

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF MECHANICAL ENGINEERING I SESSIONAL TEST QUESTION PAPER 2018 – 19 ODD SEMESTER

SET-A

				USN						
Degree	:	B.E	Sen	nester	:	\mathbf{V}				
Branch	:	Mechanical Engineering	Dat	e	:	4-9	-2019			
Course Title	:	Turbo Machines	Cou	irse Code	e :	17N	AE53			
Duration	:	90 Minutes	Ma	x Marks	:	30				

Note: Answer ONE full question from each part

Q. No.	Question	Marks	K Level	CO mapping				
	PART-A							
1(a)	With suitable velocity triangles, derive an expression for maximum hydraulic efficiency of a Pelton wheel in terms of blade velocity coefficient and blade discharge angle.	5	K3 Applying	C01				
(b)	A 137 mm diameter jet of water issuing from a nozzle impinges on the buckets of a Pelton wheel and the jet is deflected through an angle of 165° by the buckets. The head available at the nozzle is 400m. Assuming coefficient of velocity as 0.97, speed ratio as 0.46 and reduction in the relative velocity while passing through the buckets as 15%, find: (i) Force exerted by the jet on the buckets in the tangential direction (ii) the power developed.	5	K3 Applying	CO1				
(c)	Define a Turbo machine. With a neat sketch explain the parts of a turbo machine.	5	K2 Understanding	CO2				
OR								
2(a)	Define and explain the following efficiencies of a hydraulic turbine: (i) Hydraulic efficiency (ii) Mechanical Efficiency (iii) Overall efficiency	5	K2 Understanding	CO1				
(b)	A double jet Pelton wheel is required to generate 7500kW when the available head at the base of the nozzle is 400m. The jet is deflected through 165^{0} and the relative velocity of the jet is reduced by 15% in passing over the buckets. Determine: (i) diameter of each jet (ii) Total flow rate (iii) Force exerted by the jet in the tangential direction. Assume Overall efficiency = 80%, Speed ratio = 0.47, C _v = 0.97.	5	K3 Applying	CO1				
(c)	Explain how turbo machines are classified.	5	K2 Understanding	CO2				

PART-B							
3 (a)	Draw a neat sketch of a Francis turbine and explain the functions of each part. Draw the velocity triangles of a Francis turbine.	5	K2 Understanding	CO1			
(b)	The following data is given for a Francis turbine: Net head = 70m, Speed = 600RPM, Shaft power = 368kW, Overall efficiency = 85%, Hydraulic efficiency = 95%, Flow ratio = 0.25, Breadth ratio = 0.1, Outer diameter of the runner = 2 x inner diameter of the runner. Velocity of flow is constant at outlet and inlet. The thickness of the vanes occupies 10% of the circumferential area of the runner and discharge is radial at outlet. Determine: (i) Guide blade angle (ii) Runner vane angles at inlet and outlet (iii) Diameter of runner at inlet and outlet (iv) width of the runner at inlet.	5	K3 Applying	CO1			
(c)	Differentiate between a turbo machine and a positive displacement machine.	5	K2 Understanding	CO2			
	OR						
4 (a)	Draw a neat sketch of a Kaplan turbine and explain the functions of each part. Draw the velocity triangles of a Kaplan turbine.	5	K2 Understanding	CO1			
(b)	A Kaplan turbine working under a head of 20m develops 11775 kW. The outer diameter of the runner is 3.5m, hub diameter is 1.75m. The guide blade angle at the extreme edge of the runner is 35^{0} . The hydraulic and overall efficiencies of the turbine are 0.88 and 0.84 respectively. If the velocity of whirl at outlet is zero, determine: (i) runner vane angles at inlet and outlet at the extreme edge of the runner (ii) speed of the turbine.	5	K3 Applying	CO1			
(c)	Classify the following as Power generating or Power absorbing turbo machine: (i) Steam Turbine (ii) Fan (iii) Air blower (iv) Axial flow compressor (v) Wind Turbine	5	K2 Understanding	CO2			

Course In charge

Head - Dept

Principal

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF MECHANICAL ENGINEERING

I SESSIONAL TEST SCHEME & SOLUTION 2018 - 20 ODD SEMESTER

SET-A

			USN	
Degree Branch Course Title Duration	:::::::::::::::::::::::::::::::::::::::	B.E Mechanical Engineering Turbo Machines 90 Minutes	Semester Date Course Code Max Marks	 V 4-9-2019 17ME53 15ME53 30

Mag.
$$Q = TD_{1}B_{1} \times V_{1}$$

 $Q = A_{1} \times V_{1}$
 $W = KT A_{1} = (1-0.1)$ because, 10% Ts blocked.
 $\therefore Q = 0.9A_{1} \times V_{1}$
 $\Rightarrow A_{1} = 0.0756 m^{2} \Rightarrow D_{1} = D.4705 m \Rightarrow B_{1} = D.047m$
 $\Rightarrow D_{1} = 2 \times D_{2} \Rightarrow D_{2} = -0.245 m$
From Sult velocity triangle,
 $\tan \rho_{1} = V_{1} = \Rightarrow \overline{X_{1}} = 12.33$
 $\tan \rho_{1} = V_{1} = \Rightarrow \overline{X_{1}} = 12.33$
 $\tan \rho_{1} = V_{1} = \Rightarrow \overline{X_{1}} = 12.93$
 $\tan \rho_{2} = -\frac{V_{1}}{V_{0}} \Rightarrow \overline{P_{1}} = 12.93$
 $= \frac{1}{2} - \frac{1}{2} + \frac$

12. Roma i Course In charge

Head Dept

1 <. Roma Principal