionary operations search, insert and delete in arrays, linked list and in BST take O(n) time.

If the tree is balanced it will take O(logn) time.

Hashing enables us to perform the dictionary operations in O(1) expected time.

There are two types of hashing

1. Static Hashing

2. Dynamic hashing

 STATIC HASHING

Two important aspects associated with hashing are

1. HASH TABLE
2 HASH FUNCTIONS

HASH TABLE

It is a data structure used for storing and retrieving data very quickly. Inserting data in to this

table is based on key value.

Example: Storing an employee record in the table, Employee ID is used as key.

The hash key is used to search the data in the hash table. The efficient representation of dictionary

can be done using hash table. The dictionary entries in the hash table are filled using hash function.

In static hashing the dictionary pairs are stored in a table, ht, called the hash table is partitioned

into b buckets, ht [0], , ht[b - 1]. A bucket is said to consist of s slots, each slot being large enough to

hold one dictionary pair. Usually s=1, and each bucket can hold exactly one pair.

The address or location of a pair whose key is k is determined by a hash function, h which maps

keys into buckets. Thus, for any key k, h (k) is an integer in the range 0 through b - 1. h (k) is the hash

or home address of k.

Example: Consider the hash table ht with b = 26 buckets and s =2. We have n = = 10 distinct identifiers,

each representing a C library function. The hash function must map each of the possible identifiers on

to one of the numbers, 0-25. We can construct a fairly simple hash function by associating the letters, a-

z, with the numbers, 0-25, respectively, and then defining the hash function, f (x), as the first character

DATA STRUCTURES AND APPLICATIONS BCS304

of x.

Using this scheme, the library functions acos, define, float, exp, char, atan, ceil, floor, clock, and ctime

hast into buckets 0, 3, 5, 4, 2, 0, 2, 5, 2, and 2, respectively. Figure shows the first 8 identifiers entered

in to the hash table.

The identifiers acos and atan are synonyms, as are float and floor, and ceil and char. The next identifier,

clock, hashes into the bucket ht [2]. Since this bucket is full, we have an overflow.

When no overflows occur, the time required to insert, delete or search using hashing depends only on the time

required to compute the hash function and the time to Search one bucket. Hence, the insert, delete and search

times are independent of n, the number of entries in the dictionary.

The hash function of above example is not well suited for most practical applications because of the very

large number of collisions and resulting overflows that occur. This is because it is not unusual to find dictionaries

in which many of the keys begin with the same letter. Ideally, we would like to choose a hash function that is

both easy to compute and results in very few collisions.

Hashing schemes use a hash function to map keys into hash-table buckets. It is desirable to use a hash function

that is both easy to compute and minimizes number of collisions. Hence, a mechanism to handle overflows is

needed.

DATA STRUCTURES AND APPLICATIONS BCS304

HASH FUNCTIONS

 It is a function which is used to map a key into a bucket in the hash table. The integer returned by hash

function is called hash key.

A hash function is a mathematical formula which, when applied to a key, produces an integer which can

be used as an index for the key in the hash table.

DIFFERENT HASH FUNCTIONS

1. Division method

It is the most simple method of hashing an integer x. The home bucket is obtained by using the

modulo(%) operator. This method divides k by D and then uses the remainder as the home bucket for k.

In this case, the hash function can be given as:

h(k) = k mod D

where k is key and D is size of the hash table

Example: Let the keys are 13, 74, 11, 15, 16 and D=10 . The bucket addresses ranges from 0 to D-1 i,e 0 to 9

h(13) = 13 % 10 =3

 h(74) = 74 % 10 =4
h(11) = 11 % 10 =1
h(15) = 15 % 10 =5
h(16) = 16 % 10 =6

2. Multiplication Method

The steps involved in the multiplication method are as follows:

Step 1: Choose a constant A such that 0 < A < 1.

Step 2: Multiply the key k by A.

Step 3: Extract the fractional part. kA.

Step 4: Multiply the result of Step 3 by the size of hash table (m).

Hence, the hash function can be given as:

h(k) = floor(m *(kA -floor(kA)))
 where A= 0.65 i,e 0<A<1 and m is the total number of buckets in the hash table.

0
1 11
2
3 13
4 74
5 15
6 16
7
8
9

DATA STRUCTURES AND APPLICATIONS BCS304

Example1: Given a hash table of size m=10, map the key 60 to an appropriate location in the hash table.

Solution Assuming A = 0.65, Given: m = 10, and k = 60

 h(60) = floor(10* (60 *0.65 – floor(60 *0.65)))

h(60) = floor(10* (39 – 39))

h(60) = floor(10* 0)

h(60) = 0

Example2: Given a hash table of size 1000, map the key 12345 to an appropriate location in the hash table.

Solution Assuming A = 0.618033. Given: m = 1000, and k = 12345

h(k) = floor(m *(kA mod 1))

h(12345) = floor(1000 (12345 *0.618033 mod 1))

h(12345) = floor(1000 (7629.617385 mod 1))

h(12345) = floor(1000 (0.617385))

h(12345) = floor(617.385)

h(12345) = 617

DATA STRUCTURES AND APPLICATIONS BCS304

3. Mid-Square Method

The mid-square method is a hash function which works in two steps:

Step 1: Square the value of the key. That is, find k2.

Step 2: Extract the middle r digits of the result obtained in Step 1.

Example 15.3 Calculate the hash value for keys 1234 and 5642 using the mid-square method. The hash
table has 100 memory locations.

Solution Note that the hash table has 100 memory locations whose indices vary from 0 to 99.

This means that only two digits are needed to map the key to a location in the hash table, so r = 2.

After squared choose middle part of the key.

When k = 5642, k2 = 31832164, h (5642) = 32, place the key in the bucket 32

If table size is 1000 whose indices vary from 0 to 999

When k = 1234, k2 = 1522756, h (1234) = 227, place the key in the bucket 227

4. Folding Method

 In this method the key k is partitioned into several parts, all but possibly the last being the same length.

These partitions are then added together to obtain the hash address for k.

There are two ways of carrying out this addition.

 In the first, all but the last partition shifted to the right so that the least significant digit of each lines

up with corresponding digit of the last partition. The different partitions are now added together to get h (k).

This method is known as shift folding.

 In the second method, folding at the boundaries, the key is folded at the partition boundaries, and

digits falling into the same position are added together to obtain h (k). This is equivalent to reversing every

other partition and then adding.

 Example: Suppose that k = 12320324111220, and we partition it into parts that three decimal digits long.

 The partitions are P1 = 123, P2 = 203, P3 = 241, P4=112 and P5 = 20.

 Using shift folding, we obtain

 h (k) = ∑Pi = P1 + P2 + P3 + P4 + P5= 123 + 203 + 241 + 112 + 20 = 699

 when folding at the boundaries is used, we first reverse P2 and P4 to obtain 302 and 211, respectively. Next,

the five partitions are added to obtain h (k) = 123 + 302 + 241 + 211 + 20 = 897

DATA STRUCTURES AND APPLICATIONS BCS304

5. Converting Keys to Integers
To use some of the described hash functions, keys need to first be converted to non-negative integers.

we consider only the conversion of strings into non-negative integers.

The above program converts each character into a unique integer and sums these unique integers. Since each

character maps to an integer in the range 0 through 255.

OVERFLOW HANDLING
 There are two popular ways to handle overflows

1. open addressing

2. chaining

1. OPEN ADDRESSING

we describe four open addressing methods

1. linear probing, which also is known linear open addressing,

2. quadratic probing,

3. rehashing

4. random probing.

Linear probing
In linear probing, when inserting a new pair whose key is k, we search the hash table buckets in the

order, ht [h (k) + i] % b, 0≤i≤b-1 where h is the hash function and b is the number of buckets. This search

terminates when we reach the first unfilled bucket and the new pair is inserted into this bucket. In case no such

bucket is found, the hash table is full and it is necessary to increase the table size. Notice that when we resize

the hash table, we must change the hash function as well.

For example, when the division hash function is used, the divisor equals the number of buckets. This

change in the hash function potentially changes the home bucket for each key in the hash table. So, all dictionary

entries need to be remapped into the new larger table.

DATA STRUCTURES AND APPLICATIONS BCS304

Example: Assume we have a 15-bucket table with one slot per bucket. As our data we use the words for, do,

while, If, else, and function. Figure 8.2 shows the hash value for each word using the simplified scheme or

program 8.1 and the division hash function. Inserting the first five words into the table poses no problem since

they have different hash addresses, However, the last 1dentifier, function, hashes to the same bucket as if. Using

a circular rotation, the next available bucket is at ht[0], which is where we place function (Figure 8.3).

DATA STRUCTURES AND APPLICATIONS BCS304

DATA STRUCTURES AND APPLICATIONS BCS304

When linear probing is used to resolve overflows, keys tend to cluster together and adjacent clusters

tend to coalesce, thus increasing the search time.

For example, suppose we enter the C built-in functions acos, atoi, char, define, exp, ceil, cos, float, atol,

floor, and ctime into a 26-bucket hash table in that order. For illustrative purposes, we assume that the hash

function uses the first character in each function name.

Figure 8.4 shows the bucket number, the identifier contained in the bucket, and the number of

comparisons required to insert the identifier. Notice that before we can insert atol, we must examine ht [0], .

. . . , ht[8], a total 9 nine comparisons. The average number of buckets examined would be 41/11 = 3.72 per

identifier.

Disadvantage of liner probing: keys tend to cluster together and adjacent clusters tend to coalesce, thus

increasing the search time.

Some improvement in the growth of clusters and hence in the average number of comparisons needed for

searching can be obtained by quadratic probing.

DATA STRUCTURES AND APPLICATIONS BCS304

Quadratic probing
In quadratic probing, a quadratic function of i is used as the increment. In particular, the search is carried

out by examining buckets h (k), (h (k) + i2) % b, and (h (k) – i2) % b for 1≤(b- 1)/2. When b is a prime number

of the form 4j + 3, for j an integer, the quadratic search described above examines every bucket in the table.

Figure 8.5 lists some primes of the form 4j + 3.

An alternative method to retard the growth of clusters is to use a series of functions h1, h2,….., hm. This

method is known as Rehashing. Buckets hi(k) , 1 ≤ i ≤ m are examined in that order.

Yet another alternative is, random probing, a pseudo-random number generator is used to obtain a

random sequence R(i), 1 ≤ i ≤ b where R(1), R(2),….., R(b-1) is a permutation of [1, 2,……, b-1].

Random hashing is easy to analyze but because of the expense of random number generation it is not often

used.

2. Chaining
Linear probing and its variations perform poorly because the search for a key involves comparison with

keys that have different hash values.

Many of the comparisons can be saved if we maintain lists of keys, one list per bucket, each list

containing all the synonyms for that bucket. If this is done, a search involves computing the hash address h(k)

and examining only those keys in the list for h(k). We typically use an array ht [0:b-1] with ht[i] pointing to

the first node of the chain for bucket i.

Program 8.4 gives the search algorithm for chained hash tables.

DATA STRUCTURES AND APPLICATIONS BCS304

Figure 8.6 shows the chained hash table corresponding to the linear table found in figure 8.4. The number

of comparisons needed to search for any of the identifiers is now one each for acos, char, define, exp and

float; two each for atoi, ceil, and float; three each for atol and cos; and four for ctime. The average number

of comparisons is now 21/11 = 1.91.

To insert a new key, k, into a chain, we must first verify that it is not currently on chain. Following this,

k may be inserted at any position of the chain. Deletion from a chained hash table can be done by removing

the appropriate node from its chain.

DATA STRUCTURES AND APPLICATIONS BCS304

When chaining is used along with a uniform hash function, the expected average number of key

comparisons for a successful search is ≈ 1 + α/2, where α is the loading density n/b (b = number of buckets).

For α = 0.5 this number is 1.25, and for a α = 1 it is 1.5. The corresponding numbers for linear probing are

1.5 and b, the table size.

DYNAMIC HASHING (Extendible hashing)

 Motivation for Dynamic Hashing

To ensure good performance, it is necessary to increase the size of a hash table whenever its loading

density exceeds a prespecified threshold. So. for example. if we currently have b buckets in our hash table and

are using the division hash function with divisor D=b, then, when an insert causes the loading density to exceed

the prespecified threshold, we use array doubling to increase the number of buckets to 2b + 1.

At the same time, the hash function divisor changes to 2b +1. This change in divisor requires us to

rebuild the hash table by collecting all dictionary pairs in the original smaller size table and reinserting these

into the new larger table. We cannot simply copy dictionary entries from the smaller table into corresponding

buckets of the bigger table as the home bucket for each entry has potentially changed. For very large dictionaries

that must be accessible on a 24/7 basis, the required rebuild means that dictionary operations must operations

must be suspended for unacceptably long periods while the rebuild is in progress.

 Dynamic hashing, which also is known as extendible hashing, aims to reduce the rebuild time by

ensuring that each rebuild changes the home bucket for the entries in only 1 bucket. In other words, although

table doubling increases the total time for a sequence of n dictionary operations by only O(n), the time required

to complete an insert that triggers the doubling is excessive in the context of a large dictionary that is required

to respond quickly on a per operation basis.

The objective of dynamic hashing is to provide acceptable hash table performance on a per operation

basis. We consider two forms of dynamic hashing- one uses a directory and the other does not.

For both forms, we use a hash function h that maps keys into non-negative integers. The range of h is

assumed to be sufficiently large and we use h(k,p) to denote the integer formed by the p least significant bits of

h(k).

For the examples, we use a hash function h(k) that transforms keys into 6-bit non-negative integers. Our

example keys will be two characters each and h transforms letters such as A, B and C into the bit sequence 100,

101, and 110, respectively. Digits 0 through 7 are transformed into their 3-bit representation.

Figure 8.7 shows 8 possible 2 character keys together with the binary representation of h(k) for each.

For our example hash function, h(A0,1) = 0, h (A1,3) = 1, h (B1,4) = 1001 = 9, and h (C1,6) = 110 001 = 49.

DATA STRUCTURES AND APPLICATIONS BCS304

Dynamic Hashing Using Directories

 A directory, d, of pointers to buckets is used. The size of the directory depends on the number of bits of

h(k) used to index into the directory. When indexing is done using, h(k, 2), the directory size is 22 = 4; when

h (k, 5) is used, the directory size is 32. The number of bits of h (k) used to index the directory is called the

directory depth.

The size of the directory is 2t, where t is the directory depth and the number of buckets is at most equal

to the directory size. Figure 8.8 (a) shows a dynamic hash table that contains the keys A0, B0, A1, B1, C2,

and C3. This hash table uses a directory whose depth is 2 and uses buckets that have 2 slots each.

DATA STRUCTURES AND APPLICATIONS BCS304

Suppose we insert C5 into the hash table of Figure 8.8 (a). Since, h (C5,2) = Since, h (C5,2) = 01 This

gets us to the bucket with Al and BI. This bucket is full and we get a bucket overflow.

To resolve the overflow, we determine the least u such that h(k,u) is not the same for all keys in the overflowed

bucket. In case the least u is greater than the directory depth, we increase the directory depth to this least u

value. This requires us to increase the directory size but not the number of buckets. When the directory size

doubles, the pointers in the original directory are duplicated so that the pointers in each half of the directory

are the same. A quadrupling of the directory size may be handled as two doublings and so on.

For our example, the least u for which h (k, u) is not the same for Al, B1, and C5 is 3. So, the directory

is expanded to have depth 3 and size 8. Following the expansion, d[i] = d[i + 4],0≤i≤4.

DATA STRUCTURES AND APPLICATIONS BCS304

Following the resizing of the directory, we split the overflowed bucket using h (k,u). In our case, the

overflowed bucket is split using h (k, 3). For Al and B1, h(k, 3)= 001 and for C5, h (k, 3) = 101. So, we create

a new bucket with C5 and place a pointer to this bucket in d[101]. Figure 8.8 (b) shows the result.

 Notice that each dictionary entry is in the bucket pointed at by the directory position h (k, 3), although,

in some cases the dictionary entry is also pointed at by other buckets. For example, bucket 100 also points to

A0 and BO, even though h (A0,3) = h (B0,3) ≠ 000.

Suppose if we want to insert C1. The pointer in position h (C1,2) = 01 of the directory of Figure 8.8 (a)

gets us to the same bucket as when we were insert. This bucket overflows. The least u for which h(k,u) isn't

the same for Al, BI and C1 is 4. So, the new directory depth is 4 and its new size is 16. The directory size is

quadrupled and the pointers d [0:3] are replicated 3 times to fill the new directory. When the overflowed

bucket is split, A1 and Cl are placed into a bucket that is pointed at by d[0001] and B1 into a bucket pointed

at by d[1001].

Consider inserting A4 (h (A4) = 100 100) into Figure 8.8 (b). Bucket d[100] overflows. The least u is

3, which equals the directory depth. So, the size of the directory is not changed. Using h (k, 3), A0 and B0

 hash to 000 while A4 hashes to 100. So, we create a new bucket for A4 and set d [100] to point to this new

 bucket.

Directoryless Dynamic Hashing
This method is also known as linear dynamic hashing. In the previous case we use an array, ht, of buckets

with large size. To avoid initializing such a large array, we use two variables q and r, 0≤q< 2r, to keep track of

the active buckets. At any time, only buckets 0 through 2r +q - 1 are active. Each active bucket is the start of a

chain of buckets. The remaining buckets on a chain are called overflow buckets.

Informally,

 r is the number of bits of h (k) used to index into the hash table and

 q is the bucket that will split next.

More accurately, buckets 0 through q - 1 as well as buckets 2r through 2r +q - 1 are indexed using h (k, r+ 1)

while the remaining active buckets are indexed using h(k, r). Each dictionary pair is either in an active or an

overflow bucket.

Figure 8.9 (a) shows a directoryless hash table ht with r = 2 and q = 0. The hash function is h(B4) = 101

100, and h(B5) = 101 101. The number of active buckets is 4 (indexed 00, 01, 10, and 11). The index of an

active bucket identifies its chain.

 Each active bucket has 2 slots and bucket 00 contains B4 and A0. There are 4 bucket active chains, each chain

begins at one of the 4 active buckets and comprises only that active bucket (i.e., there are no overflow buckets).

In Figure 8.9 (a), all keys have been mapped into chains using h (k, 2).

DATA STRUCTURES AND APPLICATIONS BCS304

In Figure 8.9 (b), r = 2 and q = 1; h (k, 3) has been used for chains 000 and 100 while h (k, 2) has been used for

chains 001, 010, and Chain 001 has an overflow bucket; the capacity of an overflow bucket may or may not be

the same as that of an active bucket.

To search for k, we first compute h (k,r). If h (k,r) < q, then k, if present, is in a chain indexed using h

(k, r+ 1). Otherwise, the chain to examine is given by h (k,r). Program 8.5 gives the algorithm to search a

directoryless dynamic hash table.

To insert C5 table into the table of Figure 8.9 (a), we use the search algorithm of program to determine

whether or not C5 is in the table already. Chain 01 is examined and we verity that C5 is not present. Since

the active bucket for the searched chain is full, we get an overflow. An overflow is handled by activating

bucket 2r + q; reallocating the entries in the chain q between q and the newly activated bucket (or chain)

 2r + q, and incrementing q by 1.

DATA STRUCTURES AND APPLICATIONS BCS304

The bucket 4 = 100 is activated and the entries in chain 00 (q = 0) are rehashed using r + 1 = 3 bits. B4

hashes to the new bucket 100 and A0 to bucket 000. Now q = 1 and r = 2. A search for C5 would examine chain

1 and so C5 is added to this chain using an overflow bucket (see Figure 8.9 (b)).

Let us now insert C1 into the table of Figure 8.9 (b). Since, h (C1,2) = 01 = q, chain 01 = 1 is examined

by our search algorithm (Program 8.5). The search verifies that C1 is not in the dictionary. Since the active

bucket 01 is full, we get an overflow. we activate bucket 2r +q = 5 = 101 and rehash the keys A1, B5, and C5

that are in chain q. The rehashing is done using 3 bits. Al is hashed into bucket 001 while B5 and C5 hash into

bucket 101. q is incremented by 1 and the new key C1 is inserted into bucket 001. Figure 8.9 (c) shows the

result.

OPTIMAL BINARY SEARCH TREES

A binary search tree is one of the most important data structures in computer science. One of

its principal applications is to implement a dictionary, a set of elements with the operations of

searching, insertion, and deletion.

If probabilities of searching for elements of a set are known e.g., from accumulated data about

past searches it is natural to pose a question about an optimal binary search tree for which the

average number of comparisons in a search is the smallest possible.

In many applications the cost of searching is very important. So, it is required that the overall

cost of searching should be as less as possible. And we know that search time of BST

is more than the Balanced Binary Search Tree, as Balanced Binary Search tree has less number

of levels than the BST. And there is one way which can further reduce the cost than the

Balanced BST, which is Optimal Binary Search Tree. Let us understand by following example

As there are 3 different keys, so we can have total 5 various BST by changing order of keys.

The total number of binary search trees with n keys is equal to

So following are the various possible BST of the above data. And also the overall cost for

searching for each BST. The cost of computed by multiplying each node’s frequency with the

level of tree (Here we are assuming that the tree starts from level 1) and then add them to

compute the overall cost of BST

As it is shown in above figure that 2nd BST is balanced and the 4th BST is not balanced, though

it’s cost is less than the cost of Balanced BST and its cost is the least among all, so it is our

Optimal Binary Search Tree for the given data.

As a general algorithm, this exhaustive-search approach is unrealistic as n increases:

Therefore dynamic programming approach, we will find values of C(i, j) for all smaller

instances of the problem, although we are interested just in C(1, n).

To derive a recurrence underlying a dynamic programming algorithm, we will consider all

possible ways to choose a root ak among the keys ai, . . . , aj . For such a binary search tree , the

root contains key ak, the left subtree Ti
k−1 contains keys ai, . . . , ak−1 optimally arranged, and

the right subtree Tj
k+1 contain s keys ak+1, . . . , aj also optimally arranged.

If we count tree levels starting with 1 to make the comparison numbers equal the keys’ levels,

the following recurrence relation is obtained:

The algorithm computes C(1, n)—the average number of comparisons for successful searches

in the optimal binary tree.

DATA STRUCTURES AND APPLICATIONS BCS304

MODULE-4

TREES

This chapter discuss about the tree data structure in detail:-

4.1 DEFINITION

Tree is a finite set of one or more nodes such that

1) There is a specially designated node called root.

2) Remaining nodes are partitioned into disjoint sets T1, T2. . . Tn where each of these are

called subtrees of root. (As shown in below figure1)

(Or)

A Tree is a set of nodes that either: is empty or has a designated node, called the root, from

which hierarchically descend zero or more subtrees, which are also trees. If a tree is not empty, the first

node is called the root .The indegreee of root node is zero. With the exception of the root, all the nodes

in the tree must have an indegreee exactly one and the out degree of zero, one, or more.

Figure 1: Sample Tree

A tree consists of a finite set of elements called nodes and a finite set of directed lines called

branches that connect the nodes. The number of branches associated with a node is the degree of the

node. When the branch is directed toward the node, it is indegree branch. When the branch is directed

away from the node it is an outdegree branch.

4.2 TERMINOLOGIES OF TREES

 Node: contains item of information & links to other nodes.

 Root: A node with an indegree zero i.e. a node with no parent is called root; A non-empty tree

has exactly one Root.

TOPICS:-Terminology, Binary Trees, Properties of Binary trees, Array and linked

Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder; Additional

Binary tree operations. Threaded binary trees, Binary Search Trees – Definition, Insertion,

Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression.

Text 1: Ch 5: 5.1 –5.5, 5.7

Text 2: Ch 7: 7.1 – 7.9

DATA STRUCTURES AND APPLICATIONS BCS304

 Degree: Number of subtrees of a node. For e.g., degree of A=3; degree of C=1

 Degree of a tree is the maximum of the degree of the nodes in the tree.

Degree of given tree=3.

 Leaf: Any nodes with an outdegree of zero i.e. a node with no successors or children’s. For e.g.,

K, L, F, G, M, I, J

 Internal Node: A node that is not a root or a leaf is known as an internal node. For e.g., B, E, F,

C, H, I, J

 Parent and Child: The subtrees of a node A are the children of A. A is the parent of its children

(OR) a node is a parent if it has successor nodes i.e. if it has an outdegree greater than zero.

Conversely, a node with predecessor is a child. For e.g., children of D are H, I and J. Parent of D

is A.

 Siblings/Brothers/Sisters: Children of same parent are called siblings. For e.g., H, I and J are

siblings.

 Ancestor: An ancestor is any node in the path from the root to the node. For e.g., ancestors of M

are A, D and H.

 Descendent: A descendent is any node in the path below the parent node i.e. all nodes in the paths

from a given node to a leaf are descendents of that node.

 Path: a sequence of nodes in which each node is adjacent to the next one. Every node in the tree

can be reached by following a unique path starting from the root. the length of a path is the

number of edges in the path, or 1 less than the number of nodes in it

 Level: the level of a node is its distance from the root. If a node is at level 'l', then its children are

at level 'l+1'.

 Height or depth of a tree is defined as maximum level of any node in the tree. For e.g., Height of

given tree = 4.

 A Sub tree is any connected structure below the root.

 A tree is a set of nodes that either: Is empty , or Has a designated node, called the root, from

which hierarchically descend zero or more subtrees, which are also trees.

REPRESENTATION OF TREES

The first is the General Tree organization chart format, which is basically the notation

used to represent in figure 2. This notation is called general tree representation.

DATA STRUCTURES AND APPLICATIONS BCS304

Figure 2: General tree

There are three different user representations for trees.

1) List representation

2) Left-child right-sibling representation

3) Degree-two tree representation (Binary Tree)

1) List representation

This user format is the parenthetical listing. This format is used with algebraic

expressions. When a tree is represented in parenthetical notation, each open parenthesis indicates the

start of a new level, each closing parenthesis completes the current level, and each closing

parenthesis completes the current level and moves up one level in the tree.

Consider the tree shown in the figure 2. Its parenthetical notation is The tree can be drawn as a list:

(A(B(E(K,L),F),C(G),D(H(M),I,J))).

For a tree of degree ‘k’, we can use the node-structure as shown(Fig. 3).

Figure 3: Node structure with degree k

The information in the root node comes first, followed by a list of subtrees of that node. Each

tree-node can be represented by a memory-node that has fields for data & pointers to children of tree-

node (Figure. 4).

Figure 4: List Representation of Tree

DATA STRUCTURES AND APPLICATIONS BCS304

Property of general tree: if T is a k-ary tree with n nodes, each having a fixed size as in figure 3, then

n(k-1)+1 of the nk child fields are 0,n>=1.

2) Left child-right sibling representation

Figure 5 shows the node-structure used in left child-right sibling representation.

Figure 5 : Left Child-Right Sibling Node

To convert the tree of figure 2 into this representation, every node must note it has at most one

leftmost child and at most one closest right sibling.

For example, the leftmost child of A is B, and the leftmost child of D is H. The closest right

sibling of B is C, and the closest right sibling of H is I. The Left-child field of each node points to its

leftmost child (if any), and right-sibling field points to the closest right sibling (if any). Figure 6 shows

the left child right sibling representation.

Figure 6: Left Child Right Sibling Representation.

3) Degree-two tree representation

To obtain the degree two tree representation of a tree, simply rotate the right-sibling pointers in

a left child-right sibling tree clockwise by 45 degrees. This gives the degree two tree displayed in

figure 7, In this representation, it refer to 2 children of a node as left & right children. Left child-right

child trees are also known as binary trees.

DATA STRUCTURES AND APPLICATIONS BCS304

Figure 7: Left Child-Right Child Representation

Figure 8 shows the two additional examples of trees represented as left child-right sibling trees and as

left child-right child trees. Left child-right child trees are also known as binary trees.

Figure 8: Binary trees

4.3 BINARY TREES

A Binary tree is a finite set of elements that is either empty or is partitioned into two disjoint

subsets. The first subset contains a single element called the root of the tree. The other two subsets

are themselves binary trees, called the left and right subtrees of the original tree. A left or right sub

tree can be empty. Each element of a binary tree is called a node of the tree as illustrated in figure 8.

(OR)

A Binary tree is a tree in which no node can have more than two subtrees. The maximum

outdegree for a node is two. In other words, a node can have zero, one or two subtrees. These subtrees

are designated as the left sub tree and right sub tree.

DATA STRUCTURES AND APPLICATIONS BCS304

Figure 9: Various binary trees

Consider the below binary tree as an example:

Figure 9 (a): Binary tree

If A is the root of a binary tree and B is the root of its left or right sub tree, then A is said to be

the father of B and B is said to be the left or right son of A and collection of binary shown in figure

9(a).A node that has no sons is called a leaf. Node n1 is an ancestor of node n2 (and n2 is a descendant

of n 1) if n1 is either the father of n2 or the father of some ancestor of n2. node n2 is a left descendant

of node n1 if n2 is either the left son of n1 or a descendant of the left son of n1.A right descendant may

be similarly defined. Two nodes are brothers if they are left and right sons of the same father.

ADT of Binary Tree

DATA STRUCTURES AND APPLICATIONS BCS304

Differentiate between a binary tree and a tree.

1. There is no tree having zero nodes, but there is an empty binary tree.

2. In a binary tree, we distinguish between the order of the children while in a tree we do not.

TYPES OF BINARY TREE

1) Skewed tree is a tree consisting of only left sub tree or only right sub tree (Figure 10a).

2) Full binary tree is a binary tree of depth k having 2
k
-1 nodes, k>=1 (Figure 11).

3) Complete tree is a binary tree in which every level except possibly last level is completely filled

and all nodes are as far left as possible. A binary tree with n nodes & depth k is complete iff its nodes

correspond to nodes numbered from 1 to n in full binary tree of depth k (Figure 10b).

4) If every non leaf node in a binary tree has nonempty left and right subtrees, the tree is termed a

strictly binary tree. A strictly binary tree with n leaves always contains 2n-1 nodes as illustrated in

figure 12.

DATA STRUCTURES AND APPLICATIONS BCS304

Figure 10(a): skewed tree 10(b).complete binary tree

Figure 11:Full binary tree representation of depth 4 with sequential node numbering

Figure 12: Strictly binary tree

4.4 PROPERTIES OF BINARY TREES

 The maximum number of nodes on level 'i' of a binary tree is 2
i-1

, i >=1.

DATA STRUCTURES AND APPLICATIONS BCS304

(For e.g. maximum number of nodes on level 4=2
4-1

=2
3
=8).

 The maximum number of nodes in a binary tree of depth 'k' is 2
k
-1, k>=1.

(For e.g. maximum number of nodes with depth 4=2

4
-1=16-1=15).

 Relation between number of leaf nodes and degree-2 nodes : For any non-empty binary tree

‘T’, if n0 is the number of leaf nodes and n2 the number of nodes of degree 2, then n0=n2+1.

 A full binary tree of depth k is a binary tree of depth k having 2
k
-1 nodes, k>=0.

 A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes

numbered from 1 to n in the full binary tree of depth k.

 Minimum number of nodes binary trees: Given a height of the binary tree, H, the minimum

number of nodes in the tree is equal to height of tree.

 Height of Binary Trees: If the given binary tree has N nodes in a binary tree, the maximum

height is given by Hmax=N. If the given binary tree has N nodes in a binary tree, the minimum

Height Is Given By Hmin=Log2n+1

 Level of binary trees: The level of a node in a binary tree is defined as follows. The root has

level 0, and the level of any other node in the tree is one more than the level of its father.

 Depth of binary trees: The depth or Height of a binary tree is the maximum level of any leaf

in the tree. By definition the height of any empty tree is -1. This equals the length of the longest

path from the root to any leaf.

4.5 BINARY TREE REPRESENTATIONS

A binary tree can be represented in two forms, namely:

1) Array Representation

2) Linked Representation

1. ARRAY REPRESENTATION

A one-dimensional array can be used to store nodes of binary tree (Figure 13).

• If a complete binary tree with ‘n’ nodes is represented sequentially, then for any node with index i

(1<=i<=n) , we have

1) Parent (i) is at [i/2] if i!=1. If i=1, i is the root and has no parent.

2) Left Child (i) is at 2i , if 2i<=n. If 2i>n, then i has no left child.

3) Right Child (i) is at 2i+1<=n. If 2i+1>n, then i has no right child.

DATA STRUCTURES AND APPLICATIONS BCS304

Consider the tree shown below

Figure 13: Array Representation of binary tree

Advantage: For complete binary tree, array representation is ideal, as no space is wasted.

Disadvantage: For skewed tree, less than half the array is utilized. In the worst case, a skewed

tree of depth k will require 2k-1 spaces. Of these, only k will be used.

2. LINKED REPRESENTATION

• Shortcoming of array representation: Insertion and deletion of nodes from middle of a tree

requires movement of potentially many nodes to reflect the change in level number of these nodes.

These problems can be overcome easily through the use of a linked representation (Figure 15).

• Each node has three fields:

1) Left Child,

2) Data and
3) Right Child (Figure 14) and it is defined in C as shown below:

typedef struct node *treePointer;

typedef struct

{

int data;

treePointer leftChild,rightChild;

}node;

Root of tree is stored in the data member 'root' of Tree. This data member serves as access-pointer to

the tree.

DATA STRUCTURES AND APPLICATIONS BCS304

Left child Right child

Figure 14: Node representation

 Figure 15: Linked representation of binary tree

4.6 BINARY TREE TRAVERSALS

The order in which the nodes of a linear list are visited in a traversal is clearly from first to last.

However, there is no such "natural" linear order for the nodes of a tree. Thus, different orderings are

used for traversal in different cases.

Let L, V, and R stand for moving left, visiting the node, and moving right. There are six

possible combinations of traversal. LVR, LRV, VLR, VRL, RVL, RLV. Adopt convention that we

traverse left before right, only 3 traversals remain LVR, LRV, VLR and in fact they are inorder,

postorder and preorder approaches are explained in figure 16.

Tree Traversal Approaches

 Figure 16: Tree traversal methods

Left child data Right child

 data

DATA STRUCTURES AND APPLICATIONS BCS304

There are 3 techniques, namely:

1) In order traversal (LVR)

2) Preorder traversal (VLR)

3) Post order traversal (LRV).

(Let L=moving left, V= visiting node and R=moving right).

Consider a binary tree with arithmetic expressions as shown in figure 17 and perform traversals

 Figure 17: Binary tree with arithmetic expression

1. INORDER TRAVERSAL

Inorder traversal calls for moving down tree toward left until you can go no farther. Then, you

"visit" the node, move one node to the right and continue. If you cannot move to the right, go back one

more node.

Figure 18: Inorder traversal

DATA STRUCTURES AND APPLICATIONS BCS304

The steps for traversing a binary tree in inorder traversal are:

1. Visit the left subtree, using inorder.

2. Visit the root.

3. Visit the right subtree, using inorder.

The inorder traversal tracing for the above given expression tree by using recursion is shown below:(

figure 19)

Call of

inorder

Value in

Current Node

Action

Driver +

1 *

2 *

3 /

4 A

5 0

4 A Printf(A)

6 0

3 / Printf(/)

7 B

8 0

7 B Printf(B)

9 0

2 * Printf(*)

10 C

11 0

10 C Printf(C)

12 0

1 * Printf(*)

13 D

14 0

13 D Printf(D)

15 0

Driver + Printf(+)

DATA STRUCTURES AND APPLICATIONS BCS304

16 E

17 0

16 E Printf(E)

18 0

Figure 19: Tracing of inorder traversal

Each step of the trace shows the call of inorder, the value in the root, and whether or not the

printf function is invoked (Figure 19).Since there are 19 nodes in the tree, inorder() is invoked 19 times

for the complete traversal. The nodes of figure 17 would be output in an inorder as A/B*C*D+E

2. PREORDER TRAVERSAL

Visit a node, traverse left, and continue (figure 20). When it is not possible to continue, move

right and begin again or move back until you can move right and resume. The nodes of figure 17

would be output in preorder as +**/ABCDE

Figure 20: Preorder traversal

The steps for traversing a binary tree in preorder traversal are:

1. Visit the root.

DATA STRUCTURES AND APPLICATIONS BCS304

2. Visit the left subtree, using preorder.

3. Visit the right subtree, using preorder.

3. POSTORDER TRAVERSAL

Post order traversal calls for moving down tree toward left until you can go no farther. Then,

move one node to the right and continue. Then when it is not possible to move to the right, go back one

more node and visit the node. The nodes of figure 5.16 would be output in postorder as AB/C*D*E+

void postorder(tree_pointer ptr)

{

if(ptr)

{

}

}

postorder(ptr->left_child);

postorder(ptr->right_child);

printf(“%d”,ptr->data);

The steps for traversing a binary tree in postorder traversal are:

1. Visit the left subtree, using postorder.

2. Visit the right subtree, using postorder

3. Visit the root.

4. ITERATIVE INORDER TRAVERSAL

With respect to the figure 17, a node that has no action indicates that the node is added to the

stack, while a node that has a printf action indicates that the node is removed from the stack (Figure

21). The left nodes are stacked until a null node is reached, the node is then removed from the stack,

and the node's right child is stacked. The traversal continues with the left child. The traversal is

complete when the stack is empty. The output of iterative inorder traversal for expression tree is given

below as A/B*C*D+E

Figure 21: Inorder Iterative traversal

DATA STRUCTURES AND APPLICATIONS BCS304

5. LEVEL-ORDER TRAVERSAL

This traversal uses a queue (Figure 22). We visit the root first, then the root's left child followed

by the root's right child. We continue in this manner, visiting the nodes at each new level from the

leftmost node to the rightmost node. function addq() adds a tree node to queue and function deleteq()

deletes the front tree node from the queue.

level order traversal begins by adding the root to the queue.the function operates by deleting the

node at the front of the queue, printing out the node’s data field, and adding the node’s left and right

children to the queue. since a node’s children are at the next lower level, and we add the left child

before the right child, the function prints out the nodes using the ordering scheme and thus level order

traversal of arithmetic expression tree is +*E*D/CAB

Figure 22: Level Order Traversal

4.7 THREADED BINARY TREES

Shortcoming of linked representation of binary tree: There may be more null links than actual

pointers. A.J.Perlis and C.Thornton have devised a way to make use of these null links. Solution:

This drawback can be overcome by replacing null links by pointers, called threads, to other nodes in

the tree.

To construct the threads, we use the following rules:

1) If ptr->leftChild =NULL, we replace ptr->leftChild with a pointer to the node that would be visited

before ptr in an inorder traversal. i.e. we replace the null link with a pointer to the inorder predecessor

DATA STRUCTURES AND APPLICATIONS BCS304

 Figure 24: Threaded tree corresponding to above binary tree.

of ptr (Figure 5.20).

2) If ptr->rightChild =NULL, we replace ptr->rightChild with a pointer to the node that would be

visited after ptr in an inorder traversal. i.e. we replace the null link with a pointer to the inorder

successor of ptr.

The node structure is given by following C declarations:

typedef struct threadedtree *threadedPointer;

typedef struct

{

short int leftThread;

threadedPointer leftChild;

char data;

threadedPointer rightChild;

short int rightThread;

}threadedTree;

A empty threaded binary tree is represented by its header node as in figure 23

Figure 23: Empty node structure for threaded binary tree

Figure 24 shows the binary tree with its new threads drawn in as broken lines. This tree has 9

nodes and 10 NULL links ,which have been replaced by threads. if we traverse the tree in inorder, the

nodes will be visited in the order H,D,I,B,E,A,F,C,G. for example, node E has a predecessor thread

DATA STRUCTURES AND APPLICATIONS BCS304

that points to B and a successor thread that points to A

When we represent the tree in memory, we must be able to distinguish between threads and

normal pointers. This is done by adding two additional fields to the node structure, leftThread and

rightThread (Figure 23).

Assume that ptr is an arbitrary node in a threaded tree. If ptr->leftThread=TRUE, then ptr-

>leftChild contains a thread; otherwise it contains a pointer to the left child (Fig 24). Similarly, if ptr-

>rightThread=TRUE, then ptr->rightChild contains a thread; otherwise it contains a pointer to the right

child (Figure 24).

In figure two threads have been left dangling: one in the left child of H , the other in the right

child of G. We handle the problem of the loose threads by having them point to the header node, root.

The variable 'root' points to the header as shown in figure 24.

Figure 24: Memory representation of threaded binary tree

1. Inorder traversal of a threaded binary tree

2. Inserting A Node Into A Threaded Binary Tree

Let new node 'r' be has to be inserted as the right child of a node 's' (Figure 25). The cases for

insertion are 1) If s has an empty right subtree, then the insertion is simple and diagrammed in fig 25 a.

DATA STRUCTURES AND APPLICATIONS BCS304

2) If the right subtree of s is not empty, then this right subtree is made the right subtree of r after

insertion. When this is done, r becomes the inorder predecessor of a node that has a leftThread==true

field, and consequently there is a thread which has to be updated to point to r. The node containing this

thread was previously the inorder successor of s. Figure 25b illustrates the insertion for this case.

Figure 25: Insertion of node into threaded binary tree

Insertion of node into threaded binary tree:-

void insertRight(threadedPointer s,threadedPointer r)
{

r->rightChild=parent->rightChild;

r->rightThread=parent->rightThread;

r->leftChild=parent;

r->rightThread=TRUE;

s->rightChild= child;

s->rightThread=FALSE;

if(!r->rightThread)

{

temp=insucc(r);

temp->leftChild=r;

}

}

4.8 BINARY SEARCH TREE (BST)

A binary search tree is a binary tree. it may be empty. if it is not empty then,it satisfies the following

properties:

DATA STRUCTURES AND APPLICATIONS BCS304

1) Each node has exactly one key and the keys in the tree are distinct (Figure 26).

2) The keys in the left subtree are smaller than the key in the root.

3) The keys in the right subtree are larger than the key in the root.

4) The left and right subtrees are also binary search trees.

Figure 26: Binary search trees

Fig(a) is not a Binary search tree fig(b) and (c) are Binary search trees

1. Searching A Binary Search Tree

Assume that we have to search for a node whose key value is k. The search begins at the root (Program

A and program B)

 If the root is NULL, then the tree contains no nodes and hence the search is unsuccessful.

 If the key value k matches with the root's data then search terminates successfully.

 If the key value is less than the root's data, then we should search in the left subtree.

 If the key value is greater than the root's data, then we should search in the right subtree.

Analysis: If h is the height of the binary search tree, then the search operation can be performed in
O(h) time.

Program A: recursive search algorithm for BST

DATA STRUCTURES AND APPLICATIONS BCS304

Program B: Iterative search algorithm for BST

2. Inserting into a binary search tree

 Firstly verify, if the tree already contains the node with the same data (Figure 27 &Program C).

 If the search is successful, then the new node cannot be inserted into the binary search tree.

 If the search is unsuccessful, then we can insert the new node at that point where the search

terminated.

Figure 27: insertion of node 35 to existing BST

Program C: Node insertion to BST

DATA STRUCTURES AND APPLICATIONS BCS304

3. Deletion from a binary search tree

Figure 28: BST

 Deletion of a leaf: To delete 35 from the tree of figure 28, the left-child field of its parent is set

to NULL.

 Deletion of a non-leaf that has only one child: The node containing the dictionary pair to be

deleted is freed, and its single-child takes the place of the freed node. So, to delete the 5 from

the tree in figure 29, we simply change the pointer from the parent node to the single-child

node.

Figure 29(a): node 5 deletion (b): node 30 deletion

 The pair to be deleted is in a non-leaf node that has two children: The pair to be deleted is

replaced by either the largest pair in its left subtree or the smallest one in its right subtree. For

instance, if we wish to delete the pair with key 30 from the tree in figure 28, then we replace it by

key 5 as shown in figure 29(b)

4. Joining and splitting binary tree

There are two types of join operation on a binary search tree:

1) ThreeWayJoin(small,mid,big): this creates a binary search tree consisting of the pairs initially in

the BST small and big as well as pair mid. it is assumed that each key in small is smaller than mid.key

and that each key in big is greater than mid.key. following the join , both small and big are empty.

2) TwoWayJoin(small,big): this joins the two binary search tree small and big to obtain a single BST

that contains all the pairs originally in small and big. it is assumed that all keys of small are smaller

DATA STRUCTURES AND APPLICATIONS BCS304

than all keys of big and that following the join both small and big are empty.

3)split(theTree,k,small,big,mid)

Splitting a binary search tree will produce three trees: small, mid and big.

 If key is equal to root->data, then root->llink is the small, root->data is mid & root->rlink is

big.

 If key is lesser than the root->data, then the root's along with its right subtree would be in the

big.

 if key is greater than root->data, then the root’s along with its left subtree would be in the

small.

4. 9 Application of Trees: EXPRESSION TREES

Expression tree is a binary tree, because all of the operations are binary. It is also possible for a

node to have only one child, as is the case with the unary minus operator. The leaves of an expression

tree are operands, such as constants or variable names, and the other (non leaf) nodes contain

operators.

Once an expression tree is constructed we can traverse it in three ways:

• Inorder Traversal

• Preorder Traversal

• Postorder Traversal

Figure 30 shows some more expression trees that represent arithmetic expressions given in infix form.

Figure 30: Expression trees

DATA STRUCTURES AND APPLICATIONS BCS304

1. Construction of expression tree

An expression tree can be generated for the infix and postfix expressions. An algorithm to convert a

postfix expression into an expression tree is as follows:

 Read the expression from left to right and one symbol at a time.

 If the symbol is an operand, we create a one-node tree and push a pointer to it onto a stack.

 If the symbol is an operator, we pop pointers to two trees T1 and T2 from the stack (T1 is

popped first) and form a new tree whose root is the operator and whose left and right children

point to T2 and T1 respectively. A pointer to this new tree is then pushed onto the stack.

DATA STRUCTURES AND APPLICATIONS BCS304

DATA STRUCTURES AND APPLICATIONS BCS304

2. Building binary tree from traversal pairs

Sometimes it is required to construct a binary tree if its traversals are known. From a single

traversal it is not possible to construct unique binary tree. However any of the two traversals are given

then the corresponding tree can be drawn uniquely:

• Inorder and preorder,

• Inorder and postorder,

• Inorder and level order

The basic principle for formulation is as follows:

If the preorder traversal is given, then the first node is the root node. If the postorder traversal is

given then the last node is the root node. Once the root node is identified, all the nodes in the left sub-

trees and right sub-trees of the root node can be identified using inorder.Same technique can be applied

repeatedly to form sub-trees.

DATA STRUCTURES AND APPLICATIONS BCS304

DATA STRUCTURES AND APPLICATIONS BCS304

DATA STRUCTURES AND APPLICATIONS BCS304

DATA STRUCTURES AND APPLICATIONS BCS304

4.10 ADDITIONAL BINARY TREE OPERATIONS

Copying Binary Trees:-

This function is a slightly modified version of postorder. Function which returns an exact copy of the

original tree:

treepointer copy(treepointer original)
{

treepointer temp;

if(original)

{

MALLOC(temp, sizeof(*temp));

temp->leftchild = copy(original->leftchild);

temp->rightchild = copy(original->rightchild);

temp->data = original->data;

return temp;

}

return NULL;

}

DATA STRUCTURES AND APPLICATIONS BCS304

Testing Equality:-

Equivalent binary trees have the same structure and the same information in the corresponding nodes.

By same structure, we mean that every branch in one tree corresponds to a branch in the second tree. i.e

the branching of the 2 trees is identical. This function returns TRUE if the two trees are equivalent and

FALSE if they are not.

int equal(treepointer first, treepointer second)

{

return((!first && !second) || (first && second && (first->data == second->data) &&

equal(first->leftchild, second->leftchild) && equal (first->rightchild, second-> rightchild))

}

The Satisfiability Problem:-

 Consider the formula that is constructed by set of variables: x1, x2, …, xn and operators

(and), (or), ¬ (not).

 The variables can hold only of two possible values, true or false.

 The expression can form using these variables and operators is defined by the

following rules.

 A variable is an expression

 If x and y are expressions, then ¬x, xy, xy are expressions

 Parentheses can be used to alter the normal order of evaluation (¬ > >)

Example: x1 (x2 ¬ x3) If x1 and x3 are false and x2 is true

= false (true ¬false)

= false true

= true

The satisfiablity problem for formulas of the propositional calculus asks if there is an assignment of

values to the variable that causes the value of the expression to be true.

Let’s assume the formula in a binary tree

DATA STRUCTURES AND APPLICATIONS BCS304

(x1 ¬x2) (¬ x1 x3) ¬x3

The inorder traversal of this tree is

x1 ¬x2 ¬ x1 x3 ¬x3

The algorithm to determine satisfiablity is to let (x1, x2, x3) takes on all the possible combination of true

and false values to check the formula for each combination.

For n value of an expression, there are 2n possible combinations of true and false

For example n=3, the eight combinations are (t,t,t), (t,t,f), (t,f,t), (t,f,f), (f,t,t), (f,t,f), (f,f,t), (f,f,f).

The algorithm will take O(g 2
n
), where g is the time to substitute values for x1, x2,… xn and evaluate the

expression.

To evaluate an expression, we traverse its tree in postorder,

The node structure for this problem is

leftChild Data value rightChild

Node structure in C:

typedef enum {not, and, or, true, false} logical;

typedef struct node *treePointer;

typedef struct

{

}node;

treePointer leftChild;

logical data;

short int value;

treePointer rightChild;

Assume that node->data contains the current value of the variable represented at the leaf node. In the

above tree, data field in x1, x2 and x3 contains either TRUE or FALSE. Expression tree with n variables

is pointed at by root. With these assumptions we can write our first version of satisfiability algorithm

As below

DATA STRUCTURES AND APPLICATIONS BCS304

The first version of Satisfiability algorithm

The C function that evaluates the tree is modified version of postorder traversal, given below:

void postordereval(treepointer node)

{

if(node)

{

postordereval(node->leftchild);

postordereval(node->leftchild);

switch(node->data)

{
 case not : node->value = ! node->rightchild->value;

break;

case and : node->value = node->rightchild->value &&

 node->leftchild->value ; break;
case or : node->value = node->rightchild->value ||

 node->leftchild->value ; break;

case true : node->value = TRUE;

break;

 case false : node->value = FALSE;

break;

}

}

Data structures and Applications BCS304

Page

MODULE-1

STACKS

TOPICS

Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic Arrays,

Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix expression.

Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's function.

STACK

“Stack is an ordered collection of elements or items of same type can be inserted and deleted at only

one end called Top of stack”. (OR)

STACK is an ordered-list in which insertions (called push) and deletions (called pop) are

made at one end called the top. Since last element inserted into a stack is first element removed, a

stack is also known as a LIFO list (Last In First Out). Stack can be implemented using the Linked List

or Array.

Stack belongs to non-primitive linear data structure.

Consider a stack s=(a0,a1,….,an-1).here a0 is the bottom element , an-1 is the top element and

generally, element ai is on the top of element ai-1,0<i<n.

Top

Figure 1a: Stack S

If A, B, C, D, E are the elements added into stack in that order then E is the first element to be

deleted. Figure shows insertion and deletion of elements from the stack.

Figure 1b: Insertion and deletion of elements from the stack

an-1

an-2

…..

….
a1

a0

Data structures and Applications BCS304

Page

Thus, Stack is LIFO Structure i,e Last in First Out as shown in figure 1. Example, we can place or

remove a card or plate from top of the stack only.

Figure 2: stack of cards and plates

Figure 3: Stack representation

Figure 2 shows the example stacks and figure 3 shows stack representation indicting LIFO operation.

EXAMPLES FOR STACKS:- a stack of coins, a stack of plates , a stack of books , a stack of flooded

towels , phone call log, tennis balls in a container, undo and redo operations etc.

2.1 SYSTEM STACK

 A stack used by a program at run-time to process function-calls is called system-stack (Fig. 4).

• When functions are invoked, programs create a stack-frame (or activation-record) & place the stack-

frame on top of system-stack

• Initially, stack-frame/activation record for invoked-function contains only pointer to previous

stack-frame & return-address.

• The previous stack-frame pointer points to the stack-frame of the invoking-function, while return-

address contains the location of the statement to be executed after the function terminates.

Data structures and Applications BCS304

Page

• If one function invokes another function, local variables and parameters of the invoking-function are

added to its stack-frame.

• A new stack-frame is then created for the invoked-function & placed on top of the system-stack.

• When this function terminates, its stack-frame is removed (and processing of the invoking-function,

which is again on top of the stack, continues).

• Frame-pointer(fp) is a pointer to the current stack-frame.

Figure 4: System stack before and after function a1 invoked

STACK ADT

Data structures and Applications BCS304

Page

ARRAY REPRESENTATION OF STACKS

 Stacks may be represented in the computer in various ways such as one-way linked list

(Singly linked list) or linear array.

 Stacks are maintained by the two variables such as TOP and MAX_STACK_SIZE.

 TOP which contains the location of the top element in the stack. If TOP= -1, then it

indicates stack is empty.

 MAX_STACK_SIZE which gives maximum number of elements that can be stored in

stack.

Stack can represented using linear array as shown below

2.2 STACK BASIC OPERATIONS

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart from

these basic stuffs, a stack is used for the following two primary operations −

 push() − pushing (storing / inserting) an element on the stack.

 pop() − removing (accessing/ deleting) an element from the stack.

When data is pushed onto stack, to use a stack efficiently we need to check status of stack as well.

For the same purpose, the following functionality is added to stacks

 peek() − get the top data element of the stack, without removing it.

 isFull() − check if stack is full or overflow.

 isEmpty() − check if stack is empty or underflow.

At all times, we maintain a pointer to the last pushed data on the stack. As this pointer always

represents the top of the stack, hence named top. The top pointer provides top value of the stack without

actually removing it.

PUSH Operation

The process of putting a new data element onto stack is known as PUSH Operation. Push operation

involves series of steps −

 Step 1 − Check if stack is full.

 Step 2 − If stack is full, produce error and exit.

 Step 3 − If stack is not full, increment top to point next empty space.

 Step 4 − Add data element to the stack location, where top is pointing.

 Step 5 − return success.

Data structures and Applications BCS304

Page

if linked-list is used to implement stack, then in step 3, we need to allocate space dynamically. Push

operation is shown in figure 5.

Figure 5: Push operation

POP Operation

Accessing the content while removing it from stack, is known as pop operation. In array

implementation of pop() operation, data element is not actually removed, instead top is decremented to a

lower position in stack to point to next value. But in linked-list implementation, pop() actually removes

data element and deallocates memory space. Pop operation is shown in figure6.

A POP operation may involve the following steps −

 Step 1 − Check if stack is empty.

 Step 2 − If stack is empty, produce error and exit.

 Step 3 − If stack is not empty, access the data element at which top is pointing.

 Step 4 − Decrease the value of top by 1.

 Step 5 − return success.

Figure 6: pop operation

IMPLEMENTATION OF STACK OPERATIONS

The easiest way to implement stack ADT is using one-dimensional array.

stack[MAX_STACK_SIZE],where MAX_STACK_SIZE =maximum number of entries in the stack.

• The first element of the stack is stored in stack [0],stack[1] is second element and stack[i-1] is the ith

element.

• ‟top‟ points to the top element in the stack (top=-1 to denote an emptystack).

• The CreateS() function can be implemented as follows and it creates stack of size 100.

Data structures and Applications BCS304

Page

Function push/add() checks to see if the stack is full. If it is, it calls stack_full(), which prints an

error message and terminates execution. When the stack is not full, we increment top and assign item to

stack[top].

Function pop/delete() checks to see if the stack is empty using top . If top reaches -1,then it

calls stack_empty(), which prints an error message and terminates execution. When the stack is not

empty, we return the top most element stack[top] and decrement top.

void stack_full()

{ printf(stderr,”stack is full, can‟t add element”);

exit(EXIT_FAILURE);

}
void stack_empty ()

{ printf(stderr,”stack is empty, can‟t deleteelement”);

exit(EXIT_FAILURE);

}

2.3 STACK USING DYNAMIC ARRAYS

Shortcoming of static stack implementation: is the need to know at compile-time, a good bound

(MAX_STACK_SIZE) on how large the stack will become.

• This shortcoming can be overcome by using a dynamically allocated array for the elements & then

Data structures and Applications BCS304

Page

• increasing the size of the array as needed Initially, capacity=1 where capacity=maximum no. of stack-

elements that may be stored in array.

• The CreateS() function can be implemented as follows

void stack_full()

{ printf(stderr,”stack is full, can‟t addelement”);

exit(EXIT_FAILURE);

}

void stack_empty ()
{ printf(stderr,”stack is empty, can‟t deleteelement”);

exit(EXIT_FAILURE);

}

Once the stack is full, realloc() function is used to increase the size of array.In array-doubling,

we double array-capacity whenever it becomes necessary to increase the capacity of an array.

ANALYSIS

In worst case, the realloc function needs to allocate 2*capacity*sizeof(*stack) bytes of memory

and copy capacity*sizeof(*stack) bytes of memory from the old array into the new one. The total time

Data structures and Applications BCS304

Page

spent over all array doublings = O(2k) where capacity=2k. Since the total number of pushes is more than

2k-1, the total time spend in array doubling is O(n) where n=total number of pushes.

2.4 APPLICATIONS OF STACKS

1. Stack is used by compilers to check for balancing of parentheses, brackets and braces.

2. Stack is used to evaluate a postfix expression.

3. Stack is used to convert an infix expression into postfix/prefix form.

4. In recursion, all intermediate arguments and return values are stored on the processor‟s stack.

5. During a function call the return address and arguments are pushed onto a stack and on return

they are popped off.

EXPRESSIONS

 An algebraic expression is a legal combination of operators and operands. “The sequence of

operators and operands that reduces to a single value after evaluation is called Expression”.

 Operand is the quantity on which a mathematical operation is performed. Operand may be a

variable like x, y, z or a constant like 5, 4, 6 etc.

 Operator is a symbol which signifies a mathematical or logical operation between the operands.

Examples of familiar operators include +, -, *, /, ^ etc.

An algebraic expression can be represented using three different notations. They are infix,

postfix and prefix notations:

 Infix: It is the form of an arithmetic expression in which we fix (place) the arithmetic operator in

between the two operands. Example: (A + B) * (C - D)

 Prefix: It is the form of an arithmetic notation in which we fix (place) the arithmetic operator

before (pre) its two operands. The prefix notation is called as polish notation (due to the polish

mathematician Jan Lukasiewicz in the year 1920). Example: * + A B – C D

 Postfix: It is the form of an arithmetic expression in which we fix (place) the arithmetic operator

after (post) its two operands. The postfix notation is called as suffix notation and is also referred

to reverse polish notation. Example: A B + C D - *

The three important features of postfix expression are:

 Postfix expression is parenthesis-free expression.

 While evaluating the postfix expression the precedence and Associativity of the operators is no

longer required

 all expressions given to the system , will be converted into postfix form by the complier since it

is easy and more efficient to evaluate.

Data structures and Applications BCS304

Page

Converting expressions using Stack:

Let us convert the expressions from one type to another. These can be done as follows

1. Infix to postfix

2. Infix to prefix

3. Postfix to infix

4. Postfix to prefix

5. Prefix to infix

6. Prefix to postfix

Precedence of the operators

The first problem with understanding the meaning of expressions and statements is finding out the

order in which the operations are performed.

Example: assume that a =4, b =c =2, d =e =3 in below expression

X = a / b – c + d * e – a * c

((4/2)-2) + (3*3)-(4*2) (4/ (2-2 +3)) *(3-4)*2

=0+9-8

=1

OR = (4/3) * (-1) * 2

= -2.66666

The first answer is picked most because division is carried out before subtraction, and multiplication

before addition. If we wanted the second answer, write expression differently using parentheses to

change the order of evaluation

X= ((a / (b – c + d)) * (e – a) * c

In C, there is a precedence hierarchy that determines the order in which operators are evaluated.

Below figure contains the precedence hierarchy for C.

Data structures and Applications BCS304

Page

CONVERSION FROM INFIX TO POSTFIX

Procedure to convert from infix expression to postfix expression is as follows:

1. Scan the infix expression from left to right.

2. If the scanned symbol is left parenthesis, push it onto the stack.

3. If the scanned symbol is an operand, then place directly in the postfix expression (output).

4. If the symbol scanned is a right parenthesis, then go on popping all the items from the stack and

place them in the postfix expression till we get the matching left parenthesis.

5. If the scanned symbol is an operator, then go on removing all the operators from the stack and

place them in the postfix expression, if and only if the precedence of the operator which is on the

top of the stack is greater than (or greater than or equal) to the precedence of the scanned

operator and push the scanned operator onto the stack otherwise, push the scanned operator onto

the stack.

Data structures and Applications BCS304

Page 11

Example 1:

Convert ((A – (B + C)) * D) ↑ (E + F) infix expression to postfix form:

Data structures and Applications BCS304

Page 12

Example 2:

Convert the following infix expression A + B * C – D / E * H into its equivalent postfix expression

EVALUATION OF POSTFIX EXPRESSION

The postfix expression is evaluated easily by the use of a stack. When a number is seen, it is

pushed onto the stack; when an operator is seen, the operator is applied to the two numbers that are

popped from the stack and the result is pushed onto the stack. When an expression is given in postfix

notation, there is no need to know any precedence rules; this is our obvious advantage. Although infix

notation is the most common way of writhing expressions, it is not the one used by compilers to evaluate

expressions. Instead compilers typically use a parenthesis-free postfix notation.

Steps for evaluating postfix expression

1) Scan the symbol from left to right.

2) If the scanned-symbol is an operand, push it on to the stack.

3) If the scanned-symbol is an operator, pop two operands from the stack. The first popped operand

acts as operand2 and the second popped operand act as operand 1.Now perform the indicated

operation and Push the result on to the stack.

4) Repeat the above procedure till the end of input is encountered

Data structures and Applications BCS304

Page 13

Example 1:

Evaluate the postfix expression: 6 5 2 3 + 8 * + 3 + *

2.5 RECURSION

Recursion is the process of repeating items in a self-similar way. In programming languages, if a

program allows you to call a function inside the same function, then it is called a recursive call of the

function.

Data structures and Applications BCS304

Page 14

void recursion()

{

recursion(); /* function calls itself */

}

void main()

{

recursion();

}

The C programming language supports recursion, i.e., a function to call itself.

A recursive function is a function that calls itself during its execution.

But while using recursion, programmers need to be careful to define an exit condition from the function;

otherwise it will go into an infinite loop.

Recursive functions are very useful to solve many mathematical problems, such as calculating the

factorial of a number, generating Fibonacci series, etc.

RECURSION PROPERTIES

A recursive function can go infinite like a loop. To avoid infinite running of recursive function,

there are two properties that a recursive function must have −

 Base criteria − There must be at least one base criteria or condition, such that, when this

condition is met the function stops calling itself recursively.

 Recursive criteria − the recursive calls should progress in such a way that each time a recursive

call is made it comes closer to the base criteria.

1. FACTORIAL NUMBER

The product of the positive integers from 1 to n, inclusive is called n factorial and is usually

denoted by n!

n!=1*2*3*4*………*(n-2)*(n-1)*n.

Factorial function may be defined as

a. if n=0 then return 1

b. if n>0, then return n*(n-1)!

The following example calculates the factorial of a given number using a recursive function

#include <stdio.h>

int factorial(unsigned int n)

{

if(n <= 1)

{

return 1;

}

return n * factorial(n - 1);
}

Data structures and Applications BCS304

Page 15

void main()

{

int n,res;

printf(“\n enter the value for n”);

scanf(“%d”,&n);

res=factorial(n);

printf("Factorial of %d is %d\n", n, res);

}

When the above code is compiled and executed, it produces the following result − Factorial of 15 is

2004310016

2. GCD OF TWO NUMBERS

GCD is calculated by using GCD(a,b)=GCD(b,a mod b).

Euclid‟s algorithm

1. Take a and b, and calculate the remainder by performing a%b.

2. Assign the value of b to a and value of remainder to b.

3. Repeat the steps 1 & 2 until value of b becomes 0.

4. If b=0, then return value of „a‟ as the GCD value of a & b.

#include <stdio.h>

int gcd(int m, int n);

void main()

{

int a, b,res;
printf("Enter two positive integers: ");

scanf("%d %d", &a, &b);

res=gcd(a,b);

printf("G.C.D of %d and %d is %d.", n1, n2, res);

}

int gcd(int a, int b)

{
int rem;

if (b==0)

return a;

else

{

}

rem=a%b;

a=b;

b=rem;

return gcd(a,b);

Output

Enter two positive integers:

366 60

G.C.D of 366 and 60 is 6

Data structures and Applications BCS304

Page 16

3. FIBONACCI SERIES

The Fibonacci sequence is the sequence of integers, where each number in this sequence is the

sum of two preceding elements.

A formal definition is

a. If n=0 or 1,return n(0/1)

b. If n>1,returnfib(n-1)+fib(n-2)

#include <stdio.h>

int fib(int i)

{

if(i == 0)

{

return 0;

}

if(i == 1)
{

return 1;

}

return (fib(i-1) + fib(i-2));

}

void main()

{

int i;

for (i = 0; i < 10; i++)

{

printf("%d\t", fib(i));
}

}

When the above code is compiled and executed, it produces the following result −
0 1 1 2 3 5 8 13 21 34

4. TOWER OF HANOI PROBLEM

Tower of Hanoi, is a mathematical puzzle which consists of three tower (pegs) and more than

one rings; as depicted in below figure 7

Figure 7: Tower of Hanoi

Data structures and Applications BCS304

Page 17

These rings are of different sizes and stacked upon in ascending order i.e. the smaller one sits

over the larger one. There are other variations of puzzle where the number of disks increase, but the

tower count remains the same.

Rules

The mission is to move all the disks to some another tower without violating the sequence of

arrangement. The below mentioned are few rules which are to be followed for tower of hanoi −

 Only one disk can be moved among the towers at any given time.

 Only the "top" disk can be removed.

 No large disk can sit over a small disk.

Here is an animated representation in figure 8 of solving a tower of hanoi puzzle with three disks

−Tower of hanoi puzzle with n disks can be solved in minimum 2n−1 steps. This presentation shows

that a puzzle with 3 disks has taken 23−1 = 7 steps.

Algorithm

To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem with lesser

amount of disks, say → 1 or 2. We mark three towers with name, source, destination and aux (only to

help moving disks). If we have only one disk, then it can easily be moved from source to destination

peg.

If we have 2 disks −

 First we move the smaller one (top) disk to aux peg

 Then we move the larger one (bottom) disk to destination peg

 And finally, we move the smaller one from aux to destination peg.

So now we are in a position to design algorithm for Tower of Hanoi with more than two disks. We

divide the stack of disks in two parts. The largest disk (nthdisk) is in one part and all other (n-1) disks

are in second part. Our ultimate aim is to move disk n from source to destination and then put all other

(n-1) disks onto it. Now we can imagine to apply the same in recursive way for all given set of disks.

So steps to follow are −

 Step 1 − Move n-1 disks from source to aux

 Step 2 − Move nth disk from source to dest

 Step 3 − Move n-1 disks from aux to dest

A recursive algorithm for Tower of Hanoi can be driven as follows −

START

Procedure tower(disk, source, dest, aux)

if n == 1, THEN

move disk from source to dest

Data structures and Applications BCS304

Page 18

else

tower(n - 1, source, aux, dest) // Step 1

move disk from source to dest // Step 2

tower(n - 1, aux, dest, source) // Step 3

END IF

END Procedure

STOP

PROGRAM:

#include<stdio.h>

#include<conio.h>

#include <stdio.h>

void towers(int, char, char, char);

int main()

{

int num;
printf("Enter the number of disks : ");

scanf("%d", &num);

printf("The sequence of moves involved in the Tower of Hanoi are :\n");

towers(num, 'A', 'C', 'B');

getch();

return 0;

}

void towers(int num, char source, char dest, char aux)

{

if (num == 1)

{

printf("\n Move disk 1 from peg %c to peg %c", source,dest);

return;

}

towers(num - 1, source, aux,dest);

printf("\n Move disk %d from peg %c to peg %c", num, source, dest);

towers(num - 1, aux, dest, source);

}

The below figure shows the disks movements in tower of Hanoi for 3 disks

Figure 8: Disk movements

Data structures and Applications BCS304

Page 19

The below figure shows the recursive function calls in tower of Hanoi for 3 disks

ACKERMANN'S FUNCTION

Ackermann–Péter function, is defined as follows for nonnegative integers m and n:

To solve A(2,1) using Ackerman‟s function: (m=2, n=1)

A(2,1) = A(1,A(2,0))

= A(1,A(1,1))

=A(1,A(0,A(1,0)))
=A(1,A(0,A(0,1)))

=A(1,A(0,2))

=A(1,3)

=A(0,A(1,2))

=A(0,A(0,A(1,1)))

=A(0,A(0,A(0,A(1,0))))

=A(0,A(0,A(0,A(0,1))))

=A(0,A(0,A(0,2)))

=A(0,A(0,3))

=A(0,4)

A(2,1) = 5

Program:-

#include<stdio.h>
int ackerman(int m, int n)
{

if(m==0)

return (n+1);

if(n==0 && m>0)

return ackerman(m-1,1);

if(m>0 && n>0)

return ackerman(m-1,ackerman(m,n-1));

}

void main()

Data structures and Applications BCS304

Page 20

{

int m,n;

printf(“Enter the value of m and n\n”);
scanf(“%d %d”,&m,&n);

printf(“%d”,ackerman(m,n));

}

