

COMPUTER NETWORKS

Dept.of CSE Page 1

Module-I

Contents:
Introduction to networks

1. Network hardware

▪ Personal Area Networks

▪ Local Area Networks

▪ Metropolitan Area Networks

▪ Wide Area Networks

▪ Internetworks

2. Network software

▪ Protocol Hierarchies

▪ Design Issues for the Layers

▪ Connection-Oriented Versus Connectionless Service

▪ Service Primitives

▪ The Relationship of Services to Protocols,

3. Reference Models
▪ The OSI Reference Model

▪ The TCP/IP Reference Model

Physical Layers

1. Guided transmission media

▪ Magnetic Media

▪ Twisted Pairs

▪ Coaxial Cable

▪ Power Lines

▪ Fiber Optics

2. Wireless transmission

▪ The Electromagnetic Spectrum

▪ Radio Transmission

▪ Microwave Transmission

▪ Infrared Transmission

▪ Light Transmission

COMPUTER NETWORKS

Dept.of CSE Page 2

INTRODUCTION
❖ Each of the past three centuries was dominated by a single new technology.

❖ The 18th century was the era of the great mechanical systems accompanying the Industrial Revolution.

❖ The 19th century was the age of the steam engine.

❖ During the 20th century, the technology was information gathering, processing, and distribution. Ex:

Telephone networks, invention of radio and computer industry, communication satellites, Internet.

❖ The 21st century Networks are Human-to-Human, Machine-to-Machine.

❖ Computer Network: A collection of autonomous computers interconnected by a single technology.

Two computers are said to be interconnected if they are able to exchange information. The connection

need not be via a copper wire; fiber optics, microwaves, infrared and communication satellites can also

be used. Networks come in many sizes, shapes and forms, as we will see later. They are usually

connected together to make larger networks, for example Internet.

❖ Uses of Computer Networks

A) Business Applications: Resource Sharing, Client-Server-mail, video conferencing

❖ Many companies have a substantial number of computers. For example, a company may have separate

computers to monitor production, keep track of inventories, and do the payroll. Initially, each of these

computers may have worked in isolation from the others, but at some point, management may have

decided to connect them to be able to extract and correlate information about the entire company.

1. Resource sharing: The main task of the connectivity of resources is resource sharing. For example, a

high-volume networked printer may be installed instead of large collection of individual printers.

2. Information Sharing: large and medium-sized company and many small companies are vitally

dependent on computerized information. This can be done by a simple client server model connected

by network as illustrated in Fig.1.4.

In client-server model in detail, two processes are involved, one on the client machine and one on the

server machine. Communication takes the form of the client process sending a message over the

network to the server process. The client process then waits for a reply message. When the server

process gets the request, it performs the requested work or looks up the requested data and sends back a

reply. These messagesare shown in Fig. 1.5.

COMPUTER NETWORKS

Dept.of CSE Page 3

3. Connecting People: another use of setting up a computer network has to do with

people rather than information or even computers. It is achieved through Email, Video

Conferencing.

4. E-commerce: many companies is doing business electronically with other companies,

especially suppliers and customers, and doing business with consumers over the

Internet.

B) Home Applications: Shopping, Digital library, email, game playing, TV,Twitter, Instagram

The computer network provides better connectivity for home applications via desktop

computers, laptops, iPads, iPhones. Some of the more popular uses of the Internet for home

users are as follows:

1. Access to remote information.

2. Person-to-person communication (peer-to-peer).

i. Peer-to-peer - there are no fixed clients and servers.

ii. Audio and Video sharing

3. Interactive entertainment.

4. Electronic commerce.

C) Mobile Users: Notebook Computer,Hotspots,Text Messaging,GPS

As wireless technology becomes more widespread, numerous other applications are likely to

emerge. Wireless networks are of great value to fleets of trucks, taxis, delivery vehicles, and

repairpersons for keeping in contact with home. Wireless networks are also important to the

military.

Although wireless networking and mobile computing are often related, they are not

identical, as Table 1.3 shows. Here we see a distinction between fixed wireless and mobile wireless.

Even notebook computers are sometimes wired. For example, if a traveler plugs a notebook

computer into the telephone jack in a hotel room, he has mobility without a wirelessnetwork.

COMPUTER NETWORKS

Dept.of CSE Page 4

Another area in which wireless could save money is utility meter reading. If electricity,

gas, water, and other meters in people's homes were to report usage over a wireless network,

there would be no need to send out meter readers.

D) Social Issues:Phishing,network neutrality(Traffic treated as equal)

The widespread introduction of networking has introduced new social, ethical, and

political problems. A popular feature of many networks is newsgroups or bulletin boards

whereby people can exchange messages with like-minded individuals. As long as the subjects are

restricted to technical topics or hobbies like gardening, not too many problems will arise.

The following are the issues in society due to the misbehave or misconduct of computer

networks.

1. Network neutrality

2. Digital Millennium Copyright Act

3. Profiling users

4. Phishing

NETWORK HARDWARE

❖ There is no generally accepted taxonomy into which all computer networks fit, but two dimensions

stand out as important: transmission technology and scale.

❖ There are two transmission technologies: Broadcast links and Point-to-Point links.

❖ Point-to-point links connect individual pairs of machines. To go from the source to the destination

on a network made up of point-to-point links, short messages, called packets in certain contexts, may

have to first visit one or more intermediate machines.

❖ Often multiple routes of different lengths are possible, so finding good ones is important in point-to-

point networks.

❖ Point-to-point transmission with exactly one sender and exactly one receiver is sometimes called

unicasting. Example browsing a website.

COMPUTER NETWORKS

Dept.of CSE Page 5

❖ Broadcast links: single communication channel shared by all machines, example wireless network.

❖ An address field within each packet specifies the intended recipient. Upon receiving a packet, a

machine checks the address field. If the packet is intended for the receiving machine, that machine

processes the packet; if the packet is intended for some other machine, it is just ignored.

❖ Some broadcast systems also support transmission to a subset of the machines, which known as

multicasting.

PANs (Personal Area Networks):

❖ Let devices communicate over the range of a person.

❖ For example a wireless network that connects a computer with its peripherals, without using

wireless, this connection must be done with cables.

❖ So many new users have a hard time finding the right cables and plugging them into the right place.

❖ To help these users, some companies got together to design a short-range wireless network called

Bluetooth to connect these components without wires.

❖ The idea is that if your devices have Bluetooth, then you need no cables. You just put them down,

turn them on, and they work together. For many people, this ease of operation is a big plus.

❖ In the simplest form, Bluetooth networks use the master-slave paradigm of

❖ Fig. The system unit (the PC) is normally the master, talking to the mouse, keyboard, etc., as slaves.

The master tells the slaves what addresses to use, when they can broadcast, how long they can

transmit, what frequencies they can use, and so on.

❖ It connects a headset to a mobile phone without cords and it can allow your digital music player

COMPUTER NETWORKS

Dept.of CSE Page 6

LAN (Local Area Network):

❖ It is a privately owned network that operates within and nearby a single building like a home, office or factory.

❖ When LANs are used by companies, they are called enterprise networks.

❖ Wireless LANs(IEEE 802.11) /Wireless Fidelity (WiFi): It is used in homes, older office buildings, cafeterias,

and other places where it is too much trouble to install cables.

❖ In these systems, every computer has a radio modem and an antenna that it uses to communicate with other

computers.

❖ An AP (Access Point), wireless router, or base station, relays packets between the wireless computers and also

between them and the Internet.

❖ Wireless LAN operates at a speed of 11 to 100’s Mbps.

❖ Wired LANs use a range of different transmission technologies. Most of them use copper wires, but some use

optical fiber. LANs are restricted in size, which means that the worst-case transmission time is bounded and

known in advance.

COMPUTER NETWORKS

Dept.of CSE Page 7

❖ Wired LANs run at speeds of 100 Mbps to 1 Gbps, have low delay and few errors. Newer LANs can operate at

up to 10 Gbps. It is just easier to send signals over a wire or through a fiber than through the air.

❖ The topology wired LANs is built from point-to-point links. IEEE 802.3, called Ethernet, is, by far, the most

common type of wired LAN. Fig. (b) Switched Ethernet. Each computer speaks the Ethernet protocol and

connects to a box called a switch with a point-to-point link. A switch has multiple ports, each of which can

connect to one computer. The job of the switch is to relay packets between computers that are attached to it,

using the address in each packet to determine which computer to send it to.

❖ Both wireless and wired broadcast networks can be divided into static and dynamic designs, depending on how

the channel is allocated.

❖ Static allocation would be to divide time into discrete intervals and use a round-robin algorithm, allowing each

machine to broadcast only when its time slot comes up.

❖ Static allocation wastes channel capacity when a machine has nothing to say during its allocated slot, so most

systems attempt to allocate the channel dynamically (i.e., on demand).

❖ Dynamic allocation methods for a common channel are either centralized or decentralized.

❖ Centralized channel allocation: There is a single entity, for example, the base station in cellular networks,

which determines who goes next. It might do this by accepting multiple packets and prioritizing them according

to some internal algorithm.

❖ Decentralized channel allocation: there is no central entity; each machine must decide for itself whether to

transmit.

MAN (Metropolitan Area Network):

❖ It covers a city and best-known example is cable television networks available in many cities. These systems

grew from earlier community antenna systems used in areas with poor over-the-air television reception. In those

early systems, a large antenna was placed on top of a nearby hill and a signal was then piped to the subscribers’

houses.

❖ At first, these were locally designed, ad hoc systems. The next step was television programming and even entire

channels designed for cable only. Often these channels were highly specialized, such as all news, all sports, all

cooking, all gardening, and so on.

❖ When the Internet began attracting a mass audience, the cable TV network operators began to realize that with

some changes to the system, they could pro- vide two-way Internet service in unused parts of the spectrum.

❖ In figure, both television signals and Internet being fed into the centralized cable headend for subsequent

distribution to people’s homes.

❖ Recent developments in high- speed wireless Internet access have resulted in another MAN, which has been

standardized as IEEE 802.16 and is popularly known as WiMAX

COMPUTER NETWORKS

Dept.of CSE Page 8

WAN (Wide Area Network):

❖ It Spans a large geographical area, often a country or continent.

❖ In most WANs, the subnet consists of two distinct components: transmission lines and switching elements.

❖ Transmission lines (copper wire, optical fiber, or even radio links) move bits between machines.

❖ Switching elements (switches), are specialized computers that connect two or more transmission lines.

❖ When data arrive on an incoming line, the switching element must choose an outgoing line on which to forward

them.

❖ The routers will usually connect different kinds of networking technology. The networks inside the offices may

be switched Ethernet, for example, while the long-distance transmission lines may be SONET links.

❖ VPN (Virtual Private Network): it provides flexible reuse of a resource (Internet connectivity).

❖ It has disadvantage, which is a lack of control over the underlying resources and mileage may vary with internet

speed.

COMPUTER NETWORKS

Dept.of CSE Page 9

❖ The subnet operator is known as a network service provider and the offices are its customers. The

subnet operator will connect to other customers too, as long as they can pay and it can provide service.

❖ A subnet operator is called an ISP (Internet Service Provider) and the subnet is an ISP network. Its

customers who connect to the ISP receive Internet service.

❖ How the network makes the decision as to which path to use is called the routing algorithm.

❖ How each router makes the decision as to where to send a packet next is called the forwarding

algorithm.

❖ Examples of WAN make heavy use of wireless technologies i.e. satellite systems.

❖ The cellular telephone network is another example of a WAN that uses wireless technology.

❖ The first generation was analog and for voice only. The second generation was digital and for voice

only. The third generation is digital and is for both voice and data.

❖ Each cellular base station covers a distance much larger than a wireless LAN, with a range measured

in kilometers rather than tens of meters.

Internetworks:

❖ A collection of interconnected networks is called an internetwork or internet.

❖ The Internet uses ISP networks to connect enterprise networks, home networks, and many other

networks.

❖ There are two rules of thumb that are useful. First, if different organizations have paid to construct

different parts of the network and each maintains its part, we have an internetwork rather than a single

COMPUTER NETWORKS

Dept.of CSE Page 10

network.

❖ Second, if the underlying technology is different in different parts (e.g., broadcast versus point-to-

point and wired versus wireless), we probably have an internetwork.

❖ Gateways are distinguished by the layer at which they operate in the protocol hierarchy.

NETWORK SOFTWARE:
Protocol Hierarchies:

❖ To reduce their design complexity, most networks are organized as a stack of layers or levels, each

one built upon the one below it. The number of layers, the name of each layer, the contents of each layer,

and the function of each layer differ from network to network.

❖ The purpose of each layer is to offer certain services to the higher layers while shielding those layers

from the details of how the offered services are actually implemented. In a sense, each layer is a kind of

virtual machine, offering certain services to the layer above it.

❖ When layer n on one machine carries on a conversation with layer n on another machine, the rules and

conventions used in this conversation are collectively known as the layer n protocol. Basically, a protocol

is an agreement between the communicating parties on how communication is to proceed.

❖ A five-layer network is illustrated:

❖ In reality, no data are directly transferred from layer n on one machine to layer n on another

machine. Instead, each layer passes data and control information to the layer immediately below it,

until the lowest layer is reached.

❖ Below layer 1 is the physical medium through which actual communication occurs. Virtual

communication is shown by dotted lines and physical communication by solid lines.

❖ Interface: defines which primitive operations and services the lower layer makes available to the

COMPUTER NETWORKS

Dept.of CSE Page 11

upper one.

❖ Clear- cut interfaces also make it simpler to replace one layer with a completely different protocol or

implementation.

❖ A set of layers and protocols is called network architecture. The specification of architecture must

contain enough information to allow an implementer to write the program or build the hardware for

each layer so that it will correctly obey the appropriate protocol.

❖ A list of the protocols used by a certain system, one protocol per layer, is called a protocol stack.

❖ In this example, M is split into two parts, M 1 and M 2, that will be transmitted separately.

Layer 3 decides which of the outgoing lines to use and passes the packets to layer 2. Layer 2

adds to each piece not only a header but also a trailer, and gives the resulting unit to layer 1

for physical transmission.

❖ At the receiving machine the message moves upward, from layer to layer, with headers being

stripped off as it progresses. None of the headers for layers below n are passed up to layer n.

COMPUTER NETWORKS

Dept.of CSE Page 12

Design Issues for the Layers:
Some of the key design issues that occur in computer networks are present in several layers. The

following are briefly mention some of the more important ones.

• Identifying senders and receivers - some form of addressing is needed in order to specify

a specific source and destination.

• Rules for data transfer - The protocol must also determine the direction of data flow,

how many logical channels the connection corresponds to and what their priorities

are. Many networks provide at least two logical channels per connection, one for normal

data and one for urgent data.

• Error control – when circuits are not perfect, both ends of the connection must agree on

which error-detecting and error-correcting codes is being used.

• Sequencing - protocol must make explicit provision for the receiver to allow the pieces to

be reassembled properly.

• Flow Control - how to keep a fast sender from swamping a slow receiver with data. This is

done by feedback-based (receiver to sender) or agreed-on transmission rate.

• Segmentation and reassembly - several levels are the inability of all processes to accept

arbitrarily long messages. It leads to mechanisms for disassembling, transmitting, and

then reassembling messages.

• Multiplexing and demultiplexing – to share the communication medium by severalusers.

• Routing - When there are multiple paths between source and destination, a route must be

chosen.

COMPUTER NETWORKS

Dept.of CSE Page 13

Connection-Oriented Versus Connectionless Service:

❖ Connection-oriented network service, the service user first establishes a connection, uses the

connection, and then releases the connection.

❖ Connection acts like a tube: the sender pushes objects (bits) in at one end, and the receiver takes

them out at the other end. In most cases the order is preserved so that the bits arrive in the order

they were sent.

❖ In some cases when a connection is established, the sender, receiver, and subnet conduct a

negotiation about the parameters to be used, such as max message size, QoS required etc. Typically,

one side makes a proposal and the other side can accept it, reject it, or make a counter- proposal.

❖ Connectionless service is modeled after the postal system. Each message (letter) carries the full

destination address, and each one is routed through the intermediate nodes inside the system

independent of all the subsequent messages.

❖ There are different names for messages in different contexts; a packet is a message at the network

layer. When the intermediate nodes receive a message in full before sending it on to the next node,

this is called store-and-forward switching.

❖ The alternative, in which the onward transmission of a message at a node starts before it is

completely received by the node, is called cut-through switching.

❖ Unreliable (meaning not acknowledged) connectionless service is often called datagram service, in

analogy with telegram service, which also does not return an acknowledgement to the sender.

Service Primitives (Operations):

❖ These primitives tell the service to perform some action or report on an action taken by peer entity.

The primitives for connection-oriented service are different from those of connectionless service.

COMPUTER NETWORKS

Dept.of CSE Page 14

❖ First, the server executes LISTEN to indicate that it is prepared to accept in coming connections. A

common way to implement LISTEN is to make it a blocking system call. After executing the

primitive, the server process is blocked untila request for connection appears.

❖ Next, the client process executes CONNECT to establish a connection with the server. The

CONNECT call needs to specify who to connect to, so it might have a parameter giving the server’s

address. Client is suspended until there is a response.

❖ When the packet arrives at the server, the operating system sees that the packet is requesting a

connection. It checks to see if there is a listener, and if so it unblocks the listener. The server process

can then establish the connection with the ACCEPT call.

❖ The next step is for the server to execute RECEIVE to prepare to accept the first request.

Normally, the server does this immediately upon being released from the LISTEN, before

the acknowledgement can get back to the client. The RECEIVE call blocks the server.

❖ Then the client executes SEND to transmit its request followed by the execution of RECEIVE to get

the reply.

❖ When the client is done, it executes DISCONNECT to terminate the connection.

The Relationship of Services to Protocols

❖ A service is a set of primitives (operations) that a layer provides to the layer above it. I t defines

what operations the layer is prepared to perform on behalf of its users. A service relates to an

interface between two layers, with the lower layer being the service provider and the upper layer

being the service user.

❖ A service is like an abstract data type or an object in an object-oriented language. It defines

operations that can be performed on an object but does not specify how these operations are

COMPUTER NETWORKS

Dept.of CSE Page 15

implemented.

❖ A protocol, in contrast, is a set of rules governing the format and meaning of the packets, or

messages that are exchanged by the peer entities within a layer.

❖ In contrast, a protocol relates to the implementation of the ser- vice and as such is not visible to the

user of the service.

REFERENCE MODELS

The OSI Reference Model

❖ This model is based on a proposal developed by the International Standards Organization (ISO) as a

first step toward international standardization of the protocols used in the various layers (Day and

Zimmermann, 1983).

❖ It was revised in 1995 (Day, 1995). The model is called the ISO OSI (Open Systems Interconnection)

Reference Model because it deals with connecting open systems—that is, systems that are open for

communication with other systems.

❖ The OSI model has seven layers. The principles that were applied to arrive at the seven

layers can be briefly summarized as follows:

1. A layer should be created where a different abstraction is needed.

2. Each layer should perform a well-defined function.

3. The function of each layer should be chosen with an eye toward defining

internationally standardized protocols.

4. The layer boundaries should be chosen to minimize the information flow

across the interfaces.

5. The number of layers should be large enough that distinct functions need not

be thrown together in the same layer out of necessity and small enough that

the architecture does not become unwieldy.

COMPUTER NETWORKS

Dept.of CSE Page 16

The Physical Layer

❖ This layer is concerned with transmitting raw bits sequence of 0’s and 1’s over a communication

channel.

❖ The design issues are deal with mechanical, electrical, and timing interfaces, as well as the physical

transmission medium, which lies below the physical layer.

The Data Link Layer

❖ This layer transforms a raw transmission facility into a line that appears free of undetected

transmission errors.

❖ It accomplishes this task by having the sender break up the input data into data frames (typically a

few hundred or a few thousand bytes) and transmits the frames sequentially.

❖ If the service is reliable, the receiver confirms correct receipt of each frame by send- ing back an

acknowledgement frame.

❖ Another issue in the data link layer is how to keep a fast transmitter from drowning a slow

receiver in data. Some traffic regulation mechanisms are used.

❖ Medium access control sub layer deals with how to control access to the shared channel.

The Network Layer

❖ Controls the operation of the subnet.

❖ A key design issue is determining how packets are routed from source to destination.

❖ Routes can be based on static tables that are ‘‘wired into’’ the network and rarely changed, or more

often they can be updated automatically to avoid failed components.

COMPUTER NETWORKS

Dept.of CSE Page 17

❖ If too many packets are present in the subnet at the same time, they will get in one another’s way,

forming bottlenecks. Handling congestion is also a responsibility of the network layer.

❖ Heterogeneous networks to be interconnected.

The Transport Layer

❖ It accept data from above it, split it up into smaller units if need be, pass these to the network layer,

and ensure that the pieces all arrive correctly at the other end.

❖ It also determines what type of service to provide to the session layer, ultimately, to the users of the

network.

❖ The most popular type of transport connection is an error-free point-to-point channel that delivers

messages or bytes in the order in which they were sent.

❖ It also provides the service of transporting of isolated messages with no guarantee about the order of

delivery, and the broadcasting of messages to multiple destinations.

❖ The transport layer is a true end-to-end layer; it carries data all the way from the source to the

destination.

The Session Layer

❖ It allows users on different machines to establish sessions between them.

❖ Sessions offer various services, including dialog control (keeping track of whose turn it is to

transmit), token management(preventing two parties from attempting the same critical operation

simultaneously), and synchronization (check pointing long transmissions to allow them to pick up

from where they left off in the event of a crash and subsequent recovery).

The Presentation Layer

❖ This layer is concerned with the syntax and semantics of the information transmitted.

❖ In order to make it possible for computers with different internal data representations to

communicate, the data structures to be exchanged can be defined in an abstract way, along with a

standard encoding to be used ‘‘on the wire.’’

❖ The presentation layer manages these abstract data structures and allows higher-level data structures

(e.g., banking records) to be defined and exchanged.

The Application Layer

❖ It contains a variety of protocols that are commonly needed by users.

❖ One widely used application protocol is HTTP (HyperText Transfer Protocol), which is the basis

for the World Wide Web. When a browser wants a Web page, it sends the name of the page it

wants to the server hosting the page using HTTP. The server then sends the page back.

❖ Other application protocols are used for file transfer, electronic mail, and network news.

COMPUTER NETWORKS

Dept.of CSE Page 18

The TCP/IP Reference Model
❖ This reference Model is a four-layered suite of communication protocols, developed by the DoD

(Department of Defence) in the 1960s. It is named after the two main protocols that are used in the

model, namely, TCP and IP.

The Link Layer

❖ It describes what links such as serial lines and classic Ethernet must do to meet the needs of this

connectionless internet layer.

❖ It is not really a layer at all, in the normal sense of the term, but rather an interface between hosts

and transmission links.

The Internet Layer

❖ Its job is to permit hosts to inject packets into any network and have they travel independently to

the destination.

❖ Packet may arrive in a completely different order than they were sent, in which case it is the job of

higher layers to rearrange them, if in-order delivery is desired.

❖ This layer defines an official packet format and protocol called IP (Internet Protocol), plus a

companion protocol called ICMP (Internet Control Message Protocol) that helps it function.

❖ The job of the internet layer is to deliver IP packets where they are supposed to go. Packet

routing is clearly a major issue here, as is congestion (though IP has not proven effective at

avoiding congestion).

The Transport Layer

❖ It is designed to allow peer entities on the source and destination hosts to carry on a conversation,

just as in the OSI transport layer.

❖ Two end-to-end transport protocols have been defined here TCP,UDP.

❖ TCP (Transmission Control Protocol), is a reliable connection-oriented protocol that allows a

byte stream originating on one machine to be delivered without error on any other machine in the

internet.

❖ It segments the incoming byte stream into discrete messages and passes each one on to the internet

COMPUTER NETWORKS

Dept.of CSE Page 19

layer. At the destination, the receiving TCP process reassembles the received messages into the

output stream.

❖ TCP also handles flow control to make sure a fast sender cannot swamp a slow receiver with more

messages than it can handle.

❖ UDP (User Datagram Protocol), is an unreliable, connectionless protocol for applications that do

not want TCP’s sequencing or flow control and wish to provide their own.

❖ It is also widely used for one-shot, client-server-type request-reply queries and applications in

which prompt delivery is more important than accurate delivery, such as transmitting speech or

video.

The Application Layer

❖ It contains all the higher-level protocols. The file transfer (FTP), and electronic mail (SMTP).

Domain Name System (DNS), for mapping host names onto their net- work addresses, HTTP, the

protocol for fetching pages on the World Wide Web, RTP, the protocol for delivering real-time

media such as voice or movies.

A Comparison of the OSI and TCP/IP Reference Models

❖ Three concepts are central to the OSI model:

1. Services: It tells layer’s semantics, what the layer does, not how entities above it access it or how

the layer works.

2. Interfaces: It specifies what the parameters are and what results to expect.

3. Protocols: provides the offered services.

❖ The TCP/IP model did not originally clearly distinguish between services, interfaces, and protocols,

although people have tried to retrofit it after the fact to make it more OSI-like.

❖ The protocols in the OSI model are better hidden than in the TCP/IP model and can be replaced

relatively easily as the technology changes.

❖ As a consequence, the proto- cols in the OSI model are better hidden than in the TCP/IP model and

can be replaced relatively easily as the technology changes.

❖ With TCP/IP the reverse was true: the protocols came first, and the model was really just a

description of the existing protocols. There was no problem with the protocols fitting the model.

❖ The OSI model has seven layers and the TCP/IP model has four. Both have (inter)network,

transport, and application layers, but the other layers are different.

❖ The OSI model supports both connectionless and connection- oriented communication in the

network layer, but only connection-oriented communication in the transport layer, where it counts

❖ The TCP/IP model supports only one mode in the network layer (connectionless) but both in the

transport layer, giving the users a choice.

COMPUTER NETWORKS

Dept.of CSE Page 20

PHYSICAL LAYER: GUIDED TRANSMISSION MEDIA

1. Magnetic Media :

❖ One of the most common ways to transport data from one computer to another is to write them onto

magnetic tape or removable media (e.g., recordable DVDs), physically transport the tape or disks to the

destination machine, and read them back in again.

❖ Although this method is not as sophisticated as using a geosynchronous communication satellite, it is

often more cost effective, especially for applications in which high bandwidth or cost per bit

transported is the key factor.

❖ An industry-standard Ultrium tape can hold 800 gigabytes. A box 60 60 60 cm can hold about 1000

of these tapes, for a total capacity of 800 terabytes, or 6400 terabits (6.4 petabits).

❖ A box of tapes can be delivered anywhere in the United States in 24 hours by Federal Express and other

companies. The effective bandwidth of this transmission is 6400 terabits/86,400 sec, or a bit over 70

Gbps.

❖ If the destination is only an hour away by road, the bandwidth is increased to over 1700 Gbps. No

computer net- work can even approach this. Of course, networks are getting faster, but tape den- sities

are increasing, too.

❖ The cost of an Ultrium tape is around $40 when bought in bulk. A tape can be reused at least 10 times

, So the tape cost is maybe $4000 per box per usage.

2. Twisted Pairs

❖ A twisted pair consists of two insulated copper wires, typically about 1 mm thick. The wires are

twisted together in a helical form, just like a DNA molecule.

❖ Twisting is done because two parallel wires constitute a fine antenna. When the wires are twisted, the

waves from different twists cancel out, so the wire radiates less effectively.

❖ A signal is usually carried as the difference in voltage between the two wires in the pair. This provides

better immunity to external noise because the noise tends to affect both wires the same, leaving the

differential unchanged.

❖ The most common application of the twisted pair is the telephone system.

❖ Twisted pairs can run several kilometers without amplification, but for longer distances the signal

becomes too attenuated and repeaters are needed.

❖ The bandwidth depends on the thickness of the wire and the distance traveled, but several megabits/sec

can be achieved for a few kilometers in many cases.

COMPUTER NETWORKS

Dept.of CSE Page 21

❖ Twisted-pair cabling comes in several varieties. A ‘‘Cat 5”category 5 twisted pair consists of two

insulated wires gently twisted together. Four such pairs are typically grouped in a plastic sheath to

protect the wires and keep them together.

❖ Links that can be used in both directions at the same time, like a two-lane road, are called full-duplex

links.

❖ links that can be used in either direction, but only one way at a time, like a single-track railroad line

are called half-duplex links.

❖ Links that allow traffic in only one direction, like a one-way street. They are called simplex links.

❖ Cat 5 replaced earlier Category 3 cables, but has more twists per meter. More twists result in less

crosstalk and a better-quality signal over longer distances, making the cables more suitable for high-

speed computer communication, especially 100-Mbps and 1-Gbps Ethernet LANs.

❖ Category 6 or even Category 7 has more stringent specifications to handle signals with greater band-

widths.

3. Coaxial Cable

❖ It has better shielding and greater bandwidth than unshielded twisted pairs, so it can span longer

distances at higher speed.

❖ There are two kinds, one kind, 50-ohm cable, is commonly used when it is intended for digital

transmission from the start. The other kind, 75-ohm cable, is commonly used for analog transmission

and cable television.

❖ A coaxial cable consists of a stiff copper wire as the core, surrounded by an insulating material. The

insulator is encased by a cylindrical conductor, often as a closely woven braided mesh.

❖ The outer conductor is covered in a protective plastic sheath.

❖ The construction and shielding of the coaxial cable give it a good combination of high bandwidth and

excellent noise immunity. The bandwidth possible depends on the cable quality and length.

❖ Coaxial cables used to be widely used within the telephone system for long-distance lines but have

now largely been replaced by fiber optics on long- haul routes. Coax is still widely used for cable

television and metropolitan area networks, however.

COMPUTER NETWORKS

Dept.of CSE Page 22

4. Power Lines

❖ Power lines deliver electrical power to houses, and electrical wiring within houses distributes the

power to electrical outlets. Its been used by electricity companies for low-rate communication such

as re- mote metering for many years, as well in the home to control devices.

❖ Simply plug a TV and a receiver into the wall, which you must do anyway because they need power,

and they can send and receive movies over the electrical wiring.

❖ The difficulty with using household electrical wiring for a network is that it was designed to distribute

power signals.

❖ Electrical signals are sent at 50–60 Hz and the wiring attenuates the much higher frequency (MHz)

signals needed for high-rate data communication.

❖ Transient currents when appliances switch on and off create electrical noise over a wide range of

frequencies.

❖ Despite these difficulties, it is practical to send at least 100 Mbps over typical household electrical

wiring by using communication schemes that resist impaired frequencies and bursts of errors.

5. Fiber Optics

❖ In contrast, the achievable bandwidth with fiber technology is in excess of 50,000 Gbps (50 Tbps)

and we are nowhere near reaching these limits.

❖ The current practical limit of around 100 Gbps is due to our inability to convert between electrical

and opti- cal signals any faster.

❖ Fiber optics are used for long-haul transmission in network backbones, high-speed LANs and high-

speed Internet access such as FttH (Fiber to the Home).

❖ An optical transmission system has three key components: the light source, the transmission medium,

COMPUTER NETWORKS

Dept.of CSE Page 23

and the detector.

❖ Conventionally, a pulse of light indicates a 1 bit and the absence of light indicates a 0 bit. The

transmission medium is an ultra-thin fiber of glass. The detector generates an electrical pulse when

light falls on it.

Transmission of Light through Fiber:

Optical fibers are made of glass, which, in turn, is made from sand, an in expensive raw material available

in unlimited amounts.

Fiber Cables:

❖ Fiber optic cables are similar to coax, except without the braid. At the center is the glass core through

which the light propagates. In multimode fibers, the core is typically 50 microns in diameter, about

the thickness of a human hair. In single-mode fibers, the coreis 8 to 10 microns.

❖ The core is surrounded by a glass cladding with a lower index of refraction than the core, to keep all

the light in the core. Next comes a thin plastic jacket to protect the cladding. Fibers are typically

grouped in bundles, protected by an outer sheath.

WIRELESS TRANSMISSION

The Electromagnetic Spectrum
❖ When electrons move, they create electromagnetic waves that can propagate through space. These

waves were predicted by the British physicist James Clerk Maxwell in 1865 and first observed by the

German physicist Heinrich Hertz in 1887.

❖ The number of oscillations per second of a wave is called its frequency, f, and is measured in Hz. The

distance between two consecutive maxima (or minima) is called the wavelength (lambda).

❖ When an antenna of the appropriate size is attached to an electrical circuit, the electromagnetic waves

can be broadcast efficiently and received by a receiver some distance away.

❖ In a vacuum, all electromagnetic waves travel at the same speed, no matter what their frequency as

called speed of light, c, is approximately 3 108 m/sec, or about 1 foot (30 cm) per nanosecond.

❖ The fundamental relation between f, , and c (in a vacuum) is f = c

COMPUTER NETWORKS

Dept.of CSE Page 24

❖ In frequency hopping spread spectrum, the transmitter hops from frequency to frequency

hundreds of times per second. It is popular for military communication because it makes

transmissions hard to detect and next to impossible to jam.

❖ Direct sequence spread spectrum uses a code sequence to spread the data signal over a wider

frequency band. It is widely used commercially as a spectrally efficient way to let multiple signals

share the same frequency band.

Radio Transmission

❖ Radio frequency (RF) waves are easy to generate, can travel long distances, and can penetrate

buildings easily, so they are widely used for communication, both indoors and outdoors.

❖ Radio waves also are omnidirectional, meaning that they travel in all directions from the source, so the

transmitter and receiver do not have to be carefully aligned physically.

❖ The properties of radio waves are frequency dependent. At low frequencies, radio waves pass through

obstacles well, but the power falls off sharply with distance from the source—at least as fast as 1/r 2 in

air—as the signal energy is spread more thinly over a larger surface. This attenuation is called path

loss.

COMPUTER NETWORKS

Dept.of CSE Page 25

Microwave Transmission

❖ Before fiber optics, for decades these microwaves formed the heart of the long-distance tele- phone

transmission system.

❖ In fact, MCI, one of AT&T’s first competitors after it was deregulated, built its entire system with

microwave communications passing between towers tens of kilometers apart. Even the company’s

name reflected this (MCI stood for Microwave Communications, Inc.).

❖ Microwaves travel in a straight line, so if the towers are too far apart, the earth will get in the way.

❖ Unlike radio waves at lower frequencies, microwaves do not pass through buildings well. In addition,

even though the beam may be well focused at the transmitter, there is still some divergence in space.

❖ The demand for more and more spectrum drives operators to yet higher frequencies. Bands up to 10

GHz are now in routine use, but at about 4 GHz a new problem sets in: absorption by water.

❖ Microwave communication is so widely used for long-distance telephone communication, mobile

phones, television distribution, and other pur- poses that a severe shortage of spectrum has developed.

❖ Microwave is also relatively inexpensive. Putting up two simple towers and putting antennas on each

one may be cheaper than burying 50 km of fiber through a congested urban area or up over a

mountain, and it may also be cheaper than leasing the telephone company’s fiber,

Infrared Transmission

❖ Unguided infrared waves are widely used for short-range communication. The remote controls used

for televisions, VCRs, and stereos all use infrared communication.

❖ On the other hand, the fact that infrared waves do not pass through solid walls well is also a plus. It

means that an infrared system in one room of a building will not interfere with a similar system in

adjacent rooms or buildings: you cannot control your neighbor’s television with your remote control.

❖ Furthermore, security of infrared systems against eavesdropping is better than that of radio systems

precisely for this reason.

❖ Infrared communication has a limited use on the desktop, for ex- ample, to connect notebook

computers and printers with the IrDA (Infrared Data Association) standard, but it is not a major

player in the communication game.

Light Transmission

COMPUTER NETWORKS

Dept.of CSE Page 26

❖ Unguided optical signaling or free-space optics has been in use for centuries.

❖ Optical signaling using lasers is inherently unidirectional, so each end needs its own laser and its own

Photodetector. This scheme offers very high bandwidth at very low cost and is relatively secure

because it is difficult to tap a narrow laser beam.

❖ The laser’s strength, a very narrow beam, is also its weakness here. Aiming a laser beam 1 mm wide at

a target the size of a pin head 500 meters away requires the marksmanship of a latter-day Annie

Oakley.

❖ To add to the difficulty, wind and temperature changes can distort the beam and laser beams also

cannot penetrate rain or thick fog, although they normally work well on sunny days.

❖ Unguided optical communication may seem like an exotic networking technology today, but it might

soon become much more prevalent.

❖ Communicating with visible light in this way is inherently safe and creates a low-speed network in the

immediate vicinity of the display.

MODULE – 2

Topics:

➢ The Data link layer:

◼ Design issues of DLL

◼ Error detection and correction

◼ Elementary data link protocols

◼ Sliding window protocols.

◼ The medium access control sublayer:

• The channel allocation problem

• Multiple access protocols.

DATA LINK LAYER DESIGN ISSUES

➢ The data link layer uses the services of the physical layer to send and receivebits over

communication channels. Functions of data link layer include:

• Providing a well-defined service interface to the network layer.

• Dealing with transmission errors.

• Regulating the flow of data so that slow receivers are not swampedby fast senders.

➢ To accomplish these goals, the data link layer takes the packets it gets from the network layer and

encapsulates them into frames for transmission. Each frame contains a frame header, a payload field for

holding the packet, and a frame trailer, as illustrated in Fig. 3-1. Frame management forms the heart of

what the data link layer does.

The following are the data link layer design

issues

1. Services Provided to the Network Layer

The network layer wants to be able to send packets to its neighbors without worrying

about the details of getting it there in one piece.

2. Framing

Group the physical layer bit stream into units called frames. Frames are nothing more

than "packets" or "messages". By convention, we use the term "frames" when discussing

DLL.

3. Error Control

Sender checksums the frame and transmits checksum together with data. Receiver re-

computes the checksum and compares it with the received value.

4. Flow Control

Prevent a fast sender from overwhelming a slower receiver

Services Provided to the Network Layer

➢ The function of the data link layer is to provide services to the network layer. The principal

service is transferring data from the network layer on the source machine to the network layer

on the destination machine.

➢ On the source machine is an entity(a process), in the network layer that hands some bits to the

data link layer for transmission to the destination.

➢ The job of the data link layer is to transmit the bits to the destination machine so they can be

handed over to the network layer there, as shown in Fig. 3-2(a). The actual transmission

follows the path of Fig. 3-2(b)

➢ The data link layer can be designed to offer various services:

1. Unacknowledged connectionless service.

2. Acknowledged connectionless service.

3. Acknowledged connection-oriented service.

➢ Unacknowledged connectionless service consists of having the source ma- chine send

independent frames to the destination machine without having the destination machine

acknowledge them. Ethernet is a good example of a data link layer that provides this class of

service. No logical connection is established beforehand or released afterward. If a frame is

lost due to noise on the line, no attempt is made to detect the loss or recover from it in the

data link layer. This class of service is appropriate when the error rate is very low, so recovery

is left to higher layers. It is also appropriate for real-time traffic, such as voice, in which late data

are worse than bad data.

➢ The next step up in terms of reliability is acknowledged connectionless service. When this

service is offered, there are still no logical connections used, but each frame sent is individually

acknowledged. In this way, the sender knows whether a frame has arrived correctly or been

lost. If it has not arrived within a specified time interval, it can be sent again. This service is

useful over unreliable channels, such as wireless systems. Eg:

802.11 (WiFi)

➢ The most sophisticated service the data link layer can provide to the network layer is

connection-oriented service. With this service, the source and destination machines establish a

connection before any data are transferred. Each frame sent over the connection is numbered,

and the data link layer guarantees that each frame sent is indeed received. Furthermore, it

guarantees that each frame is received exactly once and that all frames are received in the right

order.

➢ When connection-oriented service is used, transfers go through three distinct phases.

▪ First, connection is established by having both sides initialize variables and counters

needed to keep track of which frames have been received and which ones have not.

▪ Second, one or more frames are actually transmitted.

▪ Third, connection is released, freeing up the variables, buffers, and other resources

used to maintain the connection.

FRAMING
To provide service to the network layer, the data link layer must use the service provided to it by the

physical layer. What the physical layer does is accept a raw bit stream and attempt to deliver it to the

destination. If the channel is noisy, as it is for most wireless and some wired links, the physical layer will add

some redundancy to its signals to reduce the bit error rate to a tolerable level. However, the bit stream received

by the data link layer is not guaranteed to be error free. Some bits may have different values and the number of

bits received may be less than, equal to, or more than the number of bits transmitted. It is up to the data link

layer to detect and, if necessary, correct errors.

The data link layer to break up the bit stream into discrete frames, compute a short token called a

checksum for each frame, and include the checksum in the frame when it is transmitted.

When a frame arrives at the destination, the checksum is recomputed. If the newly computed checksum

is different from the one contained in the frame, the data link layer knows that an error has occurred and takes

steps to deal with it.

DLL translates the physical layer's raw bit stream into discrete units (messages) called frames.

A good design must make it easy for a receiver to find the start of new frames while using little of the

channel bandwidth. We will look at four methods:

1. Byte count.

2. Flag bytes with byte stuffing.

3. Flag bits with bit stuffing.

4. Physical layer coding violations.

1. Byte count (Character Count) :
This framing method uses a field in the header to specify the number of bytes in the frame. When the

data link layer at the destination sees the byte count, it knows how many bytes follow and hence where the end

of the frame is. This technique is shown in Fig.(a) For four small example frames of sizes 5, 5, 8, and 8 bytes,

respectively.

The trouble with this algorithm is that the count can be garbled by a transmission error. For example, if

the byte count of 5 in the second frame of Fig.(b) becomes a 7 due to a single bit flip, the destination will get

out of synchronization. It will then be unable to locate the correct start of the next frame.

2. Flag bytes with byte stuffing:
This framing method gets around the problem of resynchronization after an error by having each frame

start and end with special bytes. Often the same byte, called a flag byte, is used as both the starting and ending

delimiter. This byte is shown in Fig.(a) as FLAG. Two consecutive flag bytes indicate the end of one frame and

the start of the next. Thus, if the receiver ever loses synchronization it can just search for two flag bytes to find

the end of the current frame and the start of the next frame.

However, there is a still a problem we have to solve. It may happen that the flag byte occurs in the data,

especially when binary data such as photographs or songs are being transmitted. This situation would interfere

with the framing. One way to solve this problem is to have the sender’s data link layer insert a special escape

byte (ESC) just before each ‘‘accidental’’ flag byte in the data.

The data link layer on the receiving end removes the escape bytes before giving the data to the network

layer. This technique is called byte stuffing.

Four examples of byte sequences before and after byte stuffing.

3. Flag bits with bit stuffing:
Framing can be also be done at the bit level, so frames can contain an arbitrary number of bits made up

of units of any size. It was developed for the once very popular HDLC (Highlevel Data Link Control)

protocol. Each frame begins and ends with a special bit pattern, 01111110 or 0x7E in hexadecimal. This pattern

is a flag byte. Whenever the sender’s data link layer encounters five consecutive 1s in the data, it automatically

stuffs a 0 bit into the outgoing bit stream. This bit stuffing is analogous to byte stuffing, in which an escape

byte is stuffed into the outgoing character stream before a flag byte in the data. It also ensures a minimum

density of transitions that help the physical layer maintain synchronization. USB (Universal Serial Bus) uses bit

stuffing for this reason.

When the receiver sees five consecutive incoming 1 bits, followed by a 0 bit, it automatically destuffs

(i.e., deletes) the 0 bit. Just as byte stuffing is completely transparent to the network layer in both computers, so

is bit stuffing. If the user data contain the flag pattern, 01111110, this flag is transmitted as 011111010 but

stored in the receiver’s memory as 01111110. Figure gives an example of bit stuffing.

4. Physical layer coding violations:
• This Framing Method is used only in those networks in which Encoding on the Physical Medium

contains some redundancy.

• Some LANs encode each bit of data by using two Physical Bits i.e. Manchester coding is used. Here,

Bit 1 is encoded into high- low (10) pair and Bit 0 is encoded into low-high (01) pair.

• The scheme means that every data bit has a transition in the middle, making it easy for the receiver

to locate the bit boundaries. The combinations high-high and low-low are not used for data but

are used for delimiting frames in some protocols.

ERROR CONTROL:
Error control is concerned with ensuring that all frames are eventually delivered (possibly in order) to a

destination. How? Three items are required.

• Acknowledgements: Typically, reliable delivery is achieved using the “acknowledgments with

retransmission" paradigm, whereby the receiver. returns a special acknowledgment

(ACK) frame to the sender indicating the correct receipt of a frame. In some systems, the

receiver also returns a negative acknowledgment (NACK) for incorrectly-received frames.

This is nothing more than a hint to the sender so that it can retransmit a frame right away without

waiting for a timer to expire.

• Timers: One problem that simple ACK/NACK schemes fail to address is recovering from

a frame that is lost? Retransmission timers are used to resend frames that don't produce an

ACK. When sending a frame, schedule a timer to expire at some time after the ACK should

have been returned. If the timer goes o, retransmit the frame.

• Sequence Numbers: Retransmissions introduce the possibility of duplicate frames. To suppress

duplicates, add sequence numbers to each frame, so tha1t 9a receiver can distinguish between
new frames and old copies.

FLOW CONTROL:
Flow control deals with controlling the speed of the sender to match that of the receiver.

Two Approaches:

⚫ feedback-based flow control, the receiver sends back information to the sender

giving it permission to send more data or at least telling the sender how the

receiver is doing

⚫ rate-based flow control, the protocol has a built-in mechanism that limits

the rate at which senders may transmit data, without using feedback from the

receiver.

TYPES OF ERRORS:

There are two main types of errors in transmissions:

1. Single bit error: It means only one bit of data unit is changed from 1 to 0 or from 0

to 1.

2. Burst error: It means two or more bits in data unit are changed from 1 to 0 from 0 to
1. In burst error, it is not necessary that only consecutive bits are changed. The

length of burst error is measured from first changed bit to last changed bit

ERROR DETECTION AND CORRECTION:
Network designers have developed two basic strategies for dealing with errors. Both add redundant

information to the data that is sent. One strategy is to include enough redundant information to enable the

receiver to deduce what the transmitted data must have been. The other is to include only enough redundancy to

allow the receiver to deduce that an error has occurred and have it request a retransmission. The former strategy

uses error-correcting codes and the latter uses error-detecting codes.

Error Detecting Codes: Include enough redundancy bits to detect errors and use ACKs and

retransmissions to recover from the errors.

Error Correcting Codes: Include enough redundancy to detect and correct errors.

ERROR-DETECTING CODES:

Error detection means to decide whether the received data is correct or not without having a copy of the

original message. Error detection uses the concept of redundancy, which means adding extra bits for detecting

errors at the destination.

1. Parity Check/ Vertical Redundancy Check(VRC)

Append a single bit at the end of data block such that the number of one’s is even

→À Even Parity (odd parity is similar)

0110011 →01100110
0110001 → 01100011
VRC is also known as Parity Check. Detects all odd-number errors in a data block.

The problem with parity is that it can only detect odd numbers of bit substitution errors, i.e. 1 bit, 3bit,

5, bit, etc. Errors. If there two, four, six, etc. bits which are transmitted in error, using VRC will not be

able to detect the error.

2. Cyclic Redundancy Check(CRC):
The cyclic redundancy check, or CRC, is a technique for detecting errors in digital data, but not for

making corrections when errors are detected. The CRC (Cyclic Redundancy Check), also known as a

polynomial code

Polynomial codes are based upon treating bit strings as representations of polynomials with

coefficients of 0 and 1 only. For example, 110001 has 6 bits and thus represents a six-term polynomial

with coefficients 1, 1, 0, 0, 0, and 1: 1x5 + 1x4 + 0x3 + 0x2 + 0x1 + 1x0.

Polynomial arithmetic is done modulo 2, according to the rules of algebraic field theory. It does not

have carries for addition or borrows for subtraction. Both addition and subtraction are identical to

exclusive OR. For example:
10011011 00110011 11110000 01010101

 + 11001010 + 11001101 − 10100110 – 10101111

01010001 11111110 01010110 11111010

When the polynomial code method is employed, the sender and receiver must agree upon a generator

polynomial, G(x), in advance. Both the high- and low order bits of the generator must be 1. To compute the

CRC for some frame with m bits corresponding to the polynomial M(x), the frame must be longer than the

generator polynomial. The idea is to append a CRC to the end of the frame in such a way that the polynomial

represented by the check summed frame is divisible by G(x). When the receiver gets the check summed frame,

it tries dividing it by G(x). If there is a remainder, there has been a transmission error.

The algorithm for computing the CRC is as follows:

1. Let r be the degree of G(x). Append r zero bits to the low-order end of the frame so it now

contains m + r bits and corresponds to the polynomial xrM(x).

2. Divide the bit string corresponding to G(x) into the bit string corresponding to xrM(x), using

modulo 2 divisions.

3. Subtract the remainder (which is always r or fewer bits) from the bit string corresponding to

xrM(x) using modulo 2 subtractions. The result is the check summed frame to be transmitted.

Call its polynomial T(x).
Below figure illustrates the calculation for a frame 1101011111 using the generator G(x) = x4 + x + 1.

Example calculation of the CRC.

It should be clear that T(x) is divisible (modulo 2) by G(x). In any division problem, if you diminish the

dividend by the remainder, what is left over is divisible by the divisor.

Example of CRC:

At sender side calculation of CRC:

At receiver side calculation of CRC:

3. CHECKSUM:
• Checksum is the error detection scheme used in IP, TCP & UDP.

• Here, the data is divided into k segments each of n bits. In the sender’s end the segments are
added using 1’s complement arithmetic to get the sum. The sum is complemented to get the

checksum. The checksum segment is sent along with the data segments

• At the receiver’s end, all received segments are added using 1’s complement arithmetic to get

the sum. The sum is complemented. If the result is zero, the received data is accepted; otherwise
discarded

• The checksum detects all errors involving an odd number of bits. It also detects most errors

involving even number of bits.

Checksum procedure at sender and receiver end:

Diagrammatic approach:

Example for Checksum:

ERROR-CORRECTING CODES

We will examine four different error-correcting codes:

1. Hamming codes.

2. Binary convolutional codes.

3. Reed-Solomon codes.

4. Low-Density Parity Check codes.

All of these codes add redundancy to the information that is sent. A frame consists of m
data (i.e., message) bits and r redundant (i.e. check) bits. In a systematic code, the m data

bits are sent directly, along with the check bits, rather than being encoded themselves

before they are sent. In a linear code, the r check bits are computed as a linear function of

the m data bits. Exclusive OR (XOR) or modulo 2 addition is a popular choice.The total

length of a block be n (i.e., n = m + r). We will describe this as an (n,m) code. An n-bit unit
containing data and check bits is referred to as an n bit codeword. To understand how

errors can be handled, it is necessary to first look closely at what an error really is. Given

any two codewords that may be transmitted or received—say, 10001001 and 10110001—it

is possible to determine how many corresponding bits differ. In this case, 3 bits differ. To

determine how many bits differ, just XOR the two codewords and count the number of 1

bits in the result.The number of bit positions in which two codewords differ is called the

Hamming distance

In Fig. 3-6, a single-bit error occurred on the channel so the check results are 0, 1, 0, and 1 for k = 8, 4, 2,

and 1, respectively. This gives a syndrome of 0101 or 4 + 1=5.Hamming distances are valuable for

understanding block codes, and Hamming codes are used in error-correcting memory

➢ The second code we will look at is a convolutional code. In a convolutional code, an encoder processes a

sequence of input bits and generates a sequence of output bits.The output depends on the current and

previous input bits. The number of previous bits on which the output depends is called the constraint

length of the code. Convolutional codes are specified in terms of their rate and constraint

length.Convolutional codes are widely used in deployed networks, for example, as part of the GSM mobile

phone system, in satellite communications.As an example, a popular convolutional code is shown in Fig.

3-7. This code is known as the NASA convolutional code of r = 1/2 and k = 7.

In Fig. 3-7, each input bit on the left-hand side produces two output bits on the right-hand side that are

XOR sums of the input and internal state. Since it deals with bits and performs linear operations, this is a

binary, linear convolutional code. Since 1 input bit produces 2 output bits, the code rate is ½. The internal

state is kept in six memory registers. Each time another bit is input the values in the registers are shifted to

the right. For example, if 111 is input and the initial state is all zeros, the internal state, written left to

right, will become 100000, 110000, and 111000 after the first, second, and third bits have been input.It

takes seven shifts to flush an input completely so that it does not affect the output. The constraint length of

this code is thus k = 7.

➢ The third kind of error-correcting code is the Reed-Solomon code. Like Hamming codes, Reed-Solomon

codes are linear block codes, and they are often systematic too. Unlike Hamming codes, which operate on

individual bits, Reed-Solomon codes operate on m bit symbols. Reed-Solomon codes are based on the fact

that every n degree polynomial is uniquely determined by n + 1 points. Reed-Solomon codes are actually

defined as polynomials that operate over finite fields, but they work in a similar manner. For m bit

symbols, the code words are 2m−1 symbols long. Reed-Solomon codes are widely used in practice

because of their strong error-correction properties, particularly for burst errors.

➢ The final error-correcting code is the LDPC (Low-Density Parity Check) code.LDPC codes are linear

block codes that were invented by Robert Gallagher in his doctoral thesis.In an LDPC code, each output

bit is formed from only a fraction of the input bits. This leads to a matrix representation of the code that

has a low density of 1s, hence the name for the code. The received codewords are decoded with an

approximation algorithm that iteratively improves on a best fit of the received data to a legal codeword.

LDPC codes are practical for large block sizes and have excellent error-correction abilities that outperform

many other codes (including the ones we have looked at) in practice

Elementary Data Link Layer protocols:
Now let us see how the data link layer can combine framing, flow control, and error control to achieve

the delivery of data from one node to another. The protocols are normally implemented in software by using

one of the common programming languages.
We divide the discussion of protocols into those that can be used for noiseless (error-free) channels and

those that can be used for noisy (error-creating) channels. The protocols in the first category cannot be used in real

life, but they serve as a basis for understanding the protocols of noisy channels.

NOISELESS CHANNELS:

Let us first assume we have an ideal channel in which no frames are lost, duplicated, or corrupted. We

introduce two protocols for this type of channel. The first is a protocol that does not use flow control; the second is

the one that does. Of course, neither has error control because we have assumed that the channel is a perfect

noiseless channel.

Simplest Protocol:

Our first protocol, which we call the Simplest Protocol for lack of any other name, is one that has no flow or

error control. Like other protocols we will discuss in this chapter, it is a unidirectional protocol in which data

frames are traveling in only one direction-from the sender to receiver. We assume that the receiver can

immediately handle any frame it receives with a processing time that is small enough to be negligible. The data

link layer of the receiver immediately removes the header from the frame and hands the data packet to its

network layer, which can also accept the packet immediately. In other words, the receiver can never be

overwhelmed with incoming frames.

Design

There is no need for flow control in this scheme. The data link layer at the sender site gets data from its network

layer, makes a frame out of the data, and sends it. The data link layer at the receiver site receives a frame from

its physical layer, extracts data from the frame, and delivers the data to its network layer. The data link layers of

the sender and receiver provide transmission services for their network layers.

Example:

Below Figure shows an example of communication using this protocol. It is very simple. The sender sends a

sequence of frames without even thinking about the receiver. To send three frames, three events occur at the

sender site and three events at the receiver site. Note that the data frames are shown by tilted boxes; the height

of the box defines the transmission time difference between the first bit and the last bit in the frame.

Stop-and-Wait Protocol:
If data frames arrive at the receiver site faster than they can be processed, the frames must be stored

until their use. Normally, the receiver does not have enough storage space, especially if it is receiving data from

many sources. This may result in either the discarding of frames or denial of service. To prevent the receiver

from becoming overwhelmed with frames, we somehow need to tell the sender to slow down. There must be

feedback from the receiver to the sender.

The protocol we discuss now is called the Stop-and-Wait Protocol because the sender sends one frame,

stops until it receives confirmation from the receiver (okay to go ahead), and then sends the next frame. We still

have unidirectional communication for data frames, but auxiliary ACK frames (simple tokens of

acknowledgment) travel from the other direction. We add flow control to our previous protocol.

Design

We can see the traffic on the forward channel (from sender to receiver) and the reverse channel. At any time,

there is either one data frame on the forward channel or one ACK frame on the reverse channel. We therefore

need a half-duplex link.

Example:

Below Figure shows an example of communication using this protocol. It is still very simple. The sender sends

one frame and waits for feedback from the receiver. When the ACK arrives, the sender sends the next frame.

Note that sending two frames in the protocol involves the sender in four events and the receiver in two events.

NOISY CHANNELS:

Although the Stop-and-Wait Protocol gives us an idea of how to add flow control to its predecessor,

noiseless channels are nonexistent. We can ignore the error (as we sometimes do), or we need to add error

control to our protocols. We discuss three protocols in this section that use error control.

Stop-and-Wait Automatic Repeat Request:
Our first protocol, called the Stop-and-Wait Automatic Repeat Request (Stop-and Wait ARQ), adds a

simple error control mechanism to the Stop-and-Wait Protocol. Let us see how this protocol detects and

corrects errors.

To detect and correct corrupted frames, we need to add redundancy bits to our data frame. When the

frame arrives at the receiver site, it is checked and if it is corrupted, it is silently discarded. The detection of

errors in this protocol is manifested by the silence of the receiver.

Lost frames are more difficult to handle than corrupted ones. In our previous protocols, there was no

way to identify a frame. The received frame could be the correct one, or a duplicate, or a frame out of order.

The solution is to number the frames. When the receiver receives a data frame that is out of order, this means

that frames were either lost or duplicated.

The lost frames need to be resent in this protocol. If the receiver does not respond when there is an error,

how can the sender know which frame to resend? To remedy this problem, the sender keeps a copy of the sent

frame. At the same time, it starts a timer. If the timer expires and there is no ACK for the sent frame, the frame

is resent, the copy is held, and the timer is restarted. Since the protocol uses the stop-and-wait mechanism, there

is only one specific frame that needs an ACK even though several copies of the same frame can be in the

network.

Sequence Numbers
As we discussed, the protocol specifies that frames need to be numbered. This is done by using

sequence numbers. A field is added to the data frame to hold the sequence number of that frame.

One important consideration is the range of the sequence numbers. Since we want to minimize the

frame size, we look for the smallest range that provides unambiguous communication. The sequence numbers

of course can wrap around. For example, if we decide that the field is m bits long, the sequence numbers start

from 0, go to 2m - 1, and then are repeated.

Acknowledgment Numbers

Since the sequence numbers must be suitable for both data frames and ACK frames, we use this

convention: The acknowledgment numbers always announce the sequence number of the next frame expected

by the receiver. For example, if frame 0 has arrived safe and sound, the receiver sends an ACK frame with

acknowledgment 1 (meaning frame 1 is expected next). If frame 1 has arrived safe and sound, the receiver

sends an ACK frame with acknowledgment 0 (meaning frame 0 is expected).

Design

Below Figure shows the design of the Stop-and-WaitARQ Protocol. The sending device keeps a copy of

the last frame transmitted until it receives an acknowledgment for that frame. A data frames uses a seqNo

(sequence number); an ACK frame uses an ackNo (acknowledgment number). The sender has a control

variable, which we call Sn (sender, next frame to send), that holds the sequence number for the next frame to be

sent (0 or 1).

The receiver has a control variable, which we call Rn (receiver, next frame expected), that holds the

number of the next frame expected. When a frame is sent, the value of Sn is incremented (modulo-2), which

means if it is 0, it becomes 1 and vice versa. When a frame is received, the value of Rn is incremented (modulo-

2), which means if it is 0, it becomes 1 and vice versa. Three events can happen at the sender site; one event can

happen at the receiver site. Variable Sn points to the slot that matches the sequence number of the frame that

has been sent, but not acknowledged; Rn points to the slot that matches the sequence number of the expected

frame.

Example

Below Figure shows an example of Stop-and-Wait ARQ. Frame a is sent and acknowledged. Frame 1 is

lost and resent after the time-out. The resent frame 1 is acknowledged and the timer stops. Frame a is sent and

acknowledged, but the acknowledgment is lost. The sender has no idea if the frame or the acknowledgment is

lost, so after the time-out, it resends frame 0, which is acknowledged.

Pipelining

In networking and in other areas, a task is often begun before the previous task has ended. This is

known as pipelining. There is no pipelining in Stop-and-Wait ARQ because we need to wait for a frame to

reach the destination and be acknowledged before the next frame can be sent. However, pipelining does apply

to our next two protocols because several frames can be sent before we receive news about the previous frames.

Pipelining improves the efficiency of the transmission if the number of bits in transition is large with respect to

the bandwidth-delay product.

Go-Back-N Automatic Repeat Request:
To improve the efficiency of transmission (filling the pipe), multiple frames must be in transition while

waiting for acknowledgment. In other words, we need to let more than one frame be outstanding to keep the

channel busy while the sender is waiting for acknowledgment.

Go-Back-N Automatic Repeat Request protocol we can send several frames before receiving

acknowledgments; we keep a copy of these frames until the acknowledgments arrive.

Sequence Numbers

Frames from a sending station are numbered sequentially. However, because we need to include the

sequence number of each frame in the header, we need to set a limit. If the header of the frame allows m bits for

the sequence number, the sequence numbers range from 0 to 2m - 1. For example, if m is 4, the only sequence

numbers are 0 through 15 inclusive. However, we can repeat the sequence. So the sequence numbers are

0, 1,2,3,4,5,6, 7,8,9, 10, 11, 12, 13, 14, 15,0, 1,2,3,4,5,6,7,8,9,10, 11, ...

In other words, the sequence numbers are modulo-2m
.

Sliding Window

In this protocol the sliding window is an abstract concept that defines the range of sequence numbers

that is the concern of the sender and receiver. In other words, the sender and receiver need to deal with only

part of the possible sequence numbers. The range which is the concern of the sender is called the send sliding

window; the range that is the concern of the receiver is called the receive sliding window.

The send window is an imaginary box covering the sequence numbers of the data frames which can be

in transmit. In each window position, some of these sequence numbers define the frames that have been sent;

others define those that can be sent. The maximum size of the window is 2m - 1 we let the size be fixed and set

to the maximum value, below figure a shows a sliding window of size 15 (m =4).

The window at any time divides the possible sequence numbers into four regions. The first region, from

the far left to the left wall of the window, defines the sequence numbers belonging to frames that are already

acknowledged. The sender does not worry about these frames and keeps no copies of them. The second region,

colored in Figure a, defines the range of sequence numbers belonging to the frames that are sent and have an

unknown status. The sender needs to wait to find out if these frames have been received or were lost. We call

these outstanding frames. The third range, white in the figure, defines the range of sequence numbers for frames

that can be sent; however, the corresponding data packets have not yet been received from the network layer.

Finally, the fourth region defines sequence numbers that cannot be used until the window slides, as we see next.

Below Figure b shows how a send window can slide one or more slots to the right when an

acknowledgment arrives from the other end. As we will see shortly, the acknowledgments in this protocol are

cumulative, meaning that more than one frame can be acknowledged by an ACK frame. In Figure b, frames 0,

I, and 2 are acknowledged, so the window has slid to the right three slots. Note that the value of Sf is 3 because
frame 3 is now the first outstanding frame.

The window itself is an abstraction; three variables define its size and location at any time. We call

these variables Sf(send window, the first outstanding frame), Sn (send window, the next frame to be sent), and

Ssize (send window, size). The variable Sf defines the sequence number of the first (oldest) outstanding frame.

The variable Sn holds the sequence number that will be assigned to the next frame to be sent. Finally, the

variable Ssize defines the size of the window, which is fixed in our protocol.

The receive window makes sure that the correct data frames are received and that the correct

acknowledgments are sent. The size of the receive window is always 1. The receiver is always looking for the

arrival of a specific frame. Any frame arriving out of order is discarded and needs to be resent. Below figure

shows the receive window.

We need only one variable Rn (receive window, next frame expected) to define this abstraction. The

sequence numbers to the left of the window belong to the frames already received and acknowledged; the

sequence numbers to the right of this window define the frames that cannot be received. Any received frame

with a sequence number in these two regions is discarded. Only a frame with a sequence number matching the

value of Rn is accepted and acknowledged.

Timers

Although there can be a timer for each frame that is sent, in our protocol we use only one. The reason is that the

timer for the first outstanding frame always expires first; we send all outstanding frames when this timer

expires.

Acknowledgment

The receiver sends a positive acknowledgment if a frame has arrived safe and sound and in order. If a frame is

damaged or is received out of order, the receiver is silent and will discard all subsequent frames until it receives

the one it is expecting. The silence of the receiver causes the timer of the unacknowledged frame at the sender

site to expire. This, in turn, causes the sender to go back and resend all frames, beginning with the one with the

expired timer. The receiver does not have to acknowledge each frame received. It can send one cumulative

acknowledgment for several frames.

Resending a Frame

When the timer expires, the sender resends all outstanding frames. For example, suppose the sender has already

sent frame 6, but the timer for frame 3 expires. This means that frame 3 has not been acknowledged; the sender

goes back and sends frames 3, 4,5, and 6 again. That is why the protocol is called Go-Back-N ARQ.

Design

Below Figure shows the design for this protocol. As we can see, multiple frames can be in transit in the forward

direction, and multiple acknowledgments in the reverse direction. The idea is similar to Stop-and-Wait ARQ;

the difference is that the send window allows us to have as many frames in transition as there are slots in the

send window.

Example

Below Figure shows an example of Go-Back-N. This is an example of a case where the forward channel

is reliable, but the reverse is not. No data frames are lost, but some ACKs are delayed and one is lost. The

example also shows how cumulative acknowledgments can help if acknowledgments are delayed or lost.

After initialization, there are seven sender events. Request events are triggered by data from the network

layer; arrival events are triggered by acknowledgments from the physical layer. There is no time-out event here

because all outstanding frames are acknowledged before the timer expires. Note that although ACK 2 is lost,

ACK 3 serves as both ACK 2 and ACK3.

-

Selective Repeat Automatic Repeat Request:
Go-Back-N ARQ simplifies the process at the receiver site. The receiver keeps track of only one

variable, and there is no need to buffer out-of-order frames; they are simply discarded. However, this protocol

is very inefficient for a noisy link. In a noisy link a frame has a higher probability of damage, which means the

resending of multiple frames. This resending uses up the bandwidth and slows down the transmission. For noisy

links, there is another mechanism that does not resend N frames when just one frame is damaged; only the

damaged frame is resent. This mechanism is called Selective RepeatARQ.

Windows

The Selective Repeat Protocol also uses two windows: a send window and a receive window. However,

there are differences between the windows in this protocol and the ones in Go-Back-N. First, the size of the

send window is much smaller; it is 2m
I . The reason for this will be discussed later. Second, the receive window

is the same size as the send window. The send window maximum size can be 2m
- I . For example, if m = 4, the

sequence numbers go from 0 to 15, but the size of the window is just 8

The receive window in Selective Repeat is totally different from the one in GoBack-N. First, the size of

the receive window is the same as the size of the send window (2m- I). The Selective Repeat Protocol allows as

many frames as the size of the receive window to arrive out of order and be kept until there is a set of in-order

frames to be delivered to the network layer. Because the sizes of the send window and receive window are the

same.

Design

Example

This example is similar to go back N Example in which frame 1 is lost. We show how Selective Repeat behaves

in this case. Below Figure shows the situation.

Piggybacking:
The three protocols we discussed in this section are all unidirectional: data frames flow in only one direction

although control information such as ACK and NAK frames can travel in the other direction. In real life, data frames

are normally flowing in both directions: from node A to node B and from node B to node A. This means that the

control information also needs to flow in both directions. A technique called piggybacking is used to improve the

efficiency of the bidirectional protocols. When a frame is carrying data from A to B, it can also carry control

information about arrived (or lost) frames from B; when a frame is carrying data from B to A, it can also carry

control information about the arrived (or lost) frames from A.

We show the design for a Go-Back-N ARQ using piggybacking in below Figure. Note that each node now

has two windows: one send window and one receive window. Both also need to use a timer. Both are involved in

three types of events: request, arrival, and time-out. However, the arrival event here is complicated; when a frame

arrives, the site needs to handle control information as well as the frame itself. Both of these concerns must be taken

care of in one event, the arrival event. The request event uses only the send window at each site; the arrival event

needs to use both windows.

The Channel Allocation problem:

a) Static channel allocation in LANs & MANs

i) FDM ii) TDM

Drawbacks: -1) Channel is wasted if one or more stations do not send data.

2) If users increases this will not support.

b) Dynamic channel allocation

i) Pure ALOHA & Slotted ALOHA

ii) CSMA

• CSMA/CA

• CSMA/CD

Pure ALOHA

-1970’s Norman Abramson end his colleagues devised this method, used ground –basedradio broad

costing. This is called the ALOHA system.

-The basic idea, many users are competing for the use of a single shared channel.

-There are two versions of ALOHA: Pure and Slotted.

-Pure ALOHA does not require global time synchronization, where as in slotted ALOHAthe time is

divided into discrete slots into which all frames must fit.

-Let users transmit whenever they have data to be sent.

-There will be collisions and all collided frames will be damaged.

-Senders will know through feedback property whether the frame is destroyed or not bylistening

channel. [-With a LAN it is immediate, with a satellite, it will take 270m sec.]

-If the frame was destroyed, the sender waits random amount of time and again sendsthe frame.

-The waiting time must be random otherwise the same frame will collide over and over.

Frames are transmitted at completely arbitrary times

-Whenever two frames try to occupy the channel at the same time, there will be a collisionand

both will be destroyed.

-We have to find out what is the efficiency of an ALOHA channel?

-Let us consider an infinite collection of interactive users sitting at their systems (stations).

-A user will always in two states typing or waiting.

-Let the ‘Frame time’ denotes the time required to transmit one fixed length frame.

-Assume that infinite populations of users are generating new frames according topossion

distribution with mean N frames per frame time.

-If N>1 users are generating frames at a higher rate than the channel can handle.

-For reasonable throughput 0<N<1.

-In addition to new frames, the station also generates retransmission of frames.

-Old and new frames are G per frame time.

-G> N

-At low load there will be few collisions, so G ~ N

-Under all loads, the throughput S = GPo, where Po is the probability that a frame does notsuffer a collision.

-A frame will not suffer a collision if no other frames are sent with one frame time of itsstart.

-Let ‘t’ be the time required to send a frame.

-If any other user has generated a frame between time to and to+t, the end of that framewill

collide with the beginning of the shaded frame.

-Similarly, any other frame started b/w to+t and to+2t will bump into the end of the shadedframe.

-The probability that ‘k’ frames are generated during a given frame time is given by thepossion

distribution:

Pr[k] =

Gke-G k!

-The probability of zero frames is just e-G

-In an interval two frame times long, the mean number at frames generated is 2G.

-The probability at no other traffic being initiated during the entire vulnerable period

isgiven by Po = e-2G

S= Ge-2G [S=GPo]

The Maximum through put occurs at G=0.5 with S=1/2e = 0.184

The channel utilization at pure ALOHA =18%.

Throughput versus offered traffic for ALOHA systems

Slotted ALOHA

-In 1972, Roberts’ devised a method for doubling the capacity of ALOHA system.

-In this system the time is divided into discrete intervals, each interval corresponding toone frame.

-One way to achieve synchronization would be to have one special station emit a pip at the start of

each interval, like a clock.

-In Roberts’ method, which has come to be known as slotted ALOHA, in contrast to Abramson’s

pure ALOHA; a computer is not permitted to send whenever a carriage returnis typed.

-Instead, it is required to wait for the beginning of the next slot.

-Thus the continuous pure ALOHA is turned into a discrete one.

-Since the vulnerable period is now halved, the of no other traffic during the same slot as our test

frame is e-G which leads to

S = Ge –G

- At G=1, slotted ALOHA will have maximum throughput.

- So S=1/e or about 0.368, twice that of pure ALOHA.

- The channel utilization is 37% in slotted ALOHA.

Carrier Sense Multiple Access Protocols

Protocols in which stations listen for a carrier (transmission) and act accordingly are called

carries sense protocols.

Persistent CSMA

When a station has data to send, it first listens to the channel to see if any one else is transmitting at

that moment. If the channel is busy, the station waits until it become idle. When the station detects

an idle channel, it transmits a frame. If a collision occurs, the station waits a random amount of

time and starts all over again. The protocol is called 1- persistent also because the station

transmits with a probability of 1 when it finds the channel idle.

The propagation delay has an important effect on the performance of the protocol. The longer the

propagation delay the worse the performance of the protocol.

Even if the propagation delay is zero, there will be collisions. If two stations listen the channel,

that is idle at the same, both will send frame and there will be collision.

Non persistent CSMA

In this, before sending, a station sense the channel. If no one else is sending, the station begins

doing so it self. However, if the channel is busy, the station does not continually sense it but it

waits a random amount of time and repeats the process.

This algorithms leads to better channel utilization but longer delays then 1-persistent CSMA.

With persistent CSMA, what happens if two stations become active when a third station is busy?

Both wait for the active station to finish, then simultaneously launch a packet, resulting a

collision. There are two ways to handle this problem.

a) P-persistent CSMA b) exponential backoff.

P-persistent CSMA

The first technique is for a waiting station not to launch a packet immediately when the channel

becomes idle, but first toss a coin, and send a packet only if the coin comes up heads. If the coin

comes up tails, the station waits for some time (one slot for slotted CSMA), then repeats the

process. The idea is that if two stations are both waiting for the medium, this reduces the chance

of a collision from 100% to 25%. A simple generalization of the scheme is to use a biased coin,

so that the probability of sending a packet when the medium becomes idle is not 0.5, but p, where

0< p < 1. We call such a scheme P-persistent CSMA. The original scheme, where p=1, is thus

called 1-persitent CSMA.

Exponential backoff

The key idea is that each station, after transmitting a packet, checks whether the packet

transmission was successful. Successful transmission is indicated either by an explicit

acknowledgement from the receiver or the absence of a signal from a collision detection circuit.

If the transmission is successful, the station is done. Otherwise, the station retransmits the packet,

simultaneously realizing that at least one other station is also contending for the medium. To

prevent its retransmission from colliding with the other station’s retransmission, each station

backs off (that is, idles) for a random time chosen from the interval [0,2*max-propagation_delay]

before retransmitting its packet. If the retransmission also fails, then the station backs off for a

random time in the interval [0,4* max_propagation_delay], and tries again. Each subsequent

collision doubles the backoff interval length, until the retransmission finally succeeds. On a

successful transmission,the backoff interval is reset to the initial value. We call this type of

backoff exponential backoff.

CSMA/CA

In many wireless LANS, unlike wired LANS, the station has no idea whether the packet collided

with another packet or not until it receives an acknowledgement from receiver. In this situation,

collisions have a greater effect on performance than with CSMA/CD, where colliding packets can

be quickly detected and aborted. Thus, it makes sense to try to avoid collisions, if possible.

CSMA/CA is basically p-persistence, with the twist that when

the medium becomes idle, a station must wait for a time called the interframe spacing or IFS

before contending for a slot. A station gets a higher priority if it is allocated smaller inter frame

spacing.

When a station wants to transmit data, it first checks if the medium is busy. If it is, it

continuously senses the medium, waiting for it to become idle. When the medium becomes idle,

the station first waits for an interframe spacing corresponding to its priority level, then sets a

contention timer to a time interval randomly selected in the range [0,CW], where CW is a

predefined contention window length. When this timer expires, it transmits a packet and waits for

the receiver to send an ack. If no ack is received, the packet is assumed lost to collision, and the

source tries again, choosing a contention timer at random from an interval twice as long as the

one before(binary exponential backoff). If the station senses that another station has begun

transmission while it was waiting for the expiration of the contention timer, it does not reset its

timer, but merely freezer it, and restarts the countdown when the packet completes transmission.

In this way, stations that happen to choose a longer timer value get higher priority in the next

round of contention.

Collision-Free Protocols

A Bit-Map Protocol

In the basic bit-map method, each contention period consists of exactly N slots. If station0 has a

frame to send, it transmits a 1 bit during the zeroth slot. No other station is allowed to transmit

during this slot. Regardless of what station 0 does, station 1 gets the opportunity to transmit a

1during slot 1, but only if it has a frame queued. In general, station j may announce the fact that it

has a frame to send by inserting a 1 bit into slot j. after all N slots have passed by, each station

has complete knowledge of which stations with to transmit.

The basic bit-map protocol

Since everyone agrees on who goes next, there will never be any collisions. After the last ready

station has transmitted its frame, an event all stations can easily monitor, another Nbit contention

period is begun. If a station becomes ready just after its bit slot has passed by, it is out of luck and

must remain silent until every station has had a chance and the bit map has come around again.

Protocols like this in which the desire to transmit is broadcast before the actual transmission are

called reservation protocols.

Binary Countdown

A problem with the basic bit-map protocol is that the overhead is 1 bit per station. A station

wanting to use the channel now broadcasts its address as a binary bit string, starting with the

high-order bit. All addresses are assumed to be the same length. Thebits in each address position

from different stations are BOOLEAN ORed together. We will call this protocol binary

countdown. It is used in Datakit.

As soon as a station sees that a high-order bit position that is 0 in its address has been overwritten

with a 1, it gives up. For example, if station 0010,0100,1001, and 1010 are all trying to get the

channel, in the first bit time the stations transmit 0,0,1, and 1, respectively. Stations 0010 and

0100 see the 1 and know that a higher- numbered station is competing for the channel, so they

give up for the current round. Stations 1001 and 1010 continue.

The next bit is 0, and both stations continue. The next bit is 1, so station 1001 gives up. The

winner is station 1010, because it has the highest address. After winning the bidding, it may now

transmit a frame, after which another bidding cycle starts.

The binary countdown protocol. A dash indicates silence

ISP’s equipment

COMPUTER NETWORKS

Module 3

 The Network Layer

The network layer is concerned with getting packets from the source all the way to the destination.

Getting to the destination may require making many hops at intermediate routers along the way. This

function clearly contrasts with that of the data link layer, which has the more modest goal of just moving

frames from one end of a wire to the other.

4.1 NETWORK LAYER DESIGN ISSUES:

4.1.1 Store-and-Forward Packet Switching:

The major components of the system are the carrier's equipment (routers connected by

transmission lines), shown inside the shaded oval, and the customers' equipment, shown outside the

oval. Host H1 is directly connected to one of the carrier's routers, A, by a leased line. In contrast,

H2 is on a LAN with a router, F, owned and operated by the customer.

This equipment is used as follows. A host with a packet to send transmits it to the nearest router,

either on its own LAN or over a point-to-point link to the carrier. The packet is stored there until it

has fully arrived so the checksum can be verified. Then it is forwarded to the next router along the

path until it reaches the destination host, where it is delivered. This mechanism is store-and-

forward packet switching.

4.1.2 Services Provided to the Transport Layer:

The network layer provides services to the transport layer at the network layer/transport layer

interface. The network layer services have been designed with the following goals in mind.

1. The services should be independent of the router technology.

2. The transport layer should be shielded from the number, type, and topology of the routers present.

3. The network addresses made available to the transport layer should use a uniform numbering plan,

even across LANs and WANs.

The network service should be connectionless, with primitives SEND PACKET and

RECEIVE PACKET and little else. In particular, no packet ordering and flow control should be

done, because the hosts are going to do that anyway, and there is usually little to be gained by

doing it twice. Furthermore, each packet must carry the full destination address, because each

packet sent is carried independently of its predecessors, if any.

ISP’s equipment

ISP’s equipment

4.1.3 Implementation of Connectionless Service:

In connectionless service, packets are injected into the subnet individually and routed

independently of each other. No advance setup is needed. In this context, the packets are frequently

called datagrams and the subnet is called a datagram subnet.

Let us now see how a datagram subnet works,

A’s table (initially) A’s table (later) C’s Table E’s Table

The process P1 on host H1 has a long message for P2 on host H2. The network layer has

to break a message into four packets, 1, 2, 3, and 4 and sends each of them in turn to router A. A

has only two outgoing lines to B and C so every incoming packet must be sent to one of these

routers, even if the ultimate destination is some other router. A's initial routing table is shown in

the figure under the label ''initially.''

As they arrived at A, packets 1, 2, and 3 were stored briefly (to verify their checksums).

Then each was forwarded to C according to A's table. Packet 1 was then forwarded to E and then

to F. When it got to F, it was encapsulated in a data link layer frame and sent to H2 over the LAN.

Packets 2 and 3 follow the same route.

However, something different happened to packet 4. When it got to A it was sent to router

B, even though it is also destined for F. For some reason, perhaps it learned of a traffic jam

somewhere along the ACE path and updated its routing table, as shown under the label ''later.'' The

algorithm that manages the tables and makes the routing decisions is called the routing algorithm.

4.1.4 Implementation of Connection-Oriented Service:

In connection-oriented service, a path from the source router to the destination router must be

established before any data packets can be sent. This connection is called a VC (virtual circuit),

and the subnet is called a virtual-circuit subnet.

The idea behind virtual circuits is to avoid having to choose a new route for every packet sent.

Instead, when a connection is established, a route from the source machine to the destination

machine is chosen as part of the connection setup and stored in tables inside the routers.

A’s table C’s Table E’s Table

Here, host H1 has established connection 1 with host H2. It is remembered as the first entry

in each of the routing tables. The first line of A's table says that if a packet bearing connection

identifier 1 comes in from H1, it is to be sent to router C and given connection identifier 1.

Similarly, the first entry at C routes the packet to E, also with connection identifier 1. Similarly if

H3 wants to connect to H2 they have to do the same procedure and it has to use different connection

identifier in above example host H3 uses connection identifier as one.

4.1.5 Comparison of Virtual-Circuit and Datagram Subnets:

4.2 ROUTING ALGORITHMS:

The main function of the network layer is routing packets from the source machine to the

destination machine. In most subnets, packets will require multiple hops to make the journey. The

routing algorithm is that part of the network layer software responsible for deciding which output line

an incoming packet should be transmitted on. If the subnet uses datagrams internally, this decision

must be made anew for every arriving data packet since the best route may have changed since last

time.

Routing algorithms can be grouped into two major classes: nonadaptive and adaptive.

Nonadaptive algorithms do not base their routing decisions on measurements or estimates of the

current traffic and topology. Instead, the choice of the route to use to get from I to J (for all I and J)

is computed in advance, off-line, and downloaded to the routers when the network is booted. This

procedure is sometimes called static routing.

Adaptive algorithms, in contrast, change their routing decisions to reflect changes in the topology,

and usually the traffic as well. Adaptive algorithms differ in where they get their information (e.g.,

locally, from adjacent routers, or from all routers), when they change the routes. This procedure is

sometimes called Dynamic routing.

4.2.1 The Optimality Principle:

“It states that if router J is on the optimal path from router I to router K, then the optimal

path from J to K also falls along the same route.” To see this, call the part of the route from I to

Jr1 and the rest of the route r2. If a route better than r2 existed from J to K, it could be concatenated

with r1 to improve the route from I to K, contradicting our statement that r1r2 is optimal.

the set of optimal routes from all sources to a given destination form a tree rooted at the destination.

Such a tree is called a sink tree and is illustrated in below Fig. where the distance metric is the

number of hops. Note that a sink tree is not necessarily unique; since a sink tree is indeed a tree, it

does not contain any loops, so each packet will be delivered within a finite and bounded number of

hops.

4.2.2 Shortest Path Routing:

The concept of a shortest path deserves some explanation. One way of measuring path length is

the number of hops. Using this metric, the paths ABC and ABE in below Fig. are equally long.

Another metric is the geographic distance in kilometers, in which case ABC is clearly much longer

than ABE (assuming the figure is drawn to scale).

Several algorithms for computing the shortest path between two nodes of a graph are known. This

one is due to Dijkstra (1959). Each node is labeled (in parentheses) with its distance from the source

node along the best known path. Initially, no paths are known, so all nodes are labeled with infinity.

As the algorithm proceeds and paths are found, the labels may change, reflecting better paths. A

label may be either tentative or permanent. Initially, all labels are tentative. When it is discovered

that a label represents the shortest possible path from the source to that node, it is made permanent

and never changed thereafter.

To illustrate how the labeling algorithm works, look at the weighted, undirected graph of Fig.(a),

where the weights represent, for example, distance. We want to find the shortest path from A to D.

We start out by marking node A as permanent, indicated by a filled-in circle. Then we examine, in

turn, each of the nodes adjacent to A (the working node), relabeling each one with the distance to A.

Whenever a node is relabeled, we also label it with the node from which the probe was made so that

we can reconstruct the final path later. Having examined each of the nodes adjacent to A, we examine

all the tentatively labeled nodes in the whole graph and make the one with the smallest label

permanent, as shown in Fig.(b). This one becomes the new working node.

We now start at B and examine all nodes adjacent to it. If the sum of the label on B and the distance

from B to the node being considered is less than the label on that node, we have a shorter path, so

the node is relabeled. The entire graph is searched for the tentatively-labeled node with the smallest

value. This node is made permanent and becomes the working node for the next round.

Look at Fig.(c). At that point we have just made E permanent. Suppose that there were a shorter

path than ABE, say AXYZE. There are two possibilities: either node Z has already been made

permanent, or it has not been. If it has, then E has already been probed (on the round following the

one when Z was made permanent), so the AXYZE path has not escaped our attention and thus cannot

be a shorter path.

Now consider the case where Z is still tentatively labeled. Either the label at Z is greater than or

equal to that at E, in which case AXYZE cannot be a shorter path than ABE, or it is less than that of

E, in which case Z and not E will become permanent first, allowing E to be probed from Z.

4.2.3 Flooding:

Another static algorithm is flooding, in which every incoming packet is sent out on every

outgoing line except the one it arrived on. Flooding obviously generates vast numbers of duplicate

packets, in fact, an infinite number unless some measures are taken to damp the process. One such

measure is to have a hop counter contained in the header of each packet, which is decremented at

each hop, with the packet being discarded when the counter reaches zero. Ideally, the hop counter

should be initialized to the length of the path from source to destination. If the sender does not know

how long the path is, it can initialize the counter to the worst case, namely, the full diameter of the

subnet.

An alternative technique for damming the flood is to keep track of which packets have been

flooded, to avoid sending them out a second time. Achieve this goal is to have the source router put

a sequence number in each packet it receives from its hosts. Each router then needs a list per source

router telling which sequence numbers originating at that source have already been seen.

4.2.4 Intra- and Interdomain Routing:

Today, an internet can be so large that one routing protocol cannot handle the task of updating the

routing tables of all routers. For this reason, an internet is divided into autonomous systems. An

autonomous system (AS) is a group of networks and routers under the authority of a single

administration. Routing inside an autonomous system is referred to as intradomain routing. Routing

between autonomous systems is referred to as interdomain routing.

4.2.5 Distance Vector Routing:
• Distance vector routing algorithms operate by having each router maintain a table (i.e, a

vector) giving the best known distance to each destination and which line to use to get

there.

• These tables are updated by exchanging information with the neighbors.

• The distance vector routing algorithm is sometimes called by other names, most commonly

the distributed Bellman-Ford routing algorithm and the Ford-Fulkerson algorithm, after

the researchers who developed it (Bellman, 1957; and Ford and Fulkerson, 1962).

• It was the original ARPANET routing algorithm and was also used in the Internet under

the name RIP.

(a) A subnet. (b) Input from A, I, H, K, and the new routing table for J.

• Part (a) shows a subnet. The first four columns of part (b) show the delay vectors received

from the neighbours of router J.

• A claims to have a 12-msec delay to B, a 25-msec delay to C, a 40-msec delay to D, etc.

Suppose that J has measured or estimated its delay to its neighbours, A, I, H, and K as 8,

10, 12, and 6 msec, respectively.

Each node constructs a one-dimensional array containing the "distances"(costs) to all other

nodes and distributes that vector to its immediate neighbors.

1. The starting assumption for distance-vector routing is that each node knows the cost

of the link to each of its directly connected neighbors.

2. A link that is down is assigned an infinite cost.

Example.

Table 1. Initial distances stored at each node(global view).

Information

Stored at Node

Distance to Reach Node

A B C D E F G

A 0 1 1 ∞ 1 1 ∞

B 1 0 1 ∞ ∞ ∞ ∞

C 1 1 0 1 ∞ ∞ ∞

D ∞ ∞ 1 0 ∞ ∞ 1

E 1 ∞ ∞ ∞ 0 ∞ ∞

F 1 ∞ ∞ ∞ ∞ 0 1

G ∞ ∞ ∞ 1 ∞ 1 0

We can represent each node's knowledge about the distances to all other nodes as a table like

the one given in Table 1.

Note that each node only knows the information in one row of the table.

1. Every node sends a message to its directly connected neighbors containing its personal

list of distance. (for example, A sends its information to its neighbors B,C,E,

and F.)

2. If any of the recipients of the information from A find that A is advertising a path shorter

than the one they currently know about, they update their list to give the new path length

and note that they should send packets for that destination through A. (node B learns

from A that node E can be reached at a cost of 1; B also knows it can reach A at a cost

of 1, so it adds these to get the cost of reaching E by means of A. B records that

it can reach E at a cost of 2 by going through A.)

3. After every node has exchanged a few updates with its directly connected neighbors,

all nodes will know the least-cost path to all the other nodes.

4. In addition to updating their list of distances when they receive updates, the nodes need

to keep track of which node told them about the path that they used to calculate the cost,

so that they can create their forwarding table. (for example, B knows that it was A who

said " I can reach E in one hop" and so B puts an entry in its table that says " To

reach E, use the link to A.)

Table 2. final distances stored at each node (global view).

Information

Stored at Node

Distance to Reach Node

A B C D E F G

A 0 1 1 2 1 1 2

B 1 0 1 2 2 2 3

C 1 1 0 1 2 2 2

D 2 1 0 3 2 1

E 1 2 2 3 0 2 3

F 1 2 2 2 2 0 1

G 3 2 1 3 1 0

In practice, each node's forwarding table consists of a set of triples of the form:

(Destination, Cost, NextHop).

For example, Table 3 shows the complete routing table maintained at node B for the network

in figure1.

Table 3. Routing table maintained at node B.

Destination Cost NextHop

A 1 A

C 1 C

D 2 C

E 2 A

F 2 A

G 3 A

THE COUNT-TO-INFINITY PROBLEM

The count-to-infinity problem.

• Consider the five-node (linear) subnet of above fig, where the delay metric is the number

of hops. Suppose A is down initially and all the other routers know this. In other words,

they have all recorded the delay to A as infinity.

• Now let us consider the situation of Fig (b), in which all the lines and routers are initially

up. Routers B, C, D, and E have distances to A of 1, 2, 3, and 4, respectively. Suddenly A

goes down, or alternatively, the line between A and B is cut, which is effectively the same

thing from B's point of view.

4.2.6 LINK STATE ROUTING:

The idea behind link state routing is simple and can be stated as five parts. Each router must

do the following:

1. Discover its neighbors and learn their network addresses.

2. Measure the delay or cost to each of its neighbors.

3. Construct a packet telling all it has just learned.

4. Send this packet to all other routers.

5. Compute the shortest path to every other router

Learning about the Neighbours

When a router is booted, its first task is to learn who its neighbours are. It accomplishes

this goal by sending a special HELLO packet on each point-to-point line. The router on the

other end is expected to send back a reply telling who it is.

(a) Nine routers and a LAN. (b) A graph model of (a).

Measuring Line Cost

• The link state routing algorithm requires each router to know, or at least have a reasonable

estimate of, the delay to each of its neighbors. The most direct way to determine this delay

is to send over the line a special ECHO packet that the other side is required to send back

immediately.

• By measuring the round-trip time and dividing it by two, the sending router can get a

reasonable estimate of the delay.

• For even better results, the test can be conducted several times, and the average used. Of

course, this method implicitly assumes the delays are symmetric, which may not always

be the case.

Figure: A subnet in which the East and West parts are connected by two lines.

• Unfortunately, there is also an argument against including the load in the delay calculation.

Consider the subnet of above Fig. which is divided into two parts, East and West,

connected by two lines, CF and EI.

Building Link State Packets

(a) A subnet. (b) The link state packets for this subnet.

• Once the information needed for the exchange has been collected, the next step is for

each router to build a packet containing all the data.

• The packet starts with the identity of the sender, followed by a sequence number and age

(to be described later), and a list of neighbours.

• For each neighbour, the delay to that neighbour is given.

• An example subnet is given in Fig.(a) with delays shown as labels on the lines. The

corresponding link state packets for all six routers are shown in Fig. (b).

Distributing the Link State Packets

The packet buffer for router B.

• In above Fig. the link state packet from A arrives directly, so it must be sent to C and F

and acknowledged to A, as indicated by the flag bits.

• Similarly, the packet from F has to be forwarded to A and C and acknowledged to F.

Computing the New Routes:

 In link state routing, once a router has collected all link state packets

representing the entire network graph, it can construct a comprehensive view of the network,

considering links in both directions with potential different costs. Dijkstra's algorithm is then

employed locally to compute the shortest paths to all destinations, informing the router of the

preferred link for each destination, which is added to the routing tables.

Compared to distance vector routing, link state routing demands more memory and computation,

with memory needs proportional to k*n (n = number of routers, k = average neighbors), potentially

exceeding the size of a routing table. However, link state routing offers faster convergence, making

it practical for many scenarios. Actual networks often use link state routing protocols like IS-IS

(Intermediate System-Intermediate System) and OSPF (Open Shortest Path First).

4.2.7 Hierarchical Routing:

As networks grow in size, the router routing tables grow proportionally. Not only is router memory

consumed by ever-increasing tables, but more CPU time is needed to scan them and more bandwidth

is needed to send status reports about them.

When hierarchical routing is used, the routers are divided into what we will call regions, with each

router knowing all the details about how to route packets to destinations within its own region, but

knowing nothing about the internal structure of other regions.

For huge networks, a two-level hierarchy may be insufficient; it may be necessary to group the

regions into clusters, the clusters into zones, the zones into groups, and so on, until we run out of

names for aggregations.

Below Fig. (a) Gives a quantitative example of routing in a two-level hierarchy with five regions.

The full routing table for router 1A has 17 entries, as shown in Fig. (b). When routing is done

hierarchically, as in Fig. (c), there are entries for all the local routers as before, but all other regions

have been condensed into a single router, so all traffic for region 2 goes via the 1B -2A line, but the

rest of the remote traffic goes via the 1C -3B line. Hierarchical routing has reduced the table from

17 to 7 entries. As the ratio of the number of regions to the number of routers per region grows, the

savings in table space increase.

4.3 CONGESTION CONTROL ALGORITHMS
• When too many packets are present in (a part of) the subnet, performance degrades. This

situation is called congestion.

• Below Figure depicts the symptom. When the number of packets dumped into the subnet

by the hosts is within its carrying capacity, they are all delivered (except for a few that are

afflicted with transmission errors) and the number delivered is proportional to the number

sent.

• However, as traffic increases too far, the routers are no longer able to cope and they begin

losing packets. This tends to make matters worse. At very high traffic, performance

collapses completely and almost no packets are delivered.

Fig:. When too much traffic is offered, congestion sets in and performance degrades

sharply.

• Congestion can be brought on by several factors. If all of a sudden, streams of packets begin

arriving on three or four input lines and all need the same output line, a queue will build

up.

• If there is insufficient memory to hold all of them, packets will be lost.

• Slow processors can also cause congestion. If the routers' CPUs are slow at performing the

bookkeeping tasks required of them (queuing buffers, updating tables, etc.), queues can

build up, even though there is excess line capacity. Similarly, low-bandwidth lines can also

cause congestion.

4.3.1 APPROACHES TO CONGESTION CONTROL

• Many problems in complex systems, such as computer networks, can be viewed from a

control theory point of view. This approach leads to dividing all solutions into two groups:

open loop and closed loop.

Fig: Timescales Of Approaches To Congestion Control

• Open loop solutions attempt to solve the problem by good design.

• Tools for doing open-loop control include deciding when to accept new traffic, deciding

when to discard packets and which ones, and making scheduling decisions at various points
in the network.

• Closed loop solutions are based on the concept of a feedback loop.

• This approach has three parts when applied to congestion control:

1. Monitor the system to detect when and where congestion occurs.

2. Pass this information to places where action can be taken.

3. Adjust system operation to correct the problem.

• A variety of metrics can be used to monitor the subnet for congestion. Chief among these

are the percentage of all packets discarded for lack of buffer space, the average queue

lengths, the number of packets that time out and are retransmitted, the average packet delay,

and the standard deviation of packet delay. In all cases, rising numbers indicate growing

congestion.

• The second step in the feedback loop is to transfer the information about the congestion

from the point where it is detected to the point where something can be done about it.

• In all feedback schemes, the hope is that knowledge of congestion will cause the hosts to

take appropriate action to reduce the congestion.

• The presence of congestion means that the load is (temporarily) greater than the resources

(in part of the system) can handle. Two solutions come to mind: increase the resources or

decrease the load.

4.3.2 CONGESTION PREVENTION POLICIES

The methods to control congestion by looking at open loop systems. These systems are

designed to minimize congestion in the first place, rather than letting it happen and reacting

after the fact. They try to achieve their goal by using appropriate policies at various levels. In

Fig. 5-26 we see different data link, network, and transport policies that can affect congestion

(Jain, 1990).

Figure 5-26. Policies that affect congestion.

The data link layer Policies.

• The retransmission policy is concerned with how fast a sender times out and what it

transmits upon timeout. A jumpy sender that times out quickly and retransmits all

outstanding packets using go back n will put a heavier load on the system than will a

leisurely sender that uses selective repeat.

• Closely related to this is the buffering policy. If receivers routinely discard all out-of- order

packets, these packets will have to be transmitted again later, creating extra load. With
respect to congestion control, selective repeat is clearly better than go back n.

• Acknowledgement policy also affects congestion. If each packet is acknowledged

immediately, the acknowledgement packets generate extra traffic. However, if

acknowledgements are saved up to piggyback onto reverse traffic, extra timeouts and

retransmissions may result. A tight flow control scheme (e.g., a small window) reduces the

data rate and thus helps fight congestion.

The network layer Policies.

• The choice between using virtual circuits and using datagrams affects congestion since

many congestion control algorithms work only with virtual-circuit subnets.

• Packet queueing and service policy relates to whether routers have one queue per input

line, one queue per output line, or both. It also relates to the order in which packets are

processed (e.g., round robin or priority based).

• Discard policy is the rule telling which packet is dropped when there is no space.

• A good routing algorithm can help avoid congestion by spreading the traffic over all the

lines, whereas a bad one can send too much traffic over already congested lines.

• Packet lifetime management deals with how long a packet may live before being

discarded. If it is too long, lost packets may clog up the works for a long time, but if it is

too short, packets may sometimes time out before reaching their destination, thus inducing

retransmissions.

The transport layer Policies,

• The same issues occur as in the data link layer, but in addition, determining the timeout

interval is harder because the transit time across the network is less predictable than the

transit time over a wire between two routers. If the timeout interval is too short, extra

packets will be sent unnecessarily. If it is too long, congestion will be reduced but the

response time will suffer whenever a packet is lost.

4.3.3 ADMISSION CONTROL

• One technique that is widely used to keep congestion that has already started from getting

worse is admission control.

• Once congestion has been signaled, no more virtual circuits are set up until the problem has

gone away.

• An alternative approach is to allow new virtual circuits but carefully route all new virtual

circuits around problem areas. For example, consider the subnet of Fig. 5-27(a), in which

two routers are congested, as indicated.

Figure 5-27. (a) A congested subnet. (b) A redrawn subnet that eliminates the congestion.

A virtual circuit from A to B is also shown.

Suppose that a host attached to router A wants to set up a connection to a host attached to

router B. Normally, this connection would pass through one of the congested routers. To avoid

this situation, we can redraw the subnet as shown in Fig. 5-27(b), omitting the congested routers

and all of their lines. The dashed line shows a possible route for the virtual circuit that avoids

the congested routers.

4.3.4 TRAFFIC AWARE ROUTING

These schemes adapted to changes in topology, but not to changes in load. The goal in

taking load into account when computing routes is to shift traffic away from hotspots that will

be the first places in the network to experience congestion.

The most direct way to do this is to set the link weight to be a function of the (fixed) link

bandwidth and propagation delay plus the (variable) measured load or average queuing delay.

Least-weight paths will then favor paths that are more lightly loaded, all else being equal.

Consider the network of Fig. 5-23, which is divided into two parts, East and West, connected

by two links, CF and EI. Suppose that most of the traffic between East and West is using link

CF, and, as a result, this link is heavily loaded with long delays. Including queueing delay in

the weight used for the shortest path calculation will make EI more attractive. After the new

routing tables have been installed, most of the East-West traffic will now go over EI, loading

this link. Consequently, in the next update, CF will appear to be the shortest path. As a result,

the routing tables may oscillate wildly, leading to erratic routing and many potential problems.

If load is ignored and only bandwidth and propagation delay are considered, this problem

does not occur. Attempts to include load but change weights within a narrow range only slow

down routing oscillations. Two techniques can contribute to a successful solution. The first is

multipath routing, in which there can be multiple paths from a source to a destination. In our

example this means that the traffic can be spread across both of the East to West links. The

second one is for the routing scheme to shift traffic across routes slowly enough that it is able

to converge.

4.3.5 TRAFFIC THROTTLING

• Each router can easily monitor the utilization of its output lines and other resources. For

example, it can associate with each line a real variable, u, whose value, between 0.0 and

1.0, reflects the recent utilization of that line. To maintain a good estimate of u, a sample

of the instantaneous line utilization, f (either 0 or 1), can be made periodically and u

updated according to

where the constant a determines how fast the router forgets recent history.

Whenever u moves above the threshold, the output line enters a ''warning'' state. Each newly-

arriving packet is checked to see if its output line is in warning state. If it is, some action is

taken. The action taken can be one of several alternatives, which we will now discuss.

4.3.6 CHOKE PACKETS

• In this approach, the router sends a choke packet back to the source host, giving it the

destination found in the packet.

• The original packet is tagged (a header bit is turned on) so that it will not generate any

more choke packets farther along the path and is then forwarded in the usual way.

• When the source host gets the choke packet, it is required to reduce the traffic sent to the

specified destination by X percent. Since other packets aimed at the same destination are

probably already under way and will generate yet more choke packets, the host should

ignore choke packets referring to that destination for a fixed time interval. After that period

has expired, the host listens for more choke packets for another interval. If one arrives,

the line is still congested, so the host reduces the flow still more and begins ignoring choke

packets again. If no choke packets arrive during the listening period, the host may increase

the flow again.

• The feedback implicit in this protocol can help prevent congestion yet not throttle any

flow unless trouble occurs.

• Hosts can reduce traffic by adjusting their policy parameters.

• Increases are done in smaller increments to prevent congestion from reoccurring quickly.

• Routers can maintain several thresholds. Depending on which threshold has been

crossed, the choke packet can contain a mild warning, a stern warning, or an ultimatum.

4.3.7 HOP-BY-HOP BACK PRESSURE

• At high speeds or over long distances, sending a choke packet to the source hosts does not

work well because the reaction is so slow.

Consider, for example, a host in San Francisco (router A in Fig. 5-28) that is sending traffic to a host

in New York (router D in Fig. 5-28) at 155 Mbps. If the New York host begins to run out of

buffers, it will take about 30 msec for a choke packet to get back to San Francisco to tell it to slow

down. The choke packet propagation is shown as the second, third, and fourth steps in Fig. 5-

28(a). In those 30 msec, another 4.6 megabits will have been sent. Even if the host in San

Francisco completely shuts down immediately, the 4.6 megabits in the pipe will continue to pour

in and have to be dealt with. Only in the seventh diagram in Fig. 5- 28(a) will the New York

router notice a slower flow.

An alternative approach is to have the choke packet take effect at every hop it passes

through, as shown in the sequence of Fig. 5-28(b). Here, as soon as the choke packet reaches

F, F is required to reduce the flow to D. Doing so will require F to devote more buffers to the

flow, since the source is still sending away at full blast, but it gives D immediate relief, like a

headache remedy in a television commercial. In the next step, the choke packet reaches E,

which tells E to reduce the flow to F. This action puts a greater demand on E's buffers but gives

F immediate relief. Finally, the choke packet reaches A and the flow genuinely slows down.

The net effect of this hop-by-hop scheme is to provide quick relief at the point of

congestion at the price of using up more buffers upstream. In this way, congestion can be

nipped in the bud without losing any packets.

Figure 5-28. (a) A choke packet that affects only the source. (b) A choke packet that affects

each hop it passes through.

4.3.8 LOAD SHEDDING

• When none of the above methods make the congestion disappear, routers can bring out

the heavy artillery: load shedding.

• Load shedding is a fancy way of saying that when routers are being in undated by

packets that they cannot handle, they just throw them away.

• A router drowning in packets can just pick packets at random to drop, but usually it can do

better than that.

• Which packet to discard may depend on the applications running.

• To implement an intelligent discard policy, applications must mark their packets in priority

classes to indicate how important they are. If they do this, then when packets have to be

discarded, routers can first drop packets from the lowest class, then the next lowest class,

and so on.

4.3.9 RANDOM EARLY DETECTION

• It is well known that dealing with congestion after it is first detected is more effective than

letting it gum up the works and then trying to deal with it. This observation leads to the

idea of discarding packets before all the buffer space is really exhausted. A popular

algorithm for doing this is called RED (Random Early Detection).

• In some transport protocols (including TCP), the response to lost packets is for the source

to slow down. The reasoning behind this logic is that TCP was designed for wired networks

and wired networks are very reliable, so lost packets are mostly due to buffer overruns

rather than transmission errors. This fact can be exploited to help reduce congestion.

• By having routers drop packets before the situation has become hopeless (hence the ''early''

in the name), the idea is that there is time for action to be taken before it is too late. To

determine when to start discarding, routers maintain a running average of their queue

lengths. When the average queue length on some line exceeds a threshold, the line is said

to be congested and action is taken.

4.4 QUALITY OF SERVICES

➢ An easy solution to provide good quality of service is to build a network with enough capacity for

whatever traffic will be thrown at it.

➢ The name for this solution is overprovisioning.

➢ The trouble with this solution is that it is expensive.

➢ With quality-of-service mechanisms, the network can honor the performance guarantees that it makes

even when traffic spikes, at the cost of turning down some requests.

➢ Four issues must be addressed to ensure quality of service:

1. What applications need from the network.

2. How to regulate the traffic that enters the network.

3. How to reserve resources at routers to guarantee performance.

4. Whether the network can safely accept more traffic.

Application Requirements

➢ A stream of packets from a source to a destination is called a flow.

➢ A flow might be all the packets of a connection in a connection-oriented network, or all the packets sent

from one process to another process in a connectionless network.

➢ The needs of each flow can be characterized by four primary parameters: bandwidth, delay, jitter, and

loss. Together, these determine the QoS (Quality of Service) the flow requires.

Several common applications and the stringency of their network requirements are listed below

Traffic Shaping

➢ Traffic shaping is a technique for regulating the average rate and burstiness of a flow of

data that enters the network.

➢ The goal is to allow applications to transmit a wide variety of traffic that suits their needs,

including some bursts, yet have a simple and useful way to describe the possible traffic

patterns to the network.

➢ When a flow is set up, the user and the network (i.e., the customer and the provider) agree on

a certain traffic pattern (i.e., shape) for that flow.

➢ Sometimes this agreement is called an SLA (Service Level Agreement), especially when it

is made over aggregate flows and long periods of time, such as all of the traffic for a given

customer.

➢ Traffic shaping reduces congestion and thus helps the network live up to its Promise.

Monitoring a traffic flow is called traffic policing

Traffic shaping is a mechanism to control the amount and the rate of the traffic sent to

the network. Two techniques can shape traffic: leaky bucket and token bucket.

1. Leaky Bucket

If a bucket has a small hole at the bottom, the water leaks from the bucket at a constant rate as

long as there is water in the bucket. The rate at which the water leaks does not depend on the rate at

which the water is input to the bucket unless the bucket is empty. The input rate can vary, but the

output rate remains constant. Similarly, in networking, a technique called leaky bucket can smooth out

bursty traffic. Bursty chunks are stored in the bucket and sent out at an average rate. Below Figure

shows a leaky bucket and its effects.

In the figure, we assume that the network has committed a bandwidth of 3 Mbps for a host. The

use of the leaky bucket shapes the input traffic to make it conform to this commitment. In Figure 24.19

the host sends a burst of data at a rate of 12 Mbps for 2 s, for a total of 24 Mbits of data. The host is

silent for 5 s and then sends data at a rate of 2 Mbps for 3 s, for a total of 6 Mbits of data. In all, the

host has sent 30 Mbits of data in l0s. The leaky bucket smooth’s the traffic by sending out data at a rate

of 3 Mbps during the same 10 s. Without the leaky bucket, the beginning burst may have hurt the

network by consuming more bandwidth than is set aside for this host. We can also see that the leaky

bucket may prevent congestion.

A simple leaky bucket implementation is shown in below Figure. A FIFO queue holds the

packets. If the traffic consists of fixed-size packets, the process removes a fixed number of packets

from the queue at each tick of the clock. If the traffic consists of variable-length packets, the fixed

output rate must be based on the number of bytes or bits.

The following is an algorithm for variable-length packets:

1. Initialize a counter to n at the tick of the clock.

2. If n is greater than the size of the packet, send the packet and decrement the counter by the

packet size. Repeat this step until n is smaller than the packet size.

3. Reset the counter and go to step 1.

2. Token Bucket

The leaky bucket is very restrictive. It does not credit an idle host. For example, if a host is not

sending for a while, its bucket becomes empty. Now if the host has bursty data, the leaky bucket

allows only an average rate. The time when the host was idle is not taken into account. On the other

hand, the token bucket algorithm allows idle hosts to accumulate credit for the future in the form of

tokens. For each tick of the clock, the system sends n tokens to the bucket. The system removes one

token for every cell (or byte) of data sent. For example, if n is 100 and the host is idle for 100 ticks,

the bucket collects 10,000 tokens. Now the host can consume all these tokens in one tick with 10,000

cells, or the host takes 1000 ticks with 10 cells per tick. In other words, the host can send bursty data

as long as the bucket is not empty. Below Figure shows the idea.

The token bucket can easily be implemented with a counter. The token is initialized to zero.

Each time a token is added, the counter is incremented by 1. Each time a unit of data is sent, the

counter is decremented by 1. When the counter is zero, the host cannot send data.

Packet Scheduling

➢ Being able to regulate the shape of the offered traffic is a good start.

➢ However, to provide a performance guarantee, we must reserve sufficient resources along the route that

the packets take through the network.

➢ Algorithms that allocate router resources among the packets of a flow and between competing flows

are called packet scheduling algorithms.

➢ Three different kinds of resources can potentially be reserved for different flows:

1. Bandwidth.

2. Buffer space.

3. CPU cycles.

➢ The first one, bandwidth, is the most obvious. If a flow requires 1 Mbps and the outgoing line has a

capacity of 2 Mbps, trying to direct three flows through that line is not going to work.

➢ A second resource that is often in short supply is buffer space. When a packet arrives, it is buffered

inside the router until it can be transmitted on the chosen outgoing line.

➢ The purpose of the buffer is to absorb small bursts of traffic as the flows contend with each other.

➢ If no buffer is available, the packet has to be discarded since there is no place to put it.

➢ Finally, CPU cycles may also be a scarce resource. It takes router CPU time to process a packet, so a

router can process only a certain number of packets per second.

➢ While modern routers are able to process most packets quickly, some kinds of packets require greater

CPU processing, such as the ICMP packets.

➢ Packet scheduling algorithms allocate bandwidth and other router resources by determining which of

the buffered packets to send on the output line next.

➢ Each router buffers packets in a queue for each output line until they can be sent, and they are sent in

the same order that they arrived. This algorithm is known as FIFO (First-In First-Out), or

equivalently FCFS (First-Come First-Serve).

➢ FIFO routers usually drop newly arriving packets when the queue is full.

➢ Since the newly arrived packet would have been placed at the end of the queue, this behavior is called

tail drop.

➢ FIFO scheduling is simple to implement, but it is not suited to providing good quality of service

because when there are multiple flows, one flow can easily affect the performance of the other flows.

➢ Many packet scheduling algorithms have been devised that provide stronger isolation between flows

and thwart attempts at interference.

➢ One of the first ones was the fair queueing algorithm devised by Nagle.

➢ The essence of this algorithm is that routers have separate queues, one for each flow for a given output

line.

➢ When the line becomes idle, the router scans the queues round-robin, as shown in Fig. 5-30.

➢ It then takes the first packet on the next queue. In this way, with n hosts competing for the output line,

each host gets to send one out of every n packets.

➢ This algorithm and an example of finish times for packets arriving in three flows are illustrated in Fig.

5-31.

➢ If a packet has length L, the round at which it will finish is simply L rounds after the start time.

The start time is either the finish time of the previous packet, or the arrival time of the packet, if the

queue is empty when it arrives

➢ From the table in Fig. 5-32(b), and looking only at the first two packets in the top two queues, packets

arrive in the order A, B, D, and F. Packet A arrives at round 0 and is 8 bytes long, so its finish time is

round 8.

Admission Control

➢ We first saw admission control used to control congestion, which is a performance guarantee, albeit a

weak one.

➢ The guarantees we are considering now are stronger, but the model is the same.

➢ The user offers a flow with an accompanying QoS requirement to the network.

➢ The network then decides whether to accept or reject the flow based on its capacity and the

commitments it has made to other flows.

➢ Because many parties may be involved in the flow negotiation (the sender, the receiver, and all the

routers along the path between them), flows must be described accurately in terms of specific

parameters that can be negotiated.

➢ A set of such parameters is called a flow specification

➢ The first two parameters, the token bucket rate and token bucket size, use a token bucket to give the

maximum sustained rate the sender may transmit, averaged over a long time interval, and the largest

burst it can send over a short time interval.

➢ The third parameter, the peak data rate, is the maximum transmission rate tolerated, even for brief time

intervals.

➢ The last two parameters specify the minimum and maximum packet sizes, including the transport and

network layer headers.

Integrated Services

➢ A lot of effort into devising an architecture for streaming multimedia. This work resulted in over two

dozen RFCs, starting with RFCs 2205–2212.

➢ The generic name for this work is integrated services.

➢ It was aimed at both unicast and multicast applications.

RSVP—The Resource reservation Protocol

➢ The main part of the integrated services architecture that is visible to the users of the network is RSVP.

➢ This protocol is used for making the reservations; other protocols are used for sending the data.

➢ RSVP allows multiple senders to transmit to multiple groups of receivers, permits individual receivers

to switch channels freely, and optimizes bandwidth use while at the same time eliminating congestion.

➢ In its simplest form, the protocol uses multicast routing using spanning trees.

➢ Each group is assigned a group address. To send to a group, a sender puts the group’s address in its

packets

➢ As an example, consider the network of Fig. 5-34(a). Hosts 1 and 2 are multicast senders, and hosts 3,

4, and 5 are multicast receivers. In this example, the senders and receivers are disjoint, but in general,

the two sets may overlap. The multicast trees for hosts 1 and 2 are shown in Fig. 5-34(b) and Fig. 5-

34(c), respectively.

➢ To get better reception and eliminate congestion, any of the receivers in a group can send a reservation

message up the tree to the sender.

➢ The message is propagated using the reverse path forwarding algorithm discussed.

➢ An example of such a reservation is shown in Fig. 5-35(a).

➢ Here host 3 has requested a channel to host 1. Once it has been established, packets can flow from 1 to

3 without congestion.

➢ Now consider what happens if host 3 next reserves a channel to the other sender, host 2. A second path

is reserved, which is illustrated in Fig. 5-35(b).

➢ Finally, in Fig. 5-35(c), host 5 decides to watch the program being transmitted by host 1 and also

makes a reservation

Differentiated Services

➢ Differentiated services can be offered by a set of routers forming an administrative domain (e.g., an

ISP or a telco).

➢ The administration defines a set of service classes with corresponding forwarding rules.

➢ If a customer subscribes to differentiated services, customer packets entering the domain are marked

with the class to which they belong.

➢ This information is carried in the Differentiated services field of IPv4 and IPv6 packets. The classes are

defined as per hop behaviors because they correspond to the treatment the packet will receive at each

router, not a guarantee across the network.

➢ To make the difference between flow-based quality of service and class-based quality of service

clearer, consider an example: Internet telephony.

➢ With a flow based scheme, each telephone call gets its own resources and guarantees. With a class-

based scheme, all the telephone calls together get the resources reserved for the class telephony

Expedited Forwarding

➢ The choice of service classes is up to each operator, but since packets are often forwarded between

networks run by different operators, IETF has defined some network-independent service classes.

➢ The simplest class is expedited forwarding.

➢ The idea behind expedited forwarding is very simple. Two classes of service are available: regular

and expedited.

➢ The vast majority of the traffic is expected to be regular, but a limited fraction of the packets are

expedited.

➢ The expedited packets should be able to transit the network as though no other packets were present.

➢ One way to implement this strategy is as follows. Packets are classified as expedited or regular and

marked accordingly.

➢ This step might be done on the sending host or in the ingress (first) router. The advantage of doing

classification on the sending host is that more information is available about which packets belong to

which flows.

Assured Forwarding

➢ A somewhat more elaborate scheme for managing the service classes is called assured forwarding.

➢ Assured forwarding specifies that there shall be four priority classes, each class having its own

resources.

➢ The top three classes might be called gold, silver, and bronze.

➢ In addition, it defines three discard classes for packets that are experiencing congestion: low, medium,

and high. Taken together, these two factors define 12 service classes.

➢ Figure 5-37 shows one-way packets might be processed under assured forwarding.

➢ The first step is to classify the packets into one of the four priority classes.

➢ The next step is to determine the discard class for each packet.

➢ This is done by passing the packets of each priority class through a traffic policer such as a token

bucket.

➢ Finally, the packets are processed by routers in the network with a packet scheduler that distinguishes

the different classes.

➢ A common choice is to use weighted fair queueing for the four priority classes, with higher classes

given higher weights.

➢ In this way, the higher classes will get most of the bandwidth, but the lower classes will not be starved

of bandwidth entirely.

Module 4 The Transport Layer

Page 1

THE TRANSPORT LAYER

• The network layer provides end-to-end packet delivery using data- grams or

virtual circuits.

• The transport layer builds on the network layer to pro- vide data transport from a

process on a source machine to a process on a destination machine with a desired

level of reliability that is independent of the physical networks currently in use.

• It provides the abstractions that applications need to use the network. Without

the transport layer, the whole concept of layered proto- cols would make little

sense.

6.1 THE TRANSPORT SERVICE

➢ we will examine two sets of transport layer primitives:

o First comes a simple (but hypothetical) one to show the basic ideas.

o Then comes the interface commonly used in the Internet.

6.1.1 Services Provided to the Upper Layers

• The ultimate goal of the transport layer is to provide efficient, reliable, and cost-

effective data transmission service to its users, normally processes in the ap-

plication layer.

• The software and/or hardware within the transport layer that does the work is

called the transport entity.

• The transport entity can be located in the operating system kernel, in a library

package bound into network applications, in a separate user process, or even on

the network interface card.

• The (logical) relationship of the network, transport, and application layers is

illustrated in Fig. 6-1.

Module 4 The Transport Layer

Page 2

Network layer

Network

address

Transport
entity

Transport

address

layer

Application

(or session)

interface

Segment

Host 1 Host 2

Transport

protocol

Figure 6-1. The network, transport, and application layers

• Connection-oriented and connectionless, there are also two types of transport

service.

• The connection-oriented transport service is similar to the connection-oriented

network service in many ways. In both cases, connections have three phases:

establishment, data transfer, and release. Addressing and flow control are also

similar in both layers.

• The connectionless transport service is also very similar to the connectionless

network service. However, note that it can be difficult to provide a connectionless

transport service on top of a connection-oriented network service, since it is

inefficient to set up a connection to send a single packet and then tear it down

immediately afterwards.

6.1.2 Transport Service Primitives

• To allow users to access the transport service, the transport layer must provide

some operations to application programs, that is, a transport service interface.

Each transport service has its own interface.

• The transport service is similar to the network service, but there are also some

important differences. The main difference is that the network service is intended

to model the service offered by real networks, warts and all.

• The connection-oriented transport service, in contrast, is reliable. Of course, real

networks are not error-free, but that is precisely the purpose of the transport

layer—to provide a reliable service on top of an unreliable network.

Network layer

Transport

entity

Application

(or session)

layer

Module 4 The Transport Layer

Page 3

Primitive Packet sent Meaning

LISTEN (none) Block until some process tries to connect

CONNECT CONNECTION REQ. Actively attempt to establish a connection

SEND DATA Send information

RECEIVE (none) Block until a DATA packet arrives

DISCONNECT DISCONNECTION REQ. Request a release of the connection

Figure 6-2. The primitives for a simple transport service.

o To see how these primitives might be used, consider an application with a ser- ver

and a number of remote clients.

o To start with, the server executes a LISTEN primitive, typically by calling a library

procedure that makes a system call that blocks the server until a client turns up.

When a client wants to talk to the server,it executes a CONNECT primitive.

o The transport entity carries out this primitive by blocking the caller and sending a

packet to the server.

▪ The term segment for messages sent from transport entity to transport entity.

TCP, UDP and other Internet protocols use this term.
▪ Some older protocols used the ungainly name TPDU (Transport Protocol

Data Unit). That term isnot used much any more now but you may see it
in older papers and books.

▪ When a frame arrives, the data link layer processes the frame header and, if
the destination address matches for local deliv- ery, passes the contents of the
frame payload field up to the network entity.

6.1.3 Berkeley Sockets

• Inspect another set of transport primitives, the socket prim- itives as they are used

for TCP.

Module 4 The Transport Layer

Page 4

• Sockets were first released as part of the Berke- ley UNIX 4.2BSD software

distribution in 1983.

• They quickly became popular. The primitives are now widely used for Internet

programming on many operating systems, especially UNIX-based systems, and

there is a socket-style API for Windows called ‘‘winsock.’

Module 4 The Transport Layer

Page 5

The primitives are listed in Fig. 6-5. Roughly speaking, they follow the mo-

del of our first example but offer more features and flexibility.

Figure 6-4. A state diagram for a simple connection management scheme. Transitions labeled in italics are

caused by packet arrivals. The solid lines show the client’s state sequence. The dashed lines show the server’s

state sequence

Primitive Meaning

SOCKET Create a new communication endpoint

BIND Associate a local address with a socket

LISTEN Announce willingness to accept connections; give queue size

ACCEPT Passively establish an incoming connection

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

Figure 6-5. The socket primitives for TCP.

o The first four primitives in the list are executed in that order by servers. The

SOCKET primitive creates a new endpoint and allocates table space for it within

the transport entity.

o The parameters of the call specify the addressing format tobe used, the type of

service desired (e.g., reliable byte stream), and the protocol.

o The socket API is often used with the TCP protocol to provide a connection-

oriented service called a reliable byte stream, which is simply the reliable bit

pipe.

o DCCP (Datagram Congestion Controlled Protocol) is a version of UDP
with congestion control (Kohler et al., 2006). It is up to the tran- sport users
to understand what service they are getting.

o Newer protocols and interfaces have been devised that support groups of related

streams more effectively and simply for the application.

o Two examples are SCTP (Stream Control Transmission Protocol) defined in

RFC 4960 and SST (Structured Stream Transport) (Ford, 2007).

o These protocols must change the socket API slightly to get the benefits of groups

of relatedstreams, and they also support features such as a mix of connection-

oriented and connectionless traffic and even multiple network paths.

Module 4 The Transport Layer

Page 6

6.1.4 An Example of Socket Programming: An Internet File Server

• As an example of the nitty-gritty of how real socket calls are made, consider the

client and server code of Fig. 6-6. Here we have a very primitive Internet file

server along with an example client that uses it.

• The code has many limitations (discussed below), but in principle the server code

can be compiled and run on any UNIX system connected to the Internet.

• It starts out by including some standard headers, the last three of which contain

the main Internet-related definitions and data structures.

• Next comes a definition of SERVER PORT as 12345. This num- ber was chosen

arbitrarily. Any number between 1024 and 65535 will work justas well, as long

as it is not in use by some other process; ports below 1023 are re- served for

privileged users.

• The next two lines in the server define two constants needed. The first one

determines the chunk size in bytes used for the file transfer.

/* This page contains a client program that can request a file from the server program

* on the next page. The server responds by sending the whole file.

*/

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER PORT 12345 /* arbitrary, but client & server must agree */

#define BUF SIZE 4096 /* block transfer size */

int main(int argc, char **argv)

{

int c, s, bytes;

char buf[BUF SIZE]; /* buffer for incoming file */

struct hostent *h; /* info about server */

struct sockaddr in channel; /* holds IP address */

if (argc != 3) fatal("Usage: client server-name file-name");

h = gethostbyname(argv[1]); /* look up host’s IP address */if
(!h) fatal("gethostbyname failed");

s = socket(PF INET, SOCK STREAM, IPPROTO TCP);

Module 4 The Transport Layer

Page 7

if (s <0) fatal("socket"); memset(&channel,

0, sizeof(channel)); channel.sin family=

AF INET;

memcpy(&channel.sin addr.s addr, h->h addr, h->h length);

channel.sin port= htons(SERVER PO RT);

c = connect(s, (struct sockaddr *) &channel, sizeof(channel));if (c <
0) fatal("connect failed");

/* Connection is now established. Send file name including 0 byte at end. */write(s,
argv[2], strlen(argv[2])+1);

/* Go get the file and write it to standard output. */while
(1) {

bytes = read(s, buf, BUF SIZE); /* read from socket */

if (bytes <= 0) exit(0); /* check for end of file */

write(1, buf, bytes); /* write to standard output */

}

}

fatal(char *string)

{

printf("%s\n", string);

exit(1);

}

Figure 6-6. Client code using sockets. The server code is on the next page.

#include <sys/types.h> /* This is the server code */
#include <sys/fcntl.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER PORT 12345 /* arbitrary, but client & server must agree */

#define BUF SIZE 4096 /* block transfer size */

#define QUEUE SIZE 10

int main(int argc, char *argv[])

{

int s, b, l, fd, sa, bytes, on = 1;

char buf[BUF SIZE]; /* buffer for outgoing file */

Module 4 The Transport Layer

Page 8

struct sockaddr in channel; /* holds IP address */

/* Build address structure to bind to socket. */

memset(&channel, 0, sizeof(channel)); /* zero channel */
channel.sin family = AF INET;

channel.sin addr.s addr = htonl(INADDR ANY);

channel.sin port = htons(SERVER PO RT);

/* Passive open. Wait for connection. */

s = socket(AF INET, SOCK STREAM, IPPROTO TC P); /* create socket */if
(s < 0) fatal("socket failed");

setsockopt(s, SOL SOCKET, SO RE USEADDR, (char *) &on, sizeof(on));

b = bind(s, (struct sockaddr *) &channel, sizeof(channel));if (b

< 0) fatal("bind failed");

l = listen(s, QUEUE SIZE); /* specify queue size */if
(l < 0) fatal("listen failed");

/* Socket is now set up and bound. Wait for connection and process it. */while (1)
{

sa = accept(s, 0, 0); /* block for connection request */if
(sa < 0) fatal("accept failed");

read(sa, buf, BUF SIZE); /* read file name from socket */

/* Get and return the file. */

fd = open(buf, O RDONLY); /* open the file to be sent back */if
(fd < 0) fatal("open failed");

while (1) {

bytes = read(fd, buf, BUF SIZE); /* read from file */

if (bytes <= 0) break; /* check for end of file */

write(sa, buf, bytes); /* write bytes to socket */

}

close(fd); /* close file */

close(sa); /* close connection */

}

}

Module 4 The Transport Layer

Page 9

Physical

6.2 ELEMENTS OF TRANSPORT PROTOCOLS

• The transport service is implemented by a transport protocol used

between the two transport entities.

• However, significant differences between the two also exist. These

dif- ferences are due to major dissimilarities between the

environments in which the two protocols operate, as shown in Fig.

6-7.

Router Router Network

communication channel Host

(a) (b)

Figure 6-7. (a) Environment of the data link layer. (b) Environment of the

transport layer.

• At the data link layer, two routers communicate directly via a physical

channel, whether wired or wireless, whereas at the transport layer, this

physical channel is replaced by the entire network. This difference has

many important implications for the protocols.

• For one thing, over point-to-point links such as wires or optical fiber, it is

usually not necessary for a router to specify which router it wants to talk

to—each outgoing line leads directly to a particular router.

• Even on wireless links, the process is not much different. Just sending a

message is sufficient to have it reach all other destinations.

• When a router sends a packet over a link, it may arrive or be lost, but it

cannot bounce around for a while, go into hiding in a far corner of the world,

and sudden- ly emerge after other packets that were sent much later.

6.2.1 Addressing

• When an application (e.g., a user) process wishes to set up a connection to a

remote application process, it must specify which one to connect to.

Module 4 The Transport Layer

Page 10

• The method normally used is to define transport addresses to which proc-

esses can listen for connection requests. In the Internet, these endpoints are

called ports.

• We will use the generic term TSAP (Transport Service Access Point) to

mean a specific endpoint in the transport layer.

• The analogous endpoints in the network layer (i.e., network layer addresses)

are not-surprisingly called NSAPs (Network Service Access Points).

• Application processes, both clients and servers, can attach themselves to a

local TSAP to establish a connection to a remote TSAP.

Figure 6-8. TSAPs, NSAPs, and transport connections.

➢ A possible scenario for a transport connection is as follows:

1. A mail server process attaches itself to TSAP 1522 on host 2 to wait

for an incoming call. How a process attaches itself to a TSAP is out-

side the networking model and depends entirely on the local operat-

ing system. A call such as our LISTEN might be used, for example.

2. An application process on host 1 wants to send an email message, so

it attaches itself to TSAP 1208 and issues a CONNECT request. The

request specifies TSAP 1208 on host 1 as the source and TSAP 1522

on host 2 as the destination. This action ultimately results in a tran-

sport connection being established between the application process and

the server.

Module 4 The Transport Layer

Page 11

3. The application process sends over the mail message.

4. The mail server responds to say that it will deliver the message.

5. The transport connection is released.

• To handle this situation, an alternative scheme can be used. In this scheme,

there exists a special process called a portmapper.

• The user then sends a message specifying the service name, and the

portmapper sends back the TSAP address.

• The function of the portmapper is analogous to that of a directory assistance

operator in the telephone system—it provides a mapping of names onto

numbers.

• It is wasteful to have each of them active and listening to a stable TSAP

address all day long. An alternative scheme is shown in Fig. 6-9 in a

simplified form. It is known as the initial connection protocol.

• Instead of every conceivable server listening at a well-known TSAP, each

machine that wishes to offer services to remote users has a special process

server that acts as a proxy for less heavily used servers.

• This server is called inetd on UNIX systems. It listens to a set of ports at

the same time, waiting for a connection request. Potential users of a service

begin by doing a CONNECT request, specifying the TSAP address of the

service they want.

Host 1 Host 2 Host 1 Host 2

Laye

4

(a) (b)

Figure 6-9. How a user process in host 1 establishes a connection with a mailserver

in host 2 via a process server.

Process
server

Mail
server

TSAP

r

Module 4 The Transport Layer

Page 12

6.2.2 Connection Establishment

• At first glance, it would seem sufficient for one transport entity to just send a

CONNECTION REQUEST segment to the destination and wait for a CONNECTION

ACCEPTED reply.

• The worst possible nightmare is as follows. A user establishes a connection with

a bank, sends messages telling the bank to transfer a large amount of money to

the account of a not-entirely-trustworthy person.

➢ Packet lifetime can be restricted to a known maximum using one (or more)

of the following techniques:

1. Restricted network design.

2. Putting a hop counter in each packet.

3. Timestamping each packet.

• Once both transport entities have agreed on the initial sequence number,

any sliding window protocol can be used for data flow control.

• . Within a connection, a timestamp is used to extend the 32-bit sequence

number so that it will not wrap within the maximum packet lifetime,

even for gigabit-per-second connections.

Module 4 The Transport Layer

Page 13

• This mechanism is a fix to TCP that was needed as it was used on faster

and faster links. It is described in RFC 1323 and called PAWS

(ProtectionAgainst Wrapped Sequence numbers).

• Across connections, for the initial se- quence numbers and before

PAWS can come into play, TCP originally used the clock-based scheme

just described.

Figure 6-11. Three protocol scenarios for establishing a connection using a three-

way handshake. CR denotes CONNECTION REQUEST. (a) Normal opera- tion. (b)

Old duplicate CONNECTION REQUEST appearing out of nowhere.

(c) Duplicate CONNECTION REQUEST and duplicate ACK.

• However, it remains important that the initial sequence numbers not

repeat for an interval even though they appearrandom to an observer.

6.2.3 Connection Release

• Releasing a connection is easier than establishing one. Nevertheless,

there are more pitfalls than one might expect here. As we mentioned

earlier, there are two styles of terminating a connection: asymmetric

release and symmetric release.

• Asymmetric release is the way the telephone system works: when one

Module 4 The Transport Layer

Page 14

party hangs up, the connection is broken. Symmetric release treats the

connection as two sep- arate unidirectional connections and requires

each one to be released separately.

• Asymmetric release is abrupt and may result in data loss. Consider the

scen- ario of Fig. 6-12. After the connection is established, host 1 sends

a segment that arrives properly at host 2.

Figure 6-12. Abrupt disconnection with loss of data.

• Then host 1 sends another segment. Unfortunately, host 2

issues a DISCONNECT before the second segment arrives. The

result is that the connection is released and data are lost.

o There is a famous prob- lem that illustrates this issue. It is called the two-

army problem.

o Imagine that a white army is encamped in a valley, as shown in Fig. 6-13. On

both of the sur- rounding hillsides are blue armies.

o The white army is larger than either of the blue armies alone, but together

the blue armies are larger than the white army

Module 4 The Transport Layer

Page 15

Blue
army
#1

White army

Figure 6-13. The two-army problem

o If either blue army attacks by itself, it will be defeated, but if the two blue

armies at- tack simultaneously, they will be victorious.
o The blue armies want to synchronize their attacks. However, their only com-

munication medium is to send messengers on foot down into the valley,
where they might be captured and the message lost (i.e., they have to use an
unreliable communication channel).

▪ In Fig. 6-14(a), we see the normal case in which one of the users sends a DR

(DISCONNECTION REQUEST) segment to initiate the connection release.
When it arrives, the recipient sends back a DR segment and starts a timer, just
in case its DR is lost.

▪ When this DR arrives, the original sender sends back an ACK segment and
releases the connection. Finally, when the ACK segment arrives, the receiver
also releases the connection.

▪ . Releasing a connection means that the transport entity removes the
information about the connection from its table of currently open connections
and signals the connection’s owner (the transport user) somehow.

▪ If the final ACK segment is lost, as shown in Fig. 6-14(b), the situation is
saved by the timer. When the timer expires, the connection is released
anyway.

▪ In Fig. 6-14(c), we see how this works, assuming that the second time no

segments are lost and all segments are delivered correctly and on time.

▪ Our last scenario, Fig. 6-14(d), is the same as Fig. 6-14(c) except that now
we assume all the repeated attempts to retransmit the DR also fail due to lost
seg- ments.

Blue
army
#2

Module 4 The Transport Layer

Page 16

Figure 6-14. Four protocol scenarios for releasing a connection. (a) Normal case

of three-way handshake. (b) Final ACK lost. (c) Response lost. (d) Re- sponse lost

and subsequent DRs lost.

6.2.4 Error Control and Flow Control

• Error control is ensuring that the data is deliv- ered with the desired

level of reliability, usually that all of the data is delivered without

any errors.

• Flow control is keeping a fast transmitter from overrunning a

slow receiver.

Given that these mechanisms are used on frames at the link layer, it is natural

to wonder why they would be used on segments at the transport layer as well.

1 A frame carries an error-detecting code (e.g., a CRC or checksum) that

is used to check if the information was correctly received.

2 A frame carries a sequence number to identify itself and is retrans-

mitted by the sender until it receives an acknowledgement of suc-

cessful receipt from the receiver. This is called ARQ (Automatic

Repeat reQuest).

3 There is a maximum number of frames that the sender will allow to be

outstanding at any time, pausing if the receiver is not acknowledg-ing

frames quickly enough. If this maximum is one packet the proto- col

Module 4 The Transport Layer

Page 17

is called stop-and-wait. Larger windows enable pipelining and

improve performance on long, fast links.

4 The sliding window protocol combines these features and is also used

to support bidirectional data transfer.

o In Fig. 6-15(a). Howev- er, if there is wide variation in segment size, from
short requests for Web pages to large packets in peer-to-peer file transfers, a
pool of fixed-sized buffers presents problems.

o Another approach to the buffer size problem is to use variable-sized
buffers,as in Fig. 6-15(b).

o A third possibility is to dedicate a single large circular buffer per connection,
as in Fig. 6-15(c).

• Figure 6-16 shows an example of how dynamic window management might work

in a datagram network with 4-bit sequence numbers.

• Initially, A wants eight buffers, but it is granted only four of these. It then sends

three segments, of which the third is lost.

• Segment 6 acknowledges receipt of all segments up to and including sequence

number 1, thus allowing A to release those buffers, and furthermore informs A that

it has permission to send three more segments starting beyond 1 (i.e., segments 2,

3, and 4).

• The next segment from B to A allocates another buffer and allows A to

continue. This will happen when B has bufferspace, likely because the

transport user has accepted more segment data.

Module 4 The Transport Layer

Page 18

A Message B Comments

1 < request 8 buffers>

2 <ack = 15, buf = 4>

3 <seq = 0, data = m0>

4 <seq = 1, data = m1>

5 <seq = 2, data = m2>

6 <ack = 1, buf = 3>

7 <seq = 3, data = m3>

8 <seq = 4, data = m4>

9 <seq = 2, data = m2>

10 <ack = 4, buf = 0>

11 <ack = 4, buf = 1>

12 <ack = 4, buf = 2>

13 <seq = 5, data = m5>

14 <seq = 6, data = m6>

15 <ack = 6, buf = 0>

16 <ack = 6, buf = 4>

A wants 8 buffers

B grants messages 0-3 onlyA

has 3 buffers left now

A has 2 buffers left now

Message lost but A thinks it has 1 leftB

acknowledges 0 and 1, permits 2-4A has

1 buffer left

A has 0 buffers left, and must stopA

times out and retransmits

Everything acknowledged, but A still blockedA

may now send 5

B found a new buffer somewhereA

has 1 buffer left

A is now blocked againA

is still blocked Potential

deadlock

Module 4 The Transport Layer

Page 19

Figure 6-16. Dynamic buffer allocation. The arrows show the direction oftransmission. An

ellipsis (...) indicates a lost segment.

o Lookat line 16. B has now allocated more buffers to A, but the allocation segment

was lost. Oops. Since control segments are not sequenced or timed out, A is now
deadlocked.

o When buffer space no longer limits the maximum flow, another bottleneckwill
appear: the carrying capacity of the network.

6.2.5 Multiplexing

• When a segment comes in, some way is needed to tell which process to give it to. This

situation, called multiplexing, is shown in Fig. 6-17(a).

• If a user needs more bandwidth or more reliability than one of the network paths can

pro- vide, a way out is to have a connection that distributes the traffic among multiple

network paths on a round-robin basis, as indicated in Fig. 6-17(b). This modus operandi

is called inverse multiplexing.

• SCTP (Stream Control Transmission Protocol), which can runa connection using

multiple network interfaces.

6.2.6 Crash Recovery
If hosts and routers are subject to crashes or connections are long-lived (e.g., large

software or media downloads), recovery from these crashes becomes an issue. If the

transport entity is entirely within the hosts, recovery from network and router crashes

is straightforward. The transport entities expect lost segments all the time and know

how to cope with them by using retransmissions.

Module 4 The Transport Layer

Page 20

6.3 CONGESTION CONTROL

• If the transport entities on many machines send too many packets into the net- work too quickly,

the network will become congested, with performance degraded as packets are delayed and

lost.

• Controlling congestion to avoid this problem is the combined responsibility of the network and

transport layers.

• Congestion oc- curs at routers, so it is detected at the network layer. However, congestion is

ulti- mately caused by traffic sent into the network by the transport layer.

• The Internet relies heavily on the transport layer for congestion control, and specific
algorithms are built into TCP and other protocols.

6.3.1 Desirable Bandwidth Allocation

• we must specify the state in which a good congestion control algorithm will operate the network

• The goal is more than to simply avoid congestion. It is to find a good al- location of bandwidth

to the transport entities that are using the network

Module 4 The Transport Layer

Efficiency and Power

• An efficient allocation of bandwidth across transport entities will use all of the network

capacity that is available. However, it is not quite right to think that if there is a 100-Mbps link,

five transport entities should get 20 Mbps each.

• The goodput (or rate of useful packets arriving at the receiver) as a function of the offered

load. This curve and a matching curve for the delay as a function of the offered load are

given in Fig. 6-19.

• As the load increases in Fig. 6-19(a) goodput initially increases at the same rate, but as the load

approaches the capacity, goodput rises more gradually.

• This falloff is because bursts of traffic can occasionally mount up and cause some losses at

buffers inside the network.

• In this state, senders are furiously sending packets, but in- creasingly little useful work is being

accomplished.

• The corresponding delay is given in Fig. 6-19(b). Initially the delay is fixed, representing the

propagation delay across the network.

• As the load approaches the capacity, the delay rises, slowly at first and then much more rapidly

• The delay cannot really go to infinity, except in a model in which the routers have infinite

buffers. Instead, packets will be lost after experiencing the maximum buffering delay

▪ For both goodput and delay, performance begins to degrade at the onset of congestion.

▪ This point is be- low the capacity. To identify it, Kleinrock (1979) proposed the metric of

power, where power
load

Max-Min Fairness

•

Perhaps the first consideration is to ask what this problem has to do with con- gestion control.

After all, if the network gives a sender some amount of bandwidth to use, the sender should

just use that much bandwidth.

• They may for some flows if quality of service is supported, but many connections will seek to

use whatever bandwidth is available or be lumped together by the network under a common

allocation.

• A second consideration is what a fair portion means for flows in a network. Itis simple enough

if N flows use a single link, in which case they can all have 1/N of the bandwidth.

• An allocation is max-min fair if the bandwidth given to one flow cannot be increased without

decreasing the bandwidth given to another flow with an alloca- tion that is no larger.

• A third consideration is the level over which to consider fairness. A network could be fair at

the level of connections, connections between a pair of hosts, orall connections per host.

delay

Module 4 The Transport Layer

Page 22

1

Flow 1

0.5

Flow 2 starts

Flow 3 Flow 2 stops

o Let us see an example. A max-min fair allocation is shown for a network with four flows, A, B,

C, and D, in Fig. 6-20. Each of the links between routers has the same capacity, taken to be 1

unit, though in the general case the links will have different capacities.

o Notice that all of the other links have spare capacity. However, this capacity cannot be given to

any of the flows without decreasing the capacity of another, lower flow.

Convergence

• A final criterion is that the congestion control algorithm converges quickly to a fair and efficient

allocation of bandwidth.

• A good congestion control algorithm should rapidly converge to the ideal operating point, and

it should track that point as it changes over time.

0 1 4 9

Time (secs)

Figure 6-21. Changing bandwidth allocation over time.

o An example of a bandwidth allocation that changes over time and converges quickly is

shown in Fig. 6-21,

o Initially, flow 1 has all of the bandwidth. One sec- ond later, flow 2 starts. It needs

bandwidth as well.

o The first flow quickly captures 80% of the bandwidth. At all times, the total allocated

bandwidth is approximately 100%, so that the network is fully used, and competing

B
a
n
d
w

id
th

 a
llo

c
a
ti
o

n

Module 4 The Transport Layer

Page 23

flows get equal treatment.

6.3.2 Regulating the Sending Rate

• The first is flow control, in the case that there is insufficient buffering at the

receiver.

Module 4 The Transport Layer

Page 24

network

• The second is congestion, in the case that there is insufficient capaci- ty in the

network

o In Fig. 6-22, we see this problem illustrated hydraulically. In Fig. 6-22(a), we see a thick pipe

leading to a small-capacity receiver. This is a flow-control limited situation.

o . In Fig. 6-22(b), the limiting factor is not the bucket capacity, but the internal carrying capacity

of the network.

Transmission rate adjustment

(a) (b)

Figure 6-22. (a) A fast network feeding a low-capacity receiver. (b) A slownetwork feeding a

high-capacity receiver.

o Combinationsare also possible. For example, Windows includes Compound TCP that
uses both packet loss and delay as feedback signals (Tan et al., 2006). These designs
are summarized in Fig. 6-23.

o . The way in which the rates are increased or decreased is given by a control law.
These laws have a major effect on performance.

Protocol Signal Explicit? Precise?

XCP Rate to use Yes Yes

TCP with ECN Congestion warning Yes No

FAST TCP End-to-end delay No Yes

Compound TCP Packet loss & end-to-end delay No Yes

CUBIC TCP Packet loss No No

TCP Packet loss No No

Internal

Module 4 The Transport Layer

Page 25

6.3.3 Wireless Issues

Figure 6-23. Signals of some congestion control protocols.

• Chiu and Jain (1989) studied the case of binary congestion feedback and con- cluded that

AIMD (Additive Increase Multiplicative Decrease) is the appropr- iate control law to arrive

at the efficient and fair operating point

o The graph in Fig. 6-24 shows the bandwidth allocated to user 1 on the x-axis and to user 2 on

the y-axis.

o This is shown by the dotted efficiency line. A congestion signal is given by the network to both

users when the sum of their allocations crosses this line.

o The intersection of these lines is the de- sired operating point, when both users have the
same bandwidth and all of the net- work bandwidth is used.

o This behavior is the AIMD control law, and it is shown in Fig. 6-25. It can beseen

that the path traced by this behavior does converge to the optimal point thatis both fair

and efficient.

o AIMD is the control law that is used by TCP, based on this argument and an- other

stability argument.

o In Sec. 6.5, we will describe in detail how TCP implements an AIMD control law to

adjust the sending rate and provide congestion control.

o .TCP uses this strategy. If the window size is W and the round-trip time is RTT, the

equivalent rate is W/ RTT.

Module 4 The Transport Layer

Page 26

Wired link Wireless link

• The main issue is that packet loss is often used as a congestion signal, including by TCP as we

have just discussed.

• Wireless networks lose packets all the time due to transmission er- rors.

• To function well, the only packet losses that the congestion control algorithm should observe

are losses due to insufficient bandwidth, not losses due to trans- mission errors.

• One solution to this problem is to mask the wireless losses by using retransmissions over the

wireless link.

Transport with end-to-end congestion control (loss = congestion)

Sender Receiver

Link layer retransmission(loss = transmission

error)

Figure 6-26. Congestion control over a path with a wireless link.

o Fig. 6-26 shows a path with a wired and wireless link for which the masking strategy

is used.

o There are two aspects to note. First, the sender does not necessarily know that the path

includes a wireless link, since all it sees is the wired link to which it is attached.

o Internet paths are heterogeneous and there is no general method for the sender to tell

what kind of links comprise the path.

o This complicates the congestion control problem, as there is no easy way to use
one protocol for wireless links and another protocol for wired links.

6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP

• The Internet has two main protocols in the transport layer, a connectionless protocol

and a connection-oriented one. The protocols complement each other.

• The connectionless protocol is UDP. It does almost nothing beyond sending packets

between applications, letting applications build their own protocols on top as needed.

The connection-oriented protocol is TCP.

• Since UDP isa transport layer protocol that typically runs in the operating system and

protocols that use UDP typically run in user space, these uses might be considered

applications.

Module 4 The Transport Layer

Page 27

6.4.1 Introduction to UDP

• The Internet protocol suite supports a connectionless transport protocol called UDP (User

Datagram Protocol).

• UDP provides a way for applications to send encapsulated IP datagrams without having to

establish a connection.

• UDP transmits segments consisting of an 8-byte header followed by the pay- load. The header

is shown in Fig. 6-27.

• The two ports serve to identify the end- points within the source and destination machines.

• By copying the Source port field from the incoming segment into the Destination port field of

the outgoing segment, the process sending the reply can specify which process on the sending

machine is to get it.

32 Bit

Source port Destination port

UDP length UDP checksum

Figure 6-27. The UDP header.

• The pseudoheader for the case of IPv4 is shown in Fig. 6-28.

• It contains the 32-bit IPv4 addresses of the source and destination machines, the protocol
number for UDP (17), and the byte count for the UDP segment (including the header).

32 Bits

Source address

Destination address

0 0 0 0 0 0 0 0

Protocol = 17

UDP length

Figure 6-28. The IPv4 pseudoheader included in the UDP checksum.

• It does not do flow control, congestion control, or retransmission upon receipt of a bad segment.

6.4.2 Remote Procedure Call

• In a certain sense, sending a message to a remote host and getting a reply back is a lot like

making a function call in a programming language.

• This observation has led people to try to arrange request-reply interactions on networks

to be cast in the form of procedure calls.

• When a process on machine 1 calls a procedure on machine 2, the calling process on 1 is

suspended and execution of the called pro- cedure takes place on 2.

• Information can be transported from the caller to the cal- lee in the parameters and can come

back in the procedure result.

Module 4 The Transport Layer

Page 28

• No message pas- sing is visible to the application programmer. This technique is known as RPC

(Remote Procedure Call)

• In the simplest form, to call a remote procedure, the client program must be bound with a small

library procedure, called the client stub.

• The represent the server procedure in the client’s address space. Similarly, the server is bound

with a procedure called the server stub.

o The actual steps in making an RPC are shown in Fig. 6-29. Step 1 is the cli- ent calling

the client stub. This call is a local procedure call, with the parameters pushed onto the

stack in the normal way.

o Step 2 is the client stub packing the pa- rameters into a message and making a system

call to send the message. Packing the parameters is called marshaling.

o Step 3 is the operating system sending the message from the client machine to the server

machine.

o Step 4 is the operating system passing the incoming packet to the server stub.

o Finally, step 5 is the server stub calling the server procedure with the unmarshaled

parameters.

Figure 6-29. Steps in making a remote procedure call. The stubs are shaded.

6.4.3 Real-Time Transport Protocols

• Thus was RTP (Real-time Transport Protocol) born. It is described in RFC 3550 and is now

in widespread use for multimedia applications.

• The first is the RTP protocol for transporting audio and video data in packets.

• The second is the processing that takes place, mostly at the receiver, to play out the audio and

video at the right time.

Module 4 The Transport Layer

Page 29

➢ RTP—The Real-time Transport Protocol

• The basic function of RTP is to multiplex several real-time data streams ontoa single stream

of UDP packets.

• The UDP stream can be sent to a single destina- tion (unicasting) or to multiple destinations

(multicasting).

• The RTP header is illustrated in Fig. 6-31. It consists of three 32-bit words and potentially

some extensions.

• The first word contains the Version field, which is already at 2. Let us hope this version is very

close to the ultimate version since there is only one code point left.

32 bits

Ver. P X CC M Payload type Sequence number

Timestamp

Synchronization source identifier

Contributing source identifier

Figure 6-31. The RTP header.

• The M bit is an application-specific marker bit. It can be used to mark the start of a

video frame, the start of a word in an audio channel, or some- thing else that the

application understands.

➢ RTCP—The Real-time Transport Control Protocol

• RTP has a little sister protocol (little sibling protocol?) called RTCP (Real- time

Transport Control Protocol).

• The first function can be used to provide feedback on delay, variation in delay or jitter,

bandwidth, congestion, and other network properties to the sources

• The Payload type field is used to tell the destination what encoding algorithm is used

for the current packet, making it possible to vary it on demand.

• RTCP also handles interstream synchronization. The problem is that different streams

may use different clocks, with different granularities and different drift rates.

➢ Playout with Buffering and Jitter Control

• The packets are injected with exactly the right intervals be- tween them at the sender, they will

reach the receiver with different relative times. This variation in delay is called jitter.

• The solution to this problem is to buffer packets at the receiver before they are played out to

reduce the jitter.

o As an example, in Fig. 6-32 we see a stream of packets being delivered with a

substantial amount of jitter.

o Packet 1 is sent from the server at t sec and arrives at the client at t sec. 0 1

Module 4 The Transport Layer

Page 30

o As the packets arrive, they are buffered on the client machine.

• A key consideration for smooth playout is the playback point, or how long to

wait at the receiver for media before playing it out. Deciding how long to wait depends on the jitter.

o The difference between a low-jitter and high-jitter con- nection is shown in Fig. 6-33.

o The average delay may not differ greatly between the two, but if there is high jitter the playback

point may need to be much further out to capture 99% of the packets than if there is low jitter.

o One way to avoid this problem for audio isto adapt the playback point between talkspurts, in

the gaps in a conversation.

6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP

• UDP is a simple protocol and it has some very important uses, such as client- server interactions

and multimedia, but for most Internet applications, reliable, se- quenced delivery is needed.

• UDP cannot provide this, so another protocol is re- quired. It is called TCP and is the main

workhorse of the Internet.

6.5.1 Introduction to TCP

• TCP (Transmission Control Protocol) was specifically designed to providea reliable end-to-

end byte stream over an unreliable internetwork.

• An internet- work differs from a single network because different parts may have wildly dif-

ferent topologies, bandwidths, delays, packet sizes, and other parameters.

• TCP was designed to dynamically adapt to properties of the internetwork and to be robust

Module 4 The Transport Layer

Page 31

in the face of many kinds of failures.

6.5.2 The TCP Service Model

• TCP service is obtained by both the sender and the receiver creating end points, called sockets.

• Each socket has a socket num- ber (address) consisting of the IP address of the host and a 16-

bit number local to that host, called a port.

• Port numbers below 1024 are reserved for standard services that can usually only be started by

privileged users (e.g., root in UNIX systems). They are called well-known ports.

Port Protocol Use

20, 21 FTP File transfer

22 SSH Remote login, replacement for Telnet

25 SMTP Email

80 HTTP World Wide Web

110 POP-3 Remote email access

143 IMAP Remote email access

443 HTTPS Secure Web (HTTP over SSL/TLS)

543 RTSP Media player control

631 IPP Printer sharing

Figure 6-34. Some assigned ports.

o The list of well-known ports is given at www.iana.org. Over 700 havebeen assigned. A
few of the better-known ones are listed in Fig. 6-34.

• Doing so would clutter up memory with daemons that were idle most of the time.

Instead, what is commonly done is to have a single daemon, called inetd (Internet

daemon) in UNIX, attach itself to multiple ports and wait for the first incoming

connection.

• All TCP connections are full duplex and point-to-point. Full duplex means that traffic

can go in both directions at the same time. Point-to-point means that each connection

has exactly two end points.

o if the sending process does four 512-byte writes to a TCP stream, these data may be delivered

to the receiving process as four 512-byte chunks, two 1024-byte chunks, one 2048-byte chunk

(seeFig. 6-35), or some other way.

o The reader of a file cannot tell whether the file was written a block at a time, a byte at a time,

or all in one blow.

http://www.iana.org/

Module 4 The Transport Layer

Page 32

Data (optional)

Urgent pointer Checksum

Window size

F
I
N

S
Y
N

R
S
T

P
S
H

A
C
K

U
R
G

E
C
E

C
W
R

TCP

header

Acknowledgement number

Sequence number

Destination port Source port

o For Internet archaeologists, we will also mention one interesting feature of TCP service that

remains in the protocol but is rarely used: urgent data.

6.5.3 The TCP Protocol

• A TCP segment consists of a fixed 20-byte header (plus an optional part) followed

by zero or more data bytes.

• The TCP software decides how big segments should be. It can accumulate data from

several writes into one segment or can split data from one write over multiple

segments.

• Two limits restrict the segment size. First, each segment, including the TCP header,

must fit in the 65,515- byte IP payload. Second, each link has an MTU (Maximum

• The basic protocol used by TCP entities is the sliding window protocol with a dynamic

window size.

• When a sender transmits a segment, it also starts a timer. When the segment arrives

at the destination, the receiving TCP entity sends back a segment.

6.5.4 The TCP Segment Header

o Figure 6-36 shows the layout of a TCP segment. Every segment begins with a fixed-format, 20-

byte header.

o . The fixed header may be followed by header options. After the options, if any, up to 65,535

20 20 65, 495 data bytes may follow, where the first 20 refer to the IP header and the second

to the TCP header.

32 Bits

Figure 6-36. The TCP header.

o This connection identifier is called a 5 tuple because it consists of five pieces of
information: the protocol (TCP), source IP and source port, and destination IP and
destination port.

Module 4 The Transport Layer

Page 33

o It is a cumulative acknowledgement because it summarizes the received data with
a single number.

o The TCP header length tells how many 32-bit words are contained in the TCP header.
o The Urgent pointer is used to indicate a byte offset from the current sequence

number at which urgent data are to be found.

o A widely used option is the one that allows each host to specify the MSS (Maximum
Segment Size) it is willing to accept.

o The window scale option allows the sender and receiver to negotiate a window scale
factor at the start of a connection.

o The timestamp option carries a timestamp sent by the sender and echoed by the
receiver.

o The PAWS (Protection Against Wrapped Sequence numbers) scheme discards
ar- riving segments with old timestamps to prevent this problem.

o Finally, the SACK (Selective ACKnowledgement) option lets a receiver tell a
sender the ranges of sequence numbers that it has received.

6.5.5 TCP Connection Establishment

• When this segment arrives at the destination, the TCP entity there checks to see if there is a

process that has done a LISTEN on the port given in the Destination port field.

o The sequence of TCP segments sent in the normal case is shown in Fig. 6-37(a).

o In the event that two hosts simultaneously attempt to establish a connection between

the same two sockets, the sequence of events is as illustrated in Fig. 6- 37(b).

• A vulnerability with implementing the three-way handshake is that the listening process must

remember its sequence number as soon it responds with its own SYN segment.

• This means that a malicious sender can tie up resources ona host by sending a stream of SYN

segments and never following through to com- plete the connection. This attack is called a

SYN flood.

• One way to defend against this attack is to use SYN cookies. Instead of remembering the

sequence number, a host chooses a cryptographically generated sequence number, puts it on the

outgoing segment, and forgets it.

Module 4 The Transport Layer

Page 34

• There are some caveats, such as the inability to handle TCP options, so SYN cookies may be

used only when the hostis subject to a SYN flood.

6.5.6 TCP Connection Release

• To release a connection, either party can send a TCP segment with the FIN bit set,

which means that it has no more data to transmit.

• Data may continue to flow indefinitely in the other direction, how- ever. When both

directions have been shut down, the connection is released.

• There is, in fact, no essential difference between the two hosts releasing sequentially

or simultaneously.

6.5.7 TCP Connection Management Modeling

• The steps required to establish and release connections can be represented in a finite state

machine with the 11 states listed in Fig. 6-38.

• In each state, certain events are legal. When a legal event happens, some action may be taken.

• Each connection starts in the CLOSED state. It leaves that state when it does either a passive

open (LISTEN) or an active open (CONNECT).

• If the other side does the opposite one, a connection is established and the state becomes ESTA-

BLISHED.

• Connection release can be initiated by either side. When it is com- plete, the state returns
to CLOSED.

State Description

CLOSED No connection is active or pending

LISTEN The server is waiting for an incoming call

SYN RCVD A connection request has arrived; wait for ACK

SYN SENT The application has started to open a connection

ESTABLISHED The normal data transfer state

FIN WAIT 1 The application has said it is finished

FIN WAIT 2 The other side has agreed to release

TIME WAIT Wait for all packets to die off

CLOSING Both sides have tried to close simultaneously

CLOSE WAIT The other side has initiated a release

LAST ACK Wait for all packets to die off

Figure 6-38. The states used in the TCP connection management finite state machine.

o The finite state machine itself is shown in Fig. 6-39. The common case of a client

actively connecting to a passive server is shown with heavy lines—solid for the client,

dotted for the server.

o Each line in Fig. 6-39 is marked by an event/action pair. The event can either bea

user-initiated system call (CONNECT, LISTEN, SEND, or CLOSE), a segment arrival (SYN,

FIN, ACK, or RST), or, in one case, a timeout of twice the maximum packet lifetime.

Module 4 The Transport Layer

Page 35

o When an application program on the client machine issues a CONNECT re- quest, the

local TCP entity creates a connection record, marks it as being in the SYN SENT state,

and shoots off a SYN segment.

o When the ACK arrives, a transition is made to the state FIN WAIT 2 and one direction

of the connection is closed. When the other side closes, too, a FIN comes in, which is

acknowledged.

o When a SYN comes in, it is acknowledged and the server goes to the SYN RCVD state.

When the server’s SYN is itself acknowledged, the three-way handshake is complete

and the server goes to the ESTABLISHED state. Data transfer can now occur.

o When the client is done transmitting its data, it does a CLOSE, which causes a FIN to

arrive at the server (dashed box marked ‘‘passive close’’).

o The server is then signaled. When it, too, does a CLOSE, a FIN is sent to the client.

Module 5: Application Layer

Dept of CSE Page 1

Module 5

APPLICATION LAYER

Principles of Network Applications

Network application development is writing programs that run on different end systems and

communicate with each other over the network.

For example, in the Web application there are two distinct programs that communicate with each

Web server host.

Network Application Architectures.

There are two different network application architecture, they are

1) Client Server Architecture

2) P2P Architecture

Client Server Architecture:

 In client-server architecture, there is an always-on host, called the server, which provides

services when it receives requests from many other hosts, called clients.

Example: In Web application Web server services requests from browsers running on client

hosts. When a Web server receives a request for an object from a client host, it responds by

sending the requested object to the client host.

 In client-server architecture, clients do not directly communicate with each other.

 The server has a fixed, well-known address, called an IP address. Because the server has a

fixed, well-known address, and because the server is always on, a client can always contact

 address.

 Some of the better-known applications with a client-server architecture include the Web,

FTP, Telnet, and e-mail.

Module 5: Application Layer

Dept of CSE Page 2

Client Server Architecture

 In a client-server application, a single-server host is incapable of keeping up with all the

requests from clients. For this reason, a data center, housing a large number of hosts, is often

used to create a powerful virtual server.

 The most popular Internet services such as search engines (e.g., Google and Bing), Internet

commerce (e.g., Amazon and e-Bay), Web-based email (e.g., Gmail and Yahoo Mail), social

networking (e.g., Facebook and Twitter) employ one or more data centers.

Peer-to-peer (P2P) Architecture:

 In a P2P architecture, there is minimal dependence on dedicated servers in data centers.

 The application employs direct communication between pairs of intermittently connected

hosts, called peers.

 The peers are not owned by the service provider, but are instead desktops and laptops

controlled by users, with most of the peers residing in homes, universities, and offices.

 Many of most popular and traffic-intensive applications are based on P2P

architectures. These applications include file sharing (e.g., BitTorrent), Internet Telephony

(e.g., Skype), and IPTV (e.g., Kankan and PPstream).

 Features:

 Self-scalability:

For example, in a P2P file-sharing application, although each peer generates workload by

requesting files, each peer also adds service capacity to the system by distributing files to

other peers.

 Cost effective:

Module 5: Application Layer

Dept of CSE Page 3

server infrastructure and server bandwidth

P2P Architecture

Future P2P applications face three major challenges:

1. ISP Friendly.

usage, that is, for much more downstream than upstream traffic. But P2P video streaming

and file distribution applications shift upstream traffic from servers to residential ISPs,

thereby putting significant stress on the ISPs. Future P2P applications need to be designed so

that they are friendly to ISPs

2. Security. Because of their highly distributed and open nature, P2P applications can be a

challenge to secure

3. Incentives. The success of future P2P applications also depends on convincing users to

volunteer bandwidth, storage, and computation resources to the applications, which is the

challenge of incentive design.

Processes Communicating

 A Process is a program or application under execution.

 When processes are running on the same or different end system, they can communicate with

each other with inter process communication, using rules that are governed by the end

Module 5: Application Layer

Dept of CSE Page 4

 Processes on two different end systems communicate with each other by exchanging

messages across the computer network. A sending process creates and sends messages into

the network; a receiving process receives these messages and possibly responds by sending

messages back.

Client and Server Processes

 A network application consists of pairs of processes that send messages to each other over a

network.

For example, in the Web application a client browser process exchanges messages with a

Web server process.

 In the context of a communication session between a pair of processes, the process that

initiates the communication is labeled as the client. The process that waits to be contacted to

begin the session is the server.

The Interface between the Process and the Computer Network

 A process sends messages into, and receives messages from, the network through a software

interface called a socket.

 It is also referred to as the Application Programming Interface (API) between the application

and the network, since the socket is the programming interface with which network

applications are built.

 The application at the sending side pushes messages through the socket. At the other side of

the socket, the transport-layer protocol has the responsibility of getting the messages to the

socket of the receiving process.

Module 5: Application Layer

Dept of CSE Page 5

Application processes, sockets, and underlying transport protocol

Addressing Processes

 For a process running on one host to send packets to a process running on another host, the

receiving process needs to have an address.

 To identify the receiving process, two pieces of information need to be specified:

(1) The address of the host

(2) An identifier that specifies the receiving process in the destination host.

 In the Internet, the host is identified by its IP address.

 In addition to knowing the address of the host to which a message is destined, the sending

process must also identify the receiving process running in the host. A destination port

number serves this purpose. Popular applications have been assigned specific port numbers.

For example, a Web server is identified by port number 80. A mail server process (using the

SMTP protocol) is identified by port number 25.

Transport Services Available to Applications

1) Reliable Data Transfer

 Packets can get lost within a computer network. For example, a packet can overflow a buffer

in a router, or can be discarded by a host or router after having some of its bits corrupted.

Module 5: Application Layer

Dept of CSE Page 6

 For many applications such as electronic mail, file transfer, remote host access, Web

document transfers, and financial applications data loss can have devastating consequences.

 Thus, to support these applications, something has to be done to guarantee that the data sent

by one end of the application is delivered correctly and completely to the other end of the

application.

 If a protocol provides such a guaranteed data delivery service, it is said to provide reliable

data transfer. One important service that a transport-layer protocol can potentially provide to

an application is process-to-process reliable data transfer.

 When a transport protocol provides this service, the sending process can just pass its data into

the socket and know with complete confidence that the data will arrive without errors at the

receiving process.

 When a transport- some of the data sent

by the sending process may never arrive at the receiving process. This may be acceptable for

loss-tolerant applications, most notably multimedia applications such as conversational

audio/video that can tolerate some amount of data loss.

2) Throughput

 Transport-layer protocol could provide guaranteed available throughput at some specified

rate.

 With such a service, the application could request a guaranteed throughput of r bits/sec, and

the transport protocol would then ensure that the available throughput is always at least r

bits/sec. Such a guaranteed throughput service would appeal to many applications.

For example, if an Internet telephony application encodes voice at 32 kbps, it needs to send

data into the network and have data delivered to the receiving application at this rate.

 If the transport protocol cannot provide this throughput, the application would need to encode

at a lower rate or may have to give up.

 Applications that have throughput requirements are said to be bandwidth-sensitive

applications. Many current multimedia applications are bandwidth sensitive

 Elastic applications can make use of as much, or as little, throughput as happens to be

available. Electronic mail, file transfer, and Web transfers are all elastic applications.

Module 5: Application Layer

Dept of CSE Page 7

3) Timing

 A transport-layer protocol can also provide timing guarantees.

 Interactive real-time applications, such as Internet telephony, virtual environments,

teleconferencing, and multiplayer games require tight timing constraints on data delivery in

order to be effective.

4) Security

 Transport protocol can provide an application with one or more security services.

For example, in the sending host, a transport protocol can encrypt all data transmitted by the

sending process, and in the receiving host, the transport-layer protocol can decrypt the data

before delivering the data to the receiving process.

 A transport protocol can provide security services like confidentiality, data integrity and end-

point authentication.

Transport Services Provided by the Internet

The Internet makes two transport protocols available to applications, UDP and TCP.

Requirements of selected network applications

Module 5: Application Layer

Dept of CSE Page 8

TCP Services

The TCP service model includes a connection-oriented service and a reliable data transfer

service.

1) Connection-oriented service:

 In TCP the client and server exchange transport layer control information with each other

before the application-level messages begin to flow.

 This handshaking procedure alerts the client and server, allowing them to prepare for an

onslaught of packets.

 After the handshaking phase, a TCP connection is said to exist between the sockets of the

two processes.

 The connection is a full-duplex connection in that the two processes can send messages to

each other over the connection at the same time.

 When the application finishes sending messages, it must tear down the connection.

2) Reliable data transfer service:

 The communicating processes can rely on TCP to deliver all data sent without error and in

the proper order.

 When one side of the application passes a stream of bytes into a socket, it can count on TCP

to deliver the same stream of bytes to the receiving socket, with no missing or duplicate

bytes.

TCP also includes a congestion-control mechanism.

UDP Services

 UDP is connectionless, so there is no handshaking before the two processes start to

communicate.

 UDP provides an unreliable data transfer service that is, when a process sends a message

into a UDP socket, UDP provides no guarantee that the message will ever reach the receiving

process.

 UDP does not include a congestion-control mechanism, so the sending side of UDP can

Module 5: Application Layer

Dept of CSE Page 9

pump data into the layer below (the network layer) at any rate it pleases.

Popular Internet applications, their application-layer protocols, and their underlying transport

protocols

Application-Layer Protocols

An application-layer protocol defines:

 The types of messages exchanged, for example, request messages and response messages

 The syntax of the various message types, such as the fields in the message and how the fields

are delineated

 The semantics of the fields, that is, the meaning of the information in the fields

 Rules for determining when and how a process sends messages and responds to messages.

The Web and HTTP

Overview of HTTP

heart of the Web.

-layer protocol, is at the

HTTP is implemented in two programs: a client program and a server program. The client

program and server program, executing on different end systems, talk to each other by

exchanging HTTP messages. HTTP defines the structure of these messages and how the

Module 5: Application Layer

Dept of CSE Page 10

client and server exchange the messages.

A Web page consists of objects. An object is simply a file like HTML file, a JPEG image, a

Java applet, or a video clip that is addressable by a single URL.

Most Web pages consist of a base HTML file and several referenced objects. For example, if

a Web page contains HTML text and five JPEG images, then the Web page has six objects:

the base HTML file plus the five images.

The base HTML file references the other objects in

URL has two components: the hostname of

path name.

HTTP defines how Web clients request Web pages from Web servers and how servers

transfer Web pages to clients.

When a user requests a Web page (for example, clicks on a hyperlink), the browser sends

HTTP request messages for the objects in the page to the server. The server receives the

requests and responds with HTTP response messages that contain the objects.

HTTP uses TCP as its underlying transport protocol. The HTTP client first initiates a TCP

connection with the server. Once the connection is established, the browser and the server

processes access TCP through their socket interfaces.

It is important to note that the server sends requested files to clients without storing any state

information about the client. If a particular client asks for the same object twice in a period of

a few seconds, the server does not respond by saying that it just served the object to the

client; instead, the server resends the object, as it has completely forgotten what it did earlier.

Because an HTTP server maintains no information about the clients, HTTP is said to be a

stateless protocol.

Module 5: Application Layer

Dept of CSE Page 11

Non-Persistent and Persistent Connections

If Separate TCP connection is used for each request and response, then the connection is said to

be non persistent. If same TCP connection is used for series of related request and response, then

the connection is said to be persistent.

HTTP with Non-Persistent Connections

these objects reside on the same server.

Further suppose the URL for the base HTML file is

http://www.someSchool.edu/someDepartment/home.index

Here is what happens:

1. The HTTP client process initiates a TCP connection to the server www.someSchool.edu on

port number 80, which is the default port number for HTTP. Associated with the TCP

connection, there will be a socket at the client and a socket at the server.

2. The HTTP client sends an HTTP request message to the server via its socket. The request

message includes the path name /someDepartment/home.index.

3. The HTTP server process receives the request message via its socket, retrieves the object

/someDepartment/home.index from its storage (RAM or disk), encapsulates the object in an

HTTP response message, and sends the response message to the client via its socket.

4. The HTTP server process tells TCP to close the TCP connection.

http://www.someschool.edu/someDepartment/home.index
http://www.someschool.edu/

Module 5: Application Layer

Dept of CSE Page 12

-

5. The HTTP client receives the response message. The TCP connection terminates. The

message indicates that the encapsulated object is an HTML file. The client extracts the file

from the response message, examines the HTML file, and finds references to the 10 JPEG

objects.

6. The first four steps are then repeated for each of the referenced JPEG objects.

 Round-trip time (RTT) is the time it takes for a small packet to travel from client to server

and then back to the client.

 The RTT includes packet-propagation delays, packet queuing delays in intermediate routers

and switches, and packet-processing delays.

 When a user clicks on a hyperlink, the browser initiate a TCP connection between the

browser and the Web server; this invo the client sends a small

TCP segment to the server, the server acknowledges and responds with a small TCP segment,

and, finally, the client acknowledges back to the server.

The first two parts of the three way handshake take one RTT.

After completing the first two parts of the handshake, the client sends the HTTP request

message combined with the third part of the three-way handshake (the acknowledgment) into

the TCP connection.

Module 5: Application Layer

Dept of CSE Page 13

 Once the request message arrives at the server, the server sends the HTML file into the TCP

connection. This HTTP request/response eats up another RTT. Thus, roughly, the total

response time is two RTTs plus the transmission time at the server of the HTML file.

Non-persistent connections have some shortcomings(disadvantages) they are.

1. A brand-new connection must be established and maintained for each requested object. For

each of these connections, TCP buffers must be allocated and TCP variables must be kept in

both the client and server. This can place a significant burden on the Web server, which may

be serving requests from hundreds of different clients simultaneously.

2. Each object suffers a delivery delay of two RTTs one RTT to establish the TCP connection

and one RTT to request and receive an object.

HTTP with Persistent Connections

With persistent connections, the server leaves the TCP connection open after sending a response.

Subsequent requests and responses between the same client and server can be sent over the same

connection. In particular, an entire Web page can be sent over a single persistent TCP

connection. Moreover, multiple Web pages residing on the same server can be sent from the

server to the same client over a single persistent TCP connection.

HTTP Message Format Two

types of HTTP messages:

 Request messages and

 Response messages

HTTP Request Message:

Module 5: Application Layer

Dept of CSE Page 14

Where sp space, cr carriage return and lf line feed.

Method:

There are five HTTP methods:

 GET: The GET method is used when the browser requests an object, with the requested

object identified in the URL field.

 POST: With a POST message, the user is still requesting a Web page from the server,

but the specific contents of the Web page depend on what the user entered into the form

fields. If the value of the method field is POST, then the entity body contains what the

user entered into the form fields.

 PUT: The PUT method is also used by applications that need to upload objects to Web

servers.

 HEAD: Used to retrieve header information. It is used for debugging purpose.

 DELETE: The DELETE method allows a user, or an application, to delete an object on a

Web server.

URL: Specifies URL of the requested object

Version: This field represents HTTP version, usually HTTP/1.1

Header line:

The header line Host:www.someschool.edu specifies the host on which the object resides.

By including the Connection:close

want to bother with persistent connections; it wants the server to close the connection after

sending the requested object.

The User-agent: header line specifies the user agent, that is, the browser type that is making the

request to the server. Here the user agent is Mozilla/5.0, a Firefox browser.

Ex:

Host: www.someschool.edu

Connection: close

User-agent: Mozilla/5.0

Accept-language: french

http://www.someschool.edu/
http://www.someschool.edu/

Module 5: Application Layer

Dept of CSE Page 15

The Accept-language: header indicates that the user prefers to receive a French version of the

object, if such an object exists on the server; otherwise, the server should send its default version.

HTTP Response Message

Ex:

The status line has three fields: the protocol version field, a status code, and a corresponding

status message.

Version is HTTP/1.1

HTTP/1.1 200 OK

Connection: close

Date: Tue, 09 Aug 2011 15:44:04 GMT

Server: Apache/2.2.3 (CentOS)

Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT

Content-Length: 6821

Content-Type: text/html

(data data data data data ...)

Module 5: Application Layer

Dept of CSE Page 16

The status code and associated phrase indicate the result of the request. Some common status

codes and associated phrases include:

 200 OK: Request succeeded and the information is returned in the response.

 301 Moved Permanently: Requested object has been permanently moved; the new URL is

specified in Location: header of the response message. The client software will automatically

retrieve the new URL.

400 Bad Request: This is a generic error code indicating that the request could not be

understood by the server.

 404 Not Found: The requested document does not exist on this server.

 505 HTTP Version Not Supported: The requested HTTP protocol version is not supported by

the server.

Header fields:

 The server uses the Connection: close header line to tell the client that it is going to close

the TCP connection after sending the message.

 The Date: header line indicates the time and date when the HTTP response was created

and sent by the server.

 The Server: header line indicates that the message was generated by an Apache Web

server; it is analogous to the User-agent: header line in the HTTP request message.

 The Last-Modified: header line indicates the time and date when the object was created

or last modified.

 The Content-Length: header line indicates the number of bytes in the object being sent.

 The Content-Type: header line indicates that the object in the entity body is HTML text.

User-Server Interaction: Cookies

It is often desirable for a Web site to identify users, either because the server wishes to restrict

user access or because it wants to serve content as a function of the user identity. For these

purposes, HTTP uses cookies.

Cookie technology has four components:

(1) A cookie header line in the HTTP response message;

(2) A cookie header line in the HTTP request message;

Module 5: Application Layer

Dept of CSE Page 17

(3) browser;

(4) A back-end database at the Web site.

Ex:

Suppose a user, who always accesses the Web using Internet Explorer from her home PC,

contacts Amazon.com for the first time. Let us suppose that in the past he has already visited the

eBay site. When the request comes into the Amazon Web server, the server creates a unique

identification number and creates an entry in its back-end database that is indexed by the

identification number. The Amazon Web server then respo

the HTTP response a Set-cookie: header, which contains the identification number.

For example, the header line might be:

Set-cookie: 1678

When users browser receives the HTTP response message, it sees the Set-cookie: header. The

browser then appends a line to the special cookie file that it manages. This line includes the

hostname of the server and the identification number in the Set-cookie: header.

As user continues to browse the Amazon site, each time he requests a Web page, his browser

consults his cookie file, extracts his identification number for this site, and puts a cookie header

line that includes the identification number in the HTTP request. Specifically, each of his HTTP

requests to the Amazon server includes the header line:

Cookie: 1678

Module 5: Application Layer

Dept of CSE Page 18

Web Caching

 A Web cache also called a proxy server is a network entity that satisfies HTTP requests

on the behalf of an origin Webserver.

 The Web cache has its own disk storage and keeps copies of recently requested objects in this

storage.

 be configured so that all of first directed

to the Web cache.

Module 5: Application Layer

Dept of CSE Page 19

Ex: Suppose a browser is requesting the object http://www.someschool.edu/campus.gif. Here

is what happens:

1. The browser establishes a TCP connection to the Web cache and sends an HTTP request

for the object to the Web cache.

2. The Web cache checks to see if it has a copy of the object stored locally. If it does, the

Web cache returns the object within an HTTP response message to the client browser.

3. If the Web cache does not have the object, the Web cache opens a TCP connection to the

origin server, that is, to www.someschool.edu. The Web cache then sends an HTTP

request for the object into the cache-to-server TCP connection.

4. After receiving this request, the origin server sends the object within an HTTP response

to the Web cache.

5. When the Web cache receives the object, it stores a copy in its local storage and sends a

copy, within an HTTP response message, to the client browser (over the existing TCP

connection between the client browser and the Web cache).

When web cache receives requests from and sends responses to a browser, it is a server.

When it sends requests to and receives responses from an origin server, it is a client.

Typically a Web cache is purchased and installed by an ISP. For example, a university might

install a cache on its campus network and configure all of the campus browsers to point to

the cache. Or a major residential ISP (such as AOL) might install one or more caches in its

network and pre configure its shipped browsers to point to the installed caches.

http://www.someschool.edu/campus.gif
http://www.someschool.edu/

Module 5: Application Layer

Dept of CSE Page 20

 Web caching has seen deployment in the Internet for two reasons. First, a Web cache can

substantially reduce the response time for a client request. Second, Web caches can

 link to the Internet.

The Conditional GET

 Although caching can reduce user-perceived response times, it introduces a new problem

the copy of an object residing in the cache may be stale. In other words, the object housed in

the Web server may have been modified since the copy was cached at the client.

 HTTP has a mechanism that allows a cache to verify that its objects are up to date. This

mechanism is called the conditional GET.

 An HTTP request message is a so-called conditional GET message if (1) the request message

uses the GET method and (2) the request message includes an If-Modified- Since: header

line.

Ex: First, on the behalf of a requesting browser, a proxy cache sends a request message to a Web

server:

Second, the Web server sends a response message with the requested object to the cache:

The cache forwards the object to the requesting browser but also caches the object locally.

Importantly, the cache also stores the last-modified date along with the object.

Third, one week later, another browser requests the same object via the cache, and the object is

still in the cache. Since this object may have been modified at the Web server in the past week,

the cache performs an up-to-date check by issuing a conditional GET. Specifically, the cache

sends:

GET /fruit/kiwi.gif HTTP/1.1

Host: www.exotiquecuisine.com

HTTP/1.1 200 OK

Date: Sat, 8 Oct 2011 15:39:29

Server: Apache/1.3.0 (Unix)

Last-Modified: Wed, 7 Sep 2011 09:23:24

Content-Type: image/gif

(data data data data data ...)

http://www.exotiquecuisine.com/

Module 5: Application Layer

Dept of CSE Page 21

This conditional GET is telling the server to send the object only if the object has been modified

since the specified date.

Suppose the object has not been modified since 7 Sep 2011 09:23:24. Then, fourth, the Web

server sends a response message to the cache:

We see that in response to the conditional GET, the Web server still sends a response message

but does not include the requested object in the response message.

File Transfer: FTP

 FTP is used for transferring file from one host to another host.

 In order for the user to access the remote account, the user must provide user identification

and a password. After providing this authorization information, the user can transfer files

from the local file system to the remote file system and vice versa.

 The user first provides the hostname of the remote host, causing the FTP client process in the

local host to establish a TCP connection with the FTP server process in the remote host.

 The user then provides the user identification and password, which are sent over the TCP

connection as part of FTP commands.

 Once the server has authorized the user, the user copies one or more files stored in the local

file system into the remote file system (or vice versa).

GET /fruit/kiwi.gif HTTP/1.1

Host: www.exotiquecuisine.com

If-modified-since: Wed, 7 Sep 2011 09:23:24

HTTP/1.1 304 Not Modified

Date: Sat, 15 Oct 2011 15:39:29

Server: Apache/1.3.0 (Unix)

(empty entity body)

http://www.exotiquecuisine.com/

Module 5: Application Layer

Dept of CSE Page 22

FTP uses two parallel TCP connections to transfer a file, a control connection and a data

connection.

The control connection is used for sending control information between the two hosts

information such as user identification, password, commands to change remote directory, and

 files.

The data connection is used to actually send a file.

When a user starts an FTP session with a remote host, the client side of FTP (user) first

initiates a control TCP connection with the server side (remote host) on server port number

21.

The client side of FTP sends the user identification and password over this control

connection. The client side of FTP also sends, over the control connection, commands to

change the remote directory.

When the server side receives a command for a file transfer over the control connection

(either to, or from, the remote host), the server side initiates a TCP data connection to the

client side.

Module 5: Application Layer

Dept of CSE Page 23

 FTP sends exactly one file over the data connection and then closes the data connection. If,

during the same session, the user wants to transfer another file, FTP opens another data

connection.

 Thus, with FTP, the control connection remains open throughout the duration of the user

session, but a new data connection is created for each file transferred within a session (that is,

the data connections are non-persistent).

 Throughout a session, the FTP server must maintain state about the user. In particular, the

server must associate the control connection with a specific user account, and the server must

tree.

FTP Commands and Replies

Some of the more common commands are given below:

 USER username: Used to send the user identification to the server.

 PASS password: Used to send the user password to the server.

 LIST: Used to ask the server to send back a list of all the files in the current remote directory.

The list of files is sent over a (new and non-persistent) data connection rather than the control

TCP connection.

 RETR filename: Used to retrieve (that is, get) a file from the current directory of the remote

host. This command causes the remote host to initiate a data connection and to send the

requested file over the data connection.

 STOR filename: Used to store (that is, put) a file into the current directory of the remote host.

Each command is followed by a reply, sent from server to client. The replies are three-digit

numbers, with an optional message following the number.

 331 Username OK, password required

 125 Data connection already open; transfer starting

 connection

 452 Error writing file

Module 5: Application Layer

Dept of CSE Page 24

Electronic Mail in the Internet

E-mail has three major components: user agents, mail servers, and the Simple Mail Transfer

Protocol (SMTP).

User agents allow users to read, reply to, forward, save, and compose messages.

Mail servers form the core of the e-mail infrastructure. Each recipient has a mailbox located

in one of the mail servers. A typical message starts its journey in

travels to it is

deposited in mailbox.

SMTP is the principal application-layer protocol for Internet electronic mail. It uses the

reliable data transfer service of TCP to to the

 As with most application-layer protocols, SMTP has two sides: a

 server.

Module 5: Application Layer

Dept of CSE Page 25

SMTP

the body (not just the headers) of all mail messages to simple 7-bit ASCII.

Suppose Alice wants to send Bob a simple ASCII message.

1. Alice invokes her user agent for e- -mail address (for example,

bob@someschool.edu), composes a message, and instructs the user agent to send the message.

2. it is placed in a message queue.

3. The client side of in the message

server.

4. TCP

connection.

5. At B of

places the message in mailbox.

6. Bob invokes his user agent to read the message at his convenience.

An example transcript of messages exchanged between an SMTP client (C) and an SMTP server

(S).

mailto:bob@someschool.edu

Module 5: Application Layer

Dept of CSE Page 26

Comparison with HTTP

HTTP SMTP

Pull Protocol- someone loads information on a

Web server and users use HTTP to pull the

information from the server at their

convenience.

Push Protocol- the sending mail server pushes

the file to the receiving mail server.

HTTP does not mandates data to be in 7-bit

ASCII format.

SMTP requires each message, including the

body of each message, to be in 7-bit ASCII

format.

HTTP encapsulates each object in its own

HTTP response message.

objects into one message.

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr ... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mai

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

mailto:alice@crepes.fr
mailto:alice@crepes.fr
mailto:bob@hamburger.edu
mailto:bob@hamburger.edu

Module 5: Application Layer

Dept of CSE Page 27

Mail Message Formats

When an e-mail message is sent from one person to another, a header containing peripheral

information precedes the body of the message.

The header lines and the body of the message are separated by a blank line.

Every header must have a From: header line and a To: header line; a header may include a

Subject: header line as well as other optional header lines.

A typical message header looks like this:

Mail Access Protocols

SMTP protocol delivers the mail to the mail server. To fetch the mail from mail server receiver

used mail access protocols.

There are currently a number of popular mail access protocols, including Post Office Protocol

Version 3 (POP3), Internet Mail Access Protocol (IMAP), and HTTP.

POP3

 POP3 is an extremely simple mail access protocol.

 POP3 begins when the user agent (the client) opens a TCP connection to the mail server (the

server) on port 110.

 With the TCP connection established, POP3 progresses through three phases: authorization,

transaction, and update.

 During the authorization phase, the user agent sends a username and a password to

authenticate the user.

 During the transaction phase, the user agent retrieves messages; also during this phase, the

user agent can mark messages for deletion, remove deletion marks, and obtain mail statistics.

 The update phase occurs after the client has issued the quit command, ending the POP3

session; at this time, the mail server deletes the messages that were marked for deletion.

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Searching for the meaning of life.

mailto:alice@crepes.fr
mailto:bob@hamburger.edu

Module 5: Application Layer

Dept of CSE Page 28

In a POP3 transaction, the user agent issues commands, and the server responds to each

command with a reply. There are two possible responses: +OK used by the server to indicate

that the previous command was fine; and -ERR, used by the server to indicate that something

was wrong with the previous command.

The authorization phase has two principal commands: user <username> and pass

<password>.

Ex:

A user agent using POP3 can often be download and delete

 download and keep

In the download-and-delete mode, the user agent will issue the list, retr, and dele commands.

C: list

S: 1 498

S: 2 912

S: .

user bob
+OK

pass hungry

+OK user successfully logged on

C: retr 1

S: (blah blah ...

S:

Sblah)

S: .

C: dele 1

C: retr 2

S: (blah blah ...

S:

Sblah)

S: .

C: dele 2

C: quit

S: +OK POP3 server signing off

Module 5: Application Layer

Dept of CSE Page 29

 A problem with this download-and-delete mode is that the recipient cannot access mail

messages from multiple machines.

 In the download-and keep mode, the user agent leaves the messages on the mail server after

downloading them. In this case, user can reread messages from different machines.

IMAP

With POP3 access, once user has downloaded his messages to the local machine, he can

create mail folders and move the downloaded messages into the folders. User can then delete

messages, move messages across folders, and search for messages (by sender name or

subject).

But this paradigm namely, folders and messages in the local machine poses a problem for

the nomadic user, who would prefer to maintain a folder hierarchy on a remote server that

can be accessed from any computer. This is not possible with POP3 the POP3 protocol

does not provide any means for a user to create remote folders and assign messages to

folders.

To solve this and other problems, the IMAP protocol was invented. Like POP3, IMAP is a

mail access protocol. It has many more features than POP3, but it is also significantly more

complex.

An IMAP server will associate each message with a folder; when a message first arrives at

the server, it is folder.

The recipient can then move the message into a new, user-created folder, read the message,

delete the message, and so on.

The IMAP protocol provides commands to allow users to create folders and move messages

from one folder to another.

IMAP also provides commands that allow users to search remote folders for messages

matching specific criteria.

Another important feature of IMAP is that it has commands that permit a user agent to obtain

components of messages. For example, a user agent can obtain just the message header of a

message or just one part of a multipart MIME message. This feature is useful when there is a

Module 5: Application Layer

Dept of CSE Page 30

low-bandwidth connection (for example, a slow-speed modem link) between the user agent

and its mail server. With a low bandwidth connection, the user may not want to download all

of the messages in its mailbox, particularly avoiding long messages that might contain, for

example, an audio or video clip.

Web-Based E-Mail

More and more users today are sending and accessing their e-mail through their Web browsers.

In this case user communicates with its remote mailbox via HTTP.

DNS

 All the hosts connected to network is identified by IP address. But it is difficult for human

beings to remember these IP address to access a particular host. Hence hosts are identified by

hostnames. Ex: google.com

 But the routers require IP address to forward the packet.

 In order to map hostname with the IP address DNS is used.

Services Provided by DNS

 The DNS is (1) a distributed database implemented in a hierarchy of DNS servers, and (2) an

application-layer protocol that allows hosts to query the distributed database.

 DNS is commonly employed by other application-layer protocols including HTTP, SMTP,

and FTP to translate user-supplied hostnames to IP addresses.

Example:

www.someschool.edu/index.html.

In order for t

www.someschool.edu, www.someschool.edu.

This is done as follows.

1. The same user machine runs the client side of the DNS application.

http://www.someschool.edu/index.html
http://www.someschool.edu/
http://www.someschool.edu/

Module 5: Application Layer

Dept of CSE Page 31

2. The browser extracts the hostname, www.someschool.edu, from the URL and passes the

hostname to the client side of the DNS application.

3. The DNS client sends a query containing the hostname to a DNS server.

4. The DNS client eventually receives a reply, which includes the IP address for the hostname.

Once the browser receives the IP address from DNS, it can initiate a TCP connection to the

HTTP server process located at port 80 at that IP address.

DNS provides a few other important services in addition to translating hostnames to IP

addresses:

Host aliasing: A host with a complicated hostname can have one or more alias names. For

example, a hostname such as relay1.west-coast.enterprise.com could have, say, two aliases

such as enterprise.com and www.enterprise.com. In this case, the hostname relay1.westcoast.

enterprise.com is said to be a canonical hostname. Alias hostnames, when present, are

typically more mnemonic than canonical hostnames. DNS can be invoked by an application

to obtain the canonical hostname for a supplied alias hostname as well as the IP address of

the host.

Mail server aliasing: For obvious reasons, it is highly desirable that e-mail addresses be

mnemonic. For example, if Bob has an account with Hotmail, -mail address might be

as simple as bob@hotmail.com. However, the hostname of the Hotmail mail server is more

complicated and much less mnemonic than simply hotmail.com (for example, the canonical

Host name might be something like relay1.west-coast.hotmail.com). DNS can be invoked by

a mail application to obtain the canonical hostname for a supplied alias hostname as well as

the IP address of the host.

Load distribution: DNS is also used to perform load distribution among replicated servers,

such as replicated Web servers. Busy sites, such as cnn.com, are replicated over multiple

servers, with each server running on a different end system and each having a different IP

address. For replicated Web servers, a set of IP addresses is thus associated with one

canonical hostname. The DNS database contains this set of IP addresses. When clients make

a DNS query for a name mapped to a set of addresses, the server responds with the entire set

http://www.someschool.edu/
http://www.enterprise.com/
mailto:bob@hotmail.com

Module 5: Application Layer

Dept of CSE Page 32

of IP addresses, but rotates the ordering of the addresses within each reply. Because a client

typically sends its HTTP request message to the IP address that is listed first in the set, DNS

rotation distributes the traffic among the replicated servers.

Overview of How DNS Works

 Suppose that some application running in

address. The application will invoke the client side of DNS, specifying the hostname that

needs to be translated.

 DNS in sending a query message into the network.

 All DNS query and reply messages are sent within UDP datagrams to port 53. After a delay,

ranging from milliseconds to seconds, DNS in

that provides the desired mapping. This mapping is then passed to the invoking application.

In this centralized design, clients simply direct all queries to the single DNS server, and the DNS

server responds directly to the querying clients. Although the simplicity of this design is

attractive, it is vast (and growing) number of hosts.

The problems with a centralized design include:

 A single point of failure. If the DNS server crashes, so does the entire Internet!

 Traffic volume. A single DNS server would have to handle all DNS queries.

 Distant centralized database. A single DNS server cannot be

clients. If we put the single DNS server in New York City, then all queries from Australia

must travel to the other side of the globe, perhaps over slow and congested links. This can

lead to significant delays.

 Maintenance. The single DNS server would have to keep records for all Internet hosts. Not

only would this centralized database be huge, but it would have to be updated frequently to

account for every new host.

A Distributed, Hierarchical Database

In order to deal with the issue of scale, the DNS uses a large number of servers, organized in

a hierarchical fashion and distributed around the world.

Module 5: Application Layer

Dept of CSE Page 33

There are three classes of DNS servers root DNS servers, top-level domain (TLD) DNS

servers, and authoritative DNS servers organized in a hierarchy.

Root DNS servers. In the Internet there are 13 root DNS servers (labeled A through M),

most of which are located in North America.

Although we have referred to each of the 13 root DNS servers as if it were a single server,

purposes. All together, there are 247 root servers.

Top-level domain (TLD) servers: These servers are responsible for top-level domains such

as com, org, net, edu, and gov, and all of the country top-level domains such as in,uk, fr, ca.

Authoritative DNS servers: Every organization with publicly accessible hosts on the

Internet must provide publicly accessible DNS records that map the names of those hosts to

records.

There is another important type of DNS server called the local DNS server. A local DNS

server does not strictly belong to the hierarchy of servers but is nevertheless central to the

DNS architecture. Each ISP

company, or a residential ISP has a local DNS server.

Module 5: Application Layer

Dept of CSE Page 34

Two type of Interaction:

1) Recursive Queries:

Here DNS query is sent to local DNS server then to root server, then to TLD server and finally

to authoritative DNS server. DNS response arrives in the reverse order.

2) Iterative Queries:

Module 5: Application Layer

Dept of CSE Page 35

Here DNS query will be sent to Local DNS server, then to root server. Root server sends the IP

address of TLD server. Now local DNS server sends query to TLD DNS server. TLD DNS

server sends the IP address of authoritative DNS server to local DNS server. Now Local DNS

server sends query to authoritative DNS server. Authoritative DNS server sends the IP address of

host to local DNS server. Local DNS server sends it to the host.

DNS Caching

In a query chain, when a DNS server receives a DNS reply it can cache the mapping in its local

memory.

If a hostname/IP address pair is cached in a DNS server and another query arrives to the

DNS server for the same hostname, the DNS server can provide the desired IP address, even if it

is not authoritative for the hostname. Because hosts and mappings between hostnames and IP

addresses are by no means permanent, DNS servers discard cached information after a period of

time (often set to two days).

DNS Records and Messages

The DNS servers that together implement the DNS distributed database store resource records

(RRs).

A resource record is a four-tuple that contains the following fields:

(Name, Value, Type, TTL)

TTL is the time to live of the resource record; it determines when a resource should be removed

from a cache.

The meaning of Name and Value depend on Type:

 If Type=A, then Name is a hostname and Value is the IP address for the hostname.

 If Type=NS, then Name is a domain (such as foo.com) and Value is the hostname of an

authoritative DNS server that knows how to obtain the IP addresses for hosts in thedomain.

 If Type=CNAME, then Value is a canonical hostname for the alias hostname Name. This

record can provide querying hosts the canonical name for a hostname.

 If Type=MX, then Value is the canonical name of a mail server that has an aliashostname

Name.

Module 5: Application Layer

Dept of CSE Page 36

DNS Messages

The first 12 bytes is the header section, which has a number of fields.

The first field is a 16-bit number that identifies the query. This identifier is copied into the

reply message to a query, allowing the client to match received replies with sent queries.

There are a number of flags in the flag field.

A 1-bit query/reply flag indicates whether the message is a query (0) or a reply (1). A1-bit

authoritative flag is set in a reply message when a DNS server is an authoritative server for a

queried name.

A 1-bit recursion-desired flag is set when a client (host or DNS server) desires that the DNS

A 1-bit recursion available field is set in a reply if the DNS server supports recursion.

In the header, there are also four number-of fields. These fields indicate the number of

occurrences of the four types of data sections that follow the header.

The question section contains information about the query that is being made. This section

includes (1) a name field that contains the name that is being queried, and (2) a type field that

indicates the type of question being asked about the name

Module 5: Application Layer

Dept of CSE Page 37

 In a reply from a DNS server, the answer section contains the resource records for the name

that was originally queried.

 The authority section contains records of other authoritative servers.

 The additional section contains other helpful records.

Inserting Records into the DNS Database

Suppose you have just created an exciting new startup company called Network Utopia. The first

registrar is a commercial entity that verifies the uniqueness of the domain name, enters the

domain name into the DNS database (as discussed below), and collects a small fee from you for

its services.

For the primary authoritative server for networkutopia.com, the registrar would insert the

following two resource records into the DNS system:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

Peer-to-Peer Applications

In P2P architecture, there is minimal (or no) reliance on always-on infrastructure servers.

Instead, pairs of intermittently connected hosts, called peers, communicate directly with each

other.

P2P File Distribution

 In P2P file distribution, each peer can redistribute any portion of the file it has received to

any other peers, thereby assisting the server in the distribution process.

 The most popular P2P file distribution protocol is BitTorrent.

Scalability of P2P Architectures

As shown in below Figure the server and the peers are connected to the Internet with access

links. Denote the upload rate of the access link by us, the upload rate of the ith

	Principles of Network Applications
	Network Application Architectures.
	Client Server Architecture:
	Peer-to-peer (P2P) Architecture:
	Features:
	Cost effective:
	Future P2P applications face three major challenges:
	Processes Communicating
	Client and Server Processes
	The Interface between the Process and the Computer Network
	Addressing Processes
	Transport Services Available to Applications
	2) Throughput
	3) Timing
	4) Security
	Transport Services Provided by the Internet
	TCP Services
	1) Connection-oriented service:
	2) Reliable data transfer service:
	UDP Services
	Application-Layer Protocols
	The Web and HTTP Overview of HTTP
	Non-Persistent and Persistent Connections
	HTTP with Non-Persistent Connections
	HTTP Message Format Two types of HTTP messages:
	Method:
	Header line:
	HTTP Response Message
	Header fields:
	User-Server Interaction: Cookies
	Set-cookie: 1678
	Cookie: 1678
	The Conditional GET
	File Transfer: FTP
	FTP Commands and Replies
	Electronic Mail in the Internet
	SMTP
	Comparison with HTTP
	Mail Access Protocols
	POP3
	IMAP
	Web-Based E-Mail
	DNS
	Services Provided by DNS
	Example:
	Overview of How DNS Works
	A Distributed, Hierarchical Database
	Two type of Interaction:
	2) Iterative Queries:
	DNS Caching
	DNS Records and Messages
	DNS Messages
	Inserting Records into the DNS Database
	Peer-to-Peer Applications
	P2P File Distribution
	Scalability of P2P Architectures

