Course Title: Concrete Technology		
[As per Choice Based Credit System	(CBCS)	
scheme] SEMEST	ER – IV	
Subject Code 15CV44	IA Marks	20
Number of Lecture Hours/Week 04	Exam Marks	80
Total Number of Lecture Hours 50	Exam Hours	03
CREDITS – 04		
Course objectives: This course will enable students to:		
1. Recognize the importance of material characteristic	es and their contribution	ons to strength
development in Concrete		-
2. Proportion ingredients of Concrete to arrive at mo	ost desirable mechanic	cal properties
of Concrete.		
3. Ascertain and measure engineering properties of	concrete in fresh an	d hardened
state which meet the requirement of real time struct	tures.	-
		Revised
	Teaching	Bloom's
Contents	Hours	Taxonomy
	nouis	(RBT)
		Level
Module-1: Concrete Ingredients	1	
Cement – Cement manufacturing process, steps to red uce	carbon 10 Hours	L1, L2, L3
footprint, chemical composition and their importance, hydr	ration of	
cement, types of cement. Testing of cement.		
Fine aggregate: Functions, requirement, Alternatives to	River	
sand, M-sand introduction and manufacturing.		
Coarse aggregate: Importance of size, shape and texture. Grading		
and blending of aggregate. Testing on aggregate, requireme	ent.	
Recycled aggregates		
water – qualities of water.	and sin	
chemical admixtures – plasticizers, accelerators, r etarders	and air	
Mineral administration and compartitions are tari	ale Elv	
seh GGPS silice fumes. Metakaolin and rice busk ash	als, rly	
asii, OODS, sinca tumes, Metakaonii and fice husk asii. Madula 2: Eroch Concercto		
Workehility factors affecting workehility Measurement of		
workability slump. Compaction factor and Vac Bac	10 Hours	L1, L2, L3
Consistent tests flow tests Segregation and bleeding	Process	
of manufacturing of concrete- Batching Mixing Transport	ting	
Placing and Compaction Curing – Methods of curing – W	ater	
curing membrane curing steam curing accelerated curing	self-	
curing	, 301	
Good and Bad practices of making and using fresh concret	e and	
Effect of heat of hydration during mass concreting at proje	ct sites.	
Module -3: Hardened Concrete		1
Factors influencing strength. W/C ratio. gel/space ratio. M	aturity 10 Hours	L1, L2, L3
concept, Testing of hardened concrete. Creep –facto rs affe	ecting	,,
creep. Shrinkage of concrete – plastic shrinking an d drvin	g	
shrinkage, Factors affecting shrinkage. Definition and sign	ificance	
of durability. Internal and external factors influencing dura	bility,	
Mechanisms- Sulphate attack – chloride attack, carb onatio	on,	
freezing and thawing. Corrosion, Durability requirements a	as per	

IS-456, Insitu testing of concrete- Penetration and pull out test,			
rebound hammer test, ultrasonic pulse velocity, core extraction -			
Principal, applications and limitations.			
Module -4: Concrete Mix Proportioning			
Concept of Mix Design with and without admixtures, variables in	10 Hours	L1, L2, L3,	
proportioning and Exposure conditions, Selection criteria of		L4	
ingredients used for mix design, Procedure of mix proportioning.			
Numerical Examples of Mix Proportioning using IS-10262			
Module -5: Special Concretes	101		
RMC- manufacture and requirement as per QCI-RMCPCS,	10 hours	L1, L2, L3,	
properties, advantages and disadvantages. Self-Compacting		L4	
concrete- concept, materials, tests, properties, application and			
Fiber reinforced concrete - Fibers types, properties, application of			
FKC.			
Light weight concrete-inaterial properties and types. Typical light			
Course Outcomes		I	
After studying this course, students will be able to:			
CO1: Polate material characteristics and their influence on microstr	noturo of		
constraint indicate indicate instance and then initiative on initiation $(L_2, L_2)(D(1))$			
CO 2: Distinguish concrete behaviour based on its fresh and harden	ad properties		
[I 2 I A] (PO1 PO2)	eu properties	•	
CO 3: Illustrate proportioning of different types of concrete mixes f	[L2, L4] (PO1, PO2)		
hardened properties using professional codes. [L3] (PO1, PO2	2. PO3)		
Program Objectives (as per NBA):			
• Engineering Knowledge (PO1)			
• Problem Analysis (PO2)			
 Design / development of solutions (PO3) 			
Question paper pattern:			
• The question paper will have ten questions			
 Fach full question consists of 16 marks 			
 There will be 2 full questions (with a maximum of four sub 	mestions) fro	m each module	
 Fach full question will have sub questions covering all the to 	pics under a	module	
• Each full question will have to answer 5 full questions, selecting	a one full of	module.	
• The students will have to answer 5 full questions, selecting	ing one run t	Juestion nom	
Text Books			
1. Neville A.M. "Properties of Concrete"-4th Ed., Long man.			
2. M.S. Shetty, Concrete Technology - Theory and Practice Publish	hed by S. Cha	and and	
Company, New Delhi.			
3. Kumar Mehta. P and Paulo J.M. Monteiro "Concrete-Mi cros	structure, Pro	operty	
and Materials", 4th Edition, McGraw Hill Education, 2014			
4. A.R. Santha Kumar, "Concrete Technology", Oxford Un iversity Press, New Delhi			
(New Edition)			
Reference Books:			
1. M L Gambir, "Concrete Technology", McGraw Hill Educ ation, 2014.			
2. N. V. Nayak, A. K. Jain Handbook on Advanced Concrete 8487-186-9	Technology,	ISBN: 978-81-	
3. Job Thomas, "Concrete Technology", CENGAGE Learning	, 2015		
4. IS 4926 (2003): Code of Practice Ready-Mixed Concrete [C	ED 2: Cemer	and Concrete]	

- 5. Criteria for RMC Production Control, Basic Level Certification for Production Control of Ready Mixed Concrete-BMTPC
- 6. Specification and Guidelines for Self-Compacting Concrete, EFNARC, Association House

Course Title: 1	Design of RC Structural Elements		
[As per Choice Based Credit System (CBCS) scheme]			
SEMESTER:V			
Subject Code	15CV51	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS – 04	Tota	Marks-100

Course objectives: This course will enable students to

1. Identify, formulate and solve engineering problems of RC elements subjected to different kinds of loading. 2.

Follow a procedural knowledge in designing various structural RC elements.

3. Impart the culture of following the codes for strength, serviceability and durability as an ethics.

4. Provide knowledge in analysis and design of RC elements for the success in competitive examinations.

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1		
Introduction to Limit State Design and Serviceability: Introduction to working stress method, Difference between Working stress and Limit State Method of design, Modular Ratio and Factor of Safety.		
Philosophy and principle of limit state design with assumptions. Partial Safety factors, Characteristic load and strength. Stress block parameters, concept of balanced section, under reinforced and over reinforced section.	12 hours	L ₁ , L ₂
Limiting deflection, short term deflection, long term deflection, Calculation of deflection of singly reinforced beam only. Cracking in reinforced concrete members, calculation of crack width of singly reinforced beam. Side face reinforcement, slender limits of beams for stability.		
Module - 2	1	I
Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear	8 Hours	L ₂ , L ₄
Module -3		
Limit State Design of Beams: Design of singly and doubly reinforced beams, Design of flanged beams for shear, design for combined bending and torsion as per IS-456	10 Hours	L_2, L_4
Module -4		
Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases. Importance of bond, anchorage length and lap length.	10 Hours	L ₂ , L ₄

Mo	dule -5					
Lir loa con axi	Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load and also for axial load & moment10 HoursL2, L4					
Co	urse outcomes: After studying this course, students will be able to:					
1.	understand the design philosophy and principles					
2.	solve engineering problems of RC elements subjected to flexure, shear and torsion					
3.	demonstrate the procedural knowledge in designs of RC structural elements such as sh	abs, columns	and footings			
4.	owns professional and ethical responsibility					
Pro	ogram Objectives:					
•	Engineering knowledge					
•	Problem analysis					
•	Interpretation of data					
Qu	estion paper pattern:					
•	The question paper will have 5 modules comprising of ten questions. Each full question	n carrying 16	marks			
•	There will be two full questions (with a maximum of three subdivisions, if necessary)	from each mo	lule.			
•	Each full question shall cover the topics as a module					
•	The students shall answer five full questions, selecting one full question from each module. If more than one question is answered in modules, best answer will be considered for the award of marks limiting one full question answer in each module.					
•	The designs are as per IS-456 and SP (16) relevant charts to be provided in the question	n paper				
Te	xt Books:					
1.	Unnikrishnan Pillai and Devdas Menon, "Reinforced Concrete Design", McGraw H	Iill, New Delh	i			
2.	Subramanian, " Design of Concrete Structures", Oxford university Press					
3.	H J Shah, "Reinforced Concrete Vol. 1 (Elementary Reinforced Concrete)", Char	otar Publishing	g House Pvt. Ltd.			
Re	ference Books:					
1.	P C Varghese, "Limit State design of reinforced con crete", PHI, New Delhi					
2.	W H Mosley, R Husle, J H Bungey, "Reinforced Concre te Design", MacMillan Education	ation, Palgrave	e publisher s			
3.	Kong and Evans, "Reinforced and Pre-Stressed Concre te", Springer Publications					
4.	A W Beeby and Narayan R S, "Introduction to Design for Civil Engineers", CRC Pres	S				
5.	Robert Park and Thomas Paulay, "Reinforced Concrete Structures", John Wiley & Son	ns, Inc.				

Course Title: Railways, Harbour, Tunneling and Airports

Professional Elective-1

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER:V

	CREDITS – 03	Total Marks	s-100
Total Number of Lecture Hours	40	Exam Hours	03
Number of Lecture Hours/Week	03	Exam Marks	80
Subject Code	15CV552	IA Marks	20

Course Objectives: This course will enable students to

1. Understand the history and development, role of railways, railway planning and development based on essential criteria's.

2. Learn different types of structural components, engineering properties of the materials, to calculate the material quantities required for construction

3. Understand various aspects of geometric elements, points and crossings, significance of maintenance of tracks.

- 4. Design and plan airport layout, design facilities required for runway, taxiway and impart knowledge about visual aids
- 5. Apply design features of tunnels, harbours, dock and necessary navigational aids; also expose them to various methods of tunneling and tunnel accessories.

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1	-	-
Railway Planning : Significance of Road, Rail, Air and Water transports – Coordination of all modes to achieve sustainability – Elements of permanent way – Rails, Sleepers, Ballast, rail fixtures and faste nings, – Track Stress, coning of wheels, creep in rails, defects in rails – Route al ignment surveys, conventional and modern methods- – Soil suitability analysis – G eometric design of railways, gradient, super elevation, widening of gauge on curves- Points and Crossings.	8 hours	L1,L2,L3
Module -2		
Railway Construction and Maintenance: Earthwork – Stabilization of track on poor soil, Calculation of Materials required for track laying – Construction and maintenance of tracks – Modern methods of construct ion & maintenance – Railway stations and yards and passenger amenities- Urban rail – Infrastructure for Metro, Mono and underground railways.	8 Hours	L2, L3
Module -3	•	•

Harbour and Tunnel Engineering: Definition of Basic Terms: Planning and Design of Harbours: Requirements, Classification, Location and Design Principles – Harbour Layout and Terminal Facilities, Coastal Structures, Inland Water Transport – Wave action on Coastal Structures and Coastal Protection Works.	8 Hours	L1,L2,L3	
Tunneling: Introduction, size and shape of the tunnel, tunneling methods in soils, tunnel lining, tunnel drainage and ventilation.			
Module -4			
Airport Planning: Air transport characteristics, airport classification, air port planning: objectives, components, layout characteristics, socio-economic characteristics of the catchment area, criteria for airport site selection and ICAO stipulations, typical airport layouts, Parking and circulation area.	8 Hours	L1,L2,L3	
Module -5		•	
Airport Design : Runway Design: Orientation, Wind Rose Diagram, Runway length, Problems on basic and Actual Length, Geometric design of runways, Configuration and Pavement Design Principles, Elements of Taxiway Design. Airport Zones, Passenger Facilities and Services, Runway and Taxiway Markings and lighting.	8 Hours	L1,L2,L3	
Course Outcomes: After studying this course, students will be able to:			
1. Acquires capability of choosing alignment and also design geometric aspects of	railway system, ru	inway, taxiway.	
2. Suggest and estimate the material quantity required for laying a railway track and also will be able to determine the hauling capacity of a locomotive.			
3. Develop layout plan of airport, harbor, dock and will be able relate the gained knowledge to identify required type of visual and/or navigational aids for the same.			
4. Apply the knowledge gained to conduct surveying, understand the tunneling act	4. Apply the knowledge gained to conduct surveying, understand the tunneling activities.		
Program Objectives:			
Engineering knowledge			
Problem analysis			
• Interpretation of data			
Question Paper Pattern:			
• The question paper will have 5 modules comprising of ten questions. Each full of	uestion carrying 16	5 marks	
• There will be two full questions (with a maximum of three subdivisions, if neces	sary) from each me	odule.	
• Each full question shall cover the topics as a module			
• The students shall answer five full questions, selecting one full question from each module. If more than one question is answered in modules, best answer will be considered for the award of marks limiting one full question answer in each module.			
Text Books:			
1. Saxena Subhash C and Satyapal Arora, "A Course in R ailway Engineering", Dhanpat Rai and Sons, Delhi,			
2. Satish Chandra and Agarwal M.M, "Railway Engineerin g", 2nd Edition, Oxfore	d University Press,	New Delhi ,	
3. Khanna S K, Arora M G and Jain S S, "Airport Planni ng and Design", Nemchand and Brothers, Roorkee,			
4. C Venkatramaiah, "Transportation Engineering", Vol ume II: Railways, Airpor	s, Docks and Harb	ours, Bridges and	

Tunnels, Universities Press

5. Bindra S P, "A Course in Docks and Harbour Engineer ing", Dhanpat Rai and Sons, New Delhi,

Reference Books:

- 1. Oza.H.P. and Oza.G.H., "A course in Docks & Harbour Engineering". Charotar Publishing Co.,
- 2. Mundrey J.S. "A course in Railway Track Engineering ". Tata McGraw Hill,
- 3. Srinivasan R. Harbour, "Dock and Tunnel Engineering", 26th Edition 2013

Course Title: Masonry Structures				
Professional Elective-1				
[As per Choice Based Credit System (CBCS) scheme]				
SEMESTER:V				
Subject Code	15CV553	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	40 Exam Hours 03			
	CREDITS	5 – 03 Total M	arks-100	

Course Objectives: This course will enable students to

1. Understand properties of masonry units, strength and factors affecting strength.

2. Understand design criteria of various types of wall subjected to different load system.

3. Impart the culture of following the codes for strength, serviceability and durability as an ethics.

4. Provide knowledge in analysis and design of masonry elements for the success in competitive examinations.

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1		
 Masonry Units, Materials, types and masonry construction: Bricks, Stone and Block masonry units- strength, modulus of elasticity and water absorption of masonry materials – classification and properties of mortars. Defects and Errors in masonry construction – cracks in masonry, types, reason for cracking, methods of avoiding cracks. Strength and Stability: Strength and stability of axially loaded masonry walls, effect of unit strength, mortar strength, joint thickness, rate of absorption, effect of curing, effect of ageing, workmanship. Compressive strength formulae based on elastic theory and empirical formulae. 	8 hours	L1,L2,L3
Module -2		
 Permissible stresses: Types of walls, permissible compressive stress, stress reduction and shape modification factors, increase in permissible stresses for eccentric vertical and lateral load, permissible tensile stress and shear stresses. Design Considerations: Effective height of walls and columns, openings in walls, effective length, effective thickness, slenderness ratio, eccentricity, load dispersion, arching action in lintels. Problems on design considerations for solid walls, cavity walls, wall with pillars. 	8 Hours	L1,L2,L3

Module -3			
Load considerations and design of Masonry subjected to axial loads: Design criteria, design examples of walls under UDL, solid walls, cavity walls, solid wall supported at the ends by cross wall, walls with piers.	8 Hours	L1,L2,L3	
Module -4			
Design of walls subjected to concentrated axial loads: Solid walls, cavity walls, solid wall supported at the ends by cross wall, walls with piers, design of wall with openings. Design of walls subjected to eccentric loads : Design criteria – stress distribution	8 Hours	L2,L3,L4,L5	
under eccentric loads – problems on eccentrically I oaded solid walls, cavity walls, walls with piers.			
Module -5			
Design of Laterally and transversely loaded walls: Design criteria, design of solid wall under wind loading, design of shear wall – design of compound walls.			
Introduction to reinforced brick masonry, lintels and slabs.	8 Hours	L2,L3,L4,L5	
In-filled frames : Types – modes of failures – design criteria of ma sonry retaining walls.			
Course Outcomes: After studying this course, students will be able to:			
1. Explain engineering properties and uses of masonry units, defects and crack in mas	sonry and its reme	edial measures.	
2. Summarize various formulae's for finding compressive strength of masonry units.			
3. Explain permissible stresses and design criteria as per IS: 1905 and SP-20.			
4. Design different types of masonry walls for different load considerations.			
Program Objectives:			
• Engineering knowledge			
Problem analysis			
• Interpretation of data			
Question Paper Pattern:			
• The question paper will have Ten questions, each full question carrying 16 marks.			
• There will be two full questions (with a maximum three sub divisions, if necessary	y) from each mod	ule.	
• Each full question shall cover the topics under a module.			
• The students shall answer Five full questions selecting one full question from each module.			
• If more than one question is answered in modules, best answer will be considered for the award of marks limiting one full question answer in each module.			
• Use of IS 1905–1987 "Code of practice for structural use of un-reinfor ced masonry" may be permitted.			
Text Books:			
1. Henry, A.W., "Structural Masonry", Macmillan Education Ltd., 1990.			
2. Dayaratnam P, "Brick and Reinforced Brick Structures", Oxford & IBH, 1987.			
3. M. L. Gambhir, "Building and Construction Materials", Mc Graw Hill education Pvt. Ltd.			

Course Title: Traffic Engineering				
Open Elective-1				
[As per Choice E	Based Credit System (CBCS)) schen	ne]	
	SEMESTER:V			
Subject Code	15CV561	IA Ma	arks	20
Number of Lecture Hours/Week	03	Exam	Marks	80
Total Number of Lecture Hours	40	Exam	Hours	03
	CREDITS - 03		Total Marks	s-100
Course Objectives: This course will enable studen	nts to			
1. Understand fundamental knowledge of traffic	engineering, scope and its in	mporta	nce.	
 describe basic techniques for collecting and ar remedial treatment, and assessing its effective 	nalysing traffic data, diagnos ness.	sing pro	blems, designing a	ppropriate
 Apply probabilistic and queuing theory techni interaction of flow efficiency and traffic safety 	ques for the analysis of traff y.	fic flow	situations and emp	hasis the
4. understand and analyse traffic issues including s	afety, planning, design, ope	ration a	and control. 5.	
Apply intelligent transport system and its application	ons in the present traffic sce	enario.		
Modules Teaching Hours Revised Bloom's Taxonomy (RBT) Level				
Module -1				
Traffic Planning and Characteristics: Road Characteristics-Road user characteristics, PIEV theory, Vehicle Performance characteristics, Fundamentals of Traffic Flow, Urban Traffic problems in India, Integrated planning of town, country, regional and all urban infrastructures, Sustainable approach- land use & transport and modal integration.8 hoursL1,L2,L3				
Module -2				
Iraffic Surveys: Traffic Surveys- Speed, journey time and delay surveys, Vehicles Volume Survey including non-motorized transports, Methods and interpretation, Origin Destination Survey, Methods and presentation, Parking Survey, Accident analyses-Methods, interpretation and presentation, Statistical applications in traffic studies and traffic forecasting, Level of service- Concept,8 HoursL1,L2,L3,L4,L5				

applications and significance.				
Module -3				
Traffic Design and Visual Aids: Intersection Design- channelization, Rotary intersection design, Signal design, Coordination of signals, Grade separation, Traffic signs including VMS and road markings, Significant roles of traffic control personnel, Networking pedestrian facilities & cycle tracks.	8 Hours	L1,L2,L3,L4		
Module -4				
Traffic Safety and Environment: Road accidents, Causes, effect, prevention, and cost, Street lighting, Traffic and environment hazards, Air and Noise Pollution, causes, abatement measures, Promotion and integration of public transportation, Promotion of non-motorized transport.	8 Hours	L1,L2,L3		
Module -5				
Traffic Management: Area Traffic Management System, Traffic System Management (TSM) with IRC standards, Traffic Regulatory Measures, Travel Demand Management (TDM), Direct and indirect methods, Congestion and parking pricing, All segregation methods- Coordination among different agencies, Intelligent Transport System for traffic management, enforcement and education.	8 Hours	L1,L2,L3,L4		
Course outcomes: After studying this course, students will be able to:		•		
1. Understand the human factors and vehicular factors in traffic engineering design				
2. Conduct different types of traffic surveys and analysis of collected data using sta	atistical concepts.			
3. Use an appropriate traffic flow theory and to comprehend the capacity & signali	zed intersection ana	llysis.		
4. Understand the basic knowledge of Intelligent Transportation System.				
Program Objectives:				
Engineering knowledge				
Problem analysis				
• Interpretation of data				
Question Paper Pattern:				
 The question paper will have 5 modules comprising of ten questions. Each full question carrying 16 marks There will be two full questions (with a maximum of three subdivisions, if necessary) from each module. Each full question shall cover the topics as a module The students shall answer five full questions, selecting one full question from each module. If more than one question is answered in modules, best answer will be considered for the award of marks limiting one full question answer in each module. 				
Text Books:				
1. Kadiyali.L.R. "Traffic Engineering and Transport Planning", Khanna Publishers, Delhi, 2013				
2. S K Khanna and CEG Justo and A Veeraragavan, "Highway Engineering", N	em Chand and Bros	S.		
3. Indian Roads Congress (IRC) Specifications: Guidelines and Special Publications on Traffic Planning and				

Management.

4. Salter. R.I and Hounsell N.B, "Highway Traffic Analysis and design", Macmillan Press Ltd. 1996.

Reference Books:

- Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, Principles of Highway Engineering and Traffic Analysis, Wiley India Pvt. Ltd., New Delhi, 2011
- 2. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010
- 3. SP:43-1994, IRC Specification, "Guidelines on Low-c ost Traffic Management Techniques" for Urban Areas, 1994
- John E Tyworth, "Traffic Management Planning, Opera tions and control", Addison Wesly Publishing Company, 1996
- 5. Hobbs.F.D. "Traffic Planning and Engineering", Univ ersity of Brimingham, Peragamon Press Ltd, 2005

Course Title: Remote Sensing and GIS					
Open Elective 1					
[As per Choice E	ased Credit System (CBCS)) scheme]		
	SEMESTER:V				
Subject Code	15CV563	IA Mar	ks	20	
Number of Lecture Hours/Week	03	Exam N	/larks	80	
Total Number of Lecture Hours	40	Exam H	Iours	03	
	CREDITS - 03		Total Marks	s-100	
Course Objectives: This course will enable studen	nts to				
1. Understand the basic concepts of remote sensin	g				
2. Analyze satellite imagery and extract the requir	ed units.				
3. Extract the GIS data and prepare the thematic n	naps				
4. Use the thematic maps for various applications					
Modules Teaching Hours Revised Bloom's Taxonomy (RBT) Level					
Module -1					
Remote Sensing: Basic concept of Remote sensing, Data and Information, Remote sensing data collection, Remote sensing advantages & Limitations, Remote Sensing process. Electromagnetic Spectrum, Energy interactions with atmosphere and with earth surface features (soil, water, and vegetation), Resolution, image registration and Image and False color composite, elements of visual interpretation techniques.8 hoursL1, L2,L3					
Module -2					
Remote Sensing Platforms and Sensors: Indian Satellites and Sensorscharacteristics, Remote Sensing Platforms, Sensors and Properties of DigitalData, Data Formats: Introduction, platforms- IRS, Landsat, SPOT, Cartosat,Ikonos, Envisat etc. sensors, sensor resolutions (spatial, spectral, radiometric and				L2,L3,L4	

tem syst Vel Ima stre	poral). Basics of digital image processing- introduction to digital data, ematic errors(Scan Skew, Mirror-Scan Velocity, Panoramic Distortion, Platform ocity, Earth Rotation) and non-systematic [random] errors(Altitude, Attitude), ge enhancements(Gray Level Thresholding, level slicing, contrast tching),image filtering.					
Мо	dule -3					
Geo attri Geo Proj	graphic Information System: Introduction to GIS; components of a GIS; graphically Referenced Data, Spatial Data- Attribute data-Joining Spatial and bute data, GIS Operations: Spatial Data Input – Attribute data Management, graphic coordinate System, Datum; Map Projections: Types of Map ections, Projected coordinate Systems. UTM Zones.	8 Hours	<u>L2,L3,L4</u>			
Mo	dule -4					
Dat and Dat Dat	Data Models: Vector data model: Representation of simple features - Topology and its importance; coverage and its data structure, Shape file; Relational Database, Raster Data Model: Elements of the Raster data model, Types of Raster Data, Raster Data Structure, Data conversion. 8 Hours L3,L4,L5					
Mo	dule -5					
Inte land envi Loc	Integrated Applications of Remote sensing and GIS: Applications in land use land cover analysis, change detection, water resources, urban planning, environmental planning, Natural resource management and Traffic management. 8 Hours L3,L4,L5,L6 Location Based Services And Its Applications. 8 Hours L3,L4,L5,L6					
Cou	rse outcomes: After studying this course, students will be able to:					
1. (Collect data and delineate various elements from the satellite imagery using their s	pectral signature.				
2. A	nalyze different features of ground information to create raster or vector data.					
3. P	erform digital classification and create different thematic maps for solving specific	c problems				
4. N	fake decision based on the GIS analysis on thematic maps.					
Pro	gram Objectives:					
•	Engineering knowledge					
•	Problem analysis					
Interpretation of data						
Que	Question paper pattern:					
·	The question paper will have 5 modules comprising of ten questions. Each full qu	estion carrying 16	marks			
•	There will be two full questions (with a maximum of three subdivisions, if necess	ary) from each mo	dule.			
•	Each full question shall cover the topics as a module					
•	The students shall answer five full questions, selecting one full question from each module. If more than one question is answered in modules, best answer will be considered for the award of marks limiting one full question.					

answer in each module.

Text Books:

- Narayan Panigrahi, "Geographical Information Science", ISBN 10: 8173716285 / ISBN 13: 9788173716287, University Press 2008.
- 2. Basudeb Bhatta, "Remote sensing and GIS", ISBN:9780198072393, Oxford University Press 2011
- Kang Tsurg Chang, "Introduction to Geographic Information System". Tata McGraw Hill Eduction Private Limited 2015.
- 4. Lillesand, Kiefer, Chipman, "Remote Sensing and Ima ge Interpretation", Wiley 2011.

Reference Books:

- 1. Chor Pang Lo and Albert K.W Yeung, "Concepts & Tech niques of GIS", PHI, 2006
- John R. Jensen, "Remote sensing of the environment", An earth resources perspective 2nd edition by Pearson Education 2007.
- Anji Reddy M., "Remote sensing and Geograperhical i nformation system", B.S. Publications 2008.
- Peter A. Burrough, Rachael A. McDonnell, and Christopher D. Lloyd, "Principals of Geo physical Information system", Oxford Publications 2004.
- S Kumar, "Basics of remote sensing & GIS", Laxmi pu blications 2005.

Course Title: Geotechnical Engineering Lab						
	[As per Choice Based Credit System (CBCS) scheme]					
	SEMESTER: V					
Subject Code	15CVL57	IA Marks	20			
Number of Lecture Hours/Week	03 (1hr tutorial + 2hr laboratory)	Exam Marks	80			
Total Number of Lecture Hours	42	Exam Hours	03			
	CREDITS - 02	Total Marks	-100			
Course Objectives: Provide stu	dents with a basic understanding	•				
 To carry out laboratory test 	ts and to identify soil as per IS codal proce	edures				
 To perform laboratory tests 	s to determine index properties of soil					
•To perform tests to determ	ine shear strength and consolidation chara	cteristics of soils				
Modules Teaching Hours Revised Bloom's Taxonomy (RBT) Level						
1. Visual soil classification. Water content determination by oven drying method and infrared moisture method. Specific gravity test (pycnometer and density bottle method). 6 Hours L1, L2						
Grain size analysis	3 Hours	L1, L2				
 Sieve analysis 	;					
ii. Hydrometer analysis						
In-situ density tests		3 Hours	L1, L2			
i. Core-cutter m	ethod					
ii. Sand replacen	nent method					

					1	
	4.	Consist	ency limits	3 Hours	L1, L2	
		i.	Liquid limit test (by Casagrande's and cone penetration method)			
		ii.	Plastic limit test			
		iii.	Shrinkage limit test			
	5.	Standar	d compaction test (light and heavy compaction)	3 Hours	L1, L2	
	6.	Co-effi	cient of permeability test	3 Hours	L1. L2	
	•	i.	Constant head test		,	
		ii.	Variable head test			
	7.	Shear st	renoth tests	9 Hours	L1. L2	
		i.	Unconfined compression test	2 110015		
		ii.	Direct shear test			
		iii.	Triaxial test (undrained unconsolidated)			
	8.	Consoli efficien	dation test : Determination of compression index and co- t of consolidation	3 Hours	L1, L2	
	9.	Laborat	ory vane shear test	3 Hours	L1, L2	
	10.	Demons and bo	tration of Swell pressure test, Standard penetration test ring equipment	6 Hours	L1, L2	
Co res	urse ults t	Outcom o determ	es: Students will be able to conduct appropriate laboratory/fine	eld experiments and inte	erpret the	
1.	Phy	ysical and	l index properties of the soil			
2.	Cla	ussify bas	ed on index properties and field identification			
3.	То	determin	e OMC and MDD, plan and assess field compaction program	1		
4.	She	ear streng	th and consolidation parameters to assess strength and deform	mation characteristics		
5.	In-	situ shear	strength characteristics (SPT- Demonstration)			
Re	ferei	nce Book	is:			
1.	Pu	nmia B C	, Soil Mechanics and Foundation Engineering- (2017), 16th	Edition, Laxmi Publicat	ions co., New	
2	Delhi. Lomba T.W. "Cail Tastina for Engineers" Wiley Easter, Ltd. N., D.W.					
3.	He	ad K.H.	"Manual of Soil Laboratory Testing" Vol. I. II. III. Princetor	n Press		
4.	Bo	wles J.E.	"Engineering Properties of Soil and Th eir Measurements",-	- McGraw Hill Book Co	o. New York.	
5.	Rel	levant BI	S Codes of Practice: 2720(Part-3/Sec. 1) – 1987; IS 2720 (Pa	urt – 2)- 1973; IS 2720 (Part -4) $-$	
	198	35; IS 272 23 IS 27	20 (Part – 5) – 1985; IS 2720 (Part – 6) – 1972; IS 2720 (Part – 7) – 1986; IS 2720 (Part – 10) – 1973; IS 2720 (J	rt – 7) – 1980; IS 2720 (Part 13) 1086: IS 2720	(Part - 8) - 0	
	190	71: IS272	0 (Part 15) - 1986; IS 2720 (Part 30) - 1987; IS 2720 (Part 30) - 19	14) – 1977: IS 2720 (Pa	rt = 14) = 1983:	
	IS 2720 (Part - 28) - 1974; IS 2720 (Part - 29) - 1 966, IS 2720 (Part-60) 1965.					

Course Title: Concrete and Highway Materials Laboratory

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER: V

Subject Code	15CVL58	IA Marks	20
Number of Lecture Hours/Week	03 (1hr tutorial + 2hr laboratory)	Exam Marks	80
Total Number of Lecture Hours	42	Exam Hours	03
	CREDITS – 02	Total Marks-10	0

Course objectives:

• To learn the principles and procedures of testing Concrete and Highway materials and to get hands on experience by conducting the tests and evolving inferences.

		Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
	Pa	rt A: Concrete Lab		
1.	Tests on	Cement:	6 Hours	L1, L2
	a.	Normal Consistency		
	b.	setting time		
	c.	compressive strength		
	d.	fineness by air permeability test		
	e.	specific gravity		
2.	Tests on	Concrete:	9 Hours	L2,L3
	a.	Design of concrete mix as per IS-10262		
	b.	Tests on fresh concrete:		
		i. slump,		
		ii. compaction factor and		
		iii. Vee Bee test		
	с.	Tests on hardened concrete:		

1. compressive strength test,					
ii. split tensile strength test,					
iii. flexural strength test					
d. NDT tests by rebound hammer and pulse velocity test.					
3. Tests on Self Compacting Concrete:	3 Hours	L2.L3			
5. Tests on ben compacting concrete.	5 110015	112,113			
a. Design of self compacting concrete,					
b. slump flow test.					
c V-funnel test					
d L.Ring test					
u. J-Ring test,					
e. U box test and					
I. L BOX test					
Part B: High way materials Lab					
1. Tests on Aggregates	3 Hours	L1. L2			
	e nouis				
a. Aggregate Crushing value					
b. Los Angeles abrasion test					
c. Aggregate impact test					
d Aggregate shape tests (combined index and angularity number)					
2 Testa en Bituminous Materiala	0 II ouw	111212			
2. Tests on Ditummous Materials	9 Hours	L1, L2,L3			
a. Penetration test					
b. Ductility test					
c Softening point test					
d. Specific appritutest					
u. Specific gravity test					
e. Viscosity test by tar viscometer					
f. Bituminous Mix Design by Marshall Method					
(Demonstration only)					
3. Tests on Soil	6 Hours	L1. L2			
a. Wet sieve analysis					
h CBR test					
0. CDR dist					
Course outcomest After studying this source studying this source in the state will be state	1	1			
1 Conduct appropriate laboratory converts, students will be able to:					
1. Conduct appropriate laboratory experiments and interpret the results					
2. Determine the quality and suitability of cement					
3. Design appropriate concrete mix					
4. Determine strength and quality of concrete					
5. Test the road aggregates and bitumen for their suitability as road materia	ıl.				
6. Test the soil for its suitability as sub grade soil for pavements.					
Reference Books:					
1. M.L.Gambir, "Concrete Manual", Danpat Rai and sons, New Delhi	1. M.L.Gambir, "Concrete Manual", Danpat Rai and sons, New Delhi				
2. Shetty M.S, "Concrete Technology", S. Chand & Co. Ltd, New Delhi.					
3. Mehta P.K. "Properties of Concrete". Tata McGraw Hill Publications. New Delhi					
4 Neville AM "Properties of Concrete" FLRS Publications London	, <u> </u>				
5 Delevent RIS codes					
J. RELEVANIE DID COURS.		annal? N			
0. 5 K Knanna, C E G Justo and A Veeraragavan, "Highway Materials T	esung Laboratory M	anual, mem			
Chand Bros, Roorkee					
7. L R Kadiyali, "Highway Engineering ", Khanna Publishers, New Delhi					

8. Relevant IRC Codes

9. Specifications for Roads and Bridges-MoRT&H, IRC, New Delhi

Course Title: As per	Construction Manager Choice Based Credit Sys	nent and Entrept tem (CBCS) sche	reneurship me]	
	SEMESTER:	VI		
Subject Code	15CV61	IA M	arks	20
Number of Lecture Hours/Week	04	Exam	<u>1 Marks</u>	80
Total Number of Lecture Hours	<u> </u>	Exam Total	1 Hours Marks - 100	03
Course Objectives: This course will en	able students to	Tota	101 1111111111111111111111111111111111	
 Understand the concept of planning and use of project information nece Inculcate Human values to grow as Keep up ethical conduct and discha 	s, scheduling, cost and que ssary for construction pro- responsible human being rge professional duties.	nality control, safe oject. gs with proper per	ety during constructions of the second se	ction, organizatio
Мос	lules		Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1				
Management: Characteristics of managimportance and purpose of planning pro Construction Project Formulation: In project organization, management funct Construction Planning and Schedulin work breakdown structure, Grant Chart and activity based and its critical path-critical on arrow and activity on node.	ement, functions of mar cess, types of plans troduction to constructio ions, management styles g: Introduction, types of , preparation of network ritical path method, conc	agement, n management, project plans, diagram- event ept of activity	10 hours	L1,L2,L3
Resource Management: Basic conce	ots of resource manage	ment, class of		
Factors affecting labour output or produ Construction Equipments: classification of productivity for: excavator, doze Estimation of ownership cost, operation equipments. Selection of construction edu maintenance Materials: material management function	ctivity. on of construction equip r, compactors, graders al and maintenance cost quipment and basic conce ons, inventory managem	nent, estimation and dumpers. of construction ept on equipment ent.	10 Hours	L1,L2,L3
Viodule -3				
Construction Quality, safety and Hun Construction quality process, inspection cost of quality, ISO standards. Introde Management HSE: Introduction to concepts of HSE a of safety in construction, Safety mean Explosives, drilling and blasting, hot be ladder, form work and equipment of through legislation, safety campaign. Inse Ethics: Morals, values and ethics, integ of engineering ethics, Professional I Confidential and Proprietary Informati Gifts and Bribes, Price Fixing, Whistle E Module -4	nan Values: n, quality control and qu uction to concept of T as applicable to Construct sures to be taken duri pituminous works, scaffe peration. Storage of urances. prity, trustworthiness, we Duties, Professional and I on, Conflict of Interest Blowing.	aality assurance, otal Quality tion. Importance ng Excavation , olds / platforms / materials. Safety ork ethics, need ndividual Rights, Confidentiality,	10 Hours	L1,L2,L3
MOQUIE -4 Introduction to ancincoving coor-			1	1
Principles of engineering economy Principles of engineering economics, co problem solving and decision making. Interest and time value of money: con interest formula for: single payment, equ Nominal and effective interest rates, def Comparison of alternatives : Present v rate of return methods , Minimum Cost	: ncept on Micro and mac cept of simple and comp al payment and uniform erred annuities, capitaliz vorth, annual equivalent analysis and break even	to analysis, ound interest, gradient series. ed cost. , capitalized and analysis	10 Hours	L1,L2,L3

M	odule -5				
En	trepreneurship: Evolution of the concept, functions of an entrepreneur,				
cor	ncepts of entrepreneurship, stages in entrepreneurial process, different sources				
of	finance for entrepreneur, central and state level financial institutions.				
Mi	cro, Small & Medium Enterprises (MSME): definition, characteristics,				
obj	ectives, scope, role of MSME in economic development, advantages of				
MŠ	SME, Introduction to different schemes: TECKSOK, KIADB, KSSIDC, DIC,	10 Ц.	111012		
Sir	gle Window Agency: SISI, NSIC, SIDBI, KSFC	10 Hours	L1,L2,L3		
Bu	siness Planning Process: Business planning process, marketing plan, financial				
pla	n, project report and feasibility study, guidelines for preparation of model				
pro	ject report for starting a new venture. Introduction to international				
ent	repreneurship opportunities, entry into international business, exporting,				
dir	ect foreign investment, venture capital				
Co	urse Outcomes: After studying this course, students will be able to:				
1.	Understand the construction management process.				
2.	Understand and solve variety of issues that are encountered by every	professional in o	discharging		
	professional duties.				
3.	Fulfill the professional obligations effectively with global outlook				
Pr	ogram Objectives:				
	Engineering knowledge				
	Problem analysis				
	Interpretation of data				
Οι	estion Paper Pattern:				
	The question paper will have 5 modules comprising of ten questions. Each	n full question carr	ving 16 marks		
	There will be two full questions (with a maximum of three subdivisions, it	f necessary) from e	each module.		
	Each full question shall cover the topics as a module	,			
	The students shall answer five full questions, selecting one full question fr	om each module	If more then		
	one question is answered in modules, best answer will be considered for the	he award of marks	limiting one		
	full question answer in each module.	le unulu of multo	initiang one		
Te	xt Books:				
1.	P C Tripathi and P N Reddy, "Principles of Management", Tata McGraw-Hill	Education			
2.	Chitkara, K.K. "Construction Project Management: Planning Scheduling and	l Control". Tata N	IcGraw-		
	Hill Publishing Company, New Delhi.	,			
3.	Poornima M. Charantimath, "Entrepreneurship Development and Smal	ll Business Enter	prise", Dorling		
	Kindersley (India) Pvt. Ltd., Licensees of Pearson Education				
4.	Dr. U.K. Shrivastava "Construction Planning and Management", Galgotia pub	lications Pvt. Ltd.	New Delhi.		
5.	Bureau of Indian standards - IS 7272 (Part-1)- 1974 : Recommendations	for labour outpu	t constant for		
	building works :				
Re	ference Books:				
1.	1. Robert L Peurifoy, Clifford J. Schexnayder, Aviad Shapira, Robert Schmitt, "Construction Planning, Equipment, and Methods (Civil Engineering), McGraw-Hill Education				
2.	2. Harold Koontz, Heinz Weihrich, "Essentials of Management: An International, Innovation, and Leadership perspective", T.M.H. Edition, New Delhi				
3.	3. Frank Harris, Ronald McCaffer with Francis Edum-Fotwe, "Modern Construction Management", Wiley-Blackwell				
4.	4. Mike Martin, Roland Schinzinger, "Ethics in Engineering", McGraw-Hill Education				
5.	Chris Hendrickson and Tung Au, "Project Management for Construction	- Fundamentals	Concepts for		
	Owners, Engineers, Architects and Builders", Prentice Hall, Pitsburgh		*		
6.	James L.Riggs, David D. Bedworth, Sabah U. Randhawa "Engineerng Econo	omics" 4 ed tata M	lc Graw hill.		
7.	S.C Sharma - "Construction Equipments and its management" - Khanna publi	shers			

Course Title: Design of Steel Structural Elements			
As per choice i	SEMESTER:VI	senemej	
Subject Code	15CV62 I	A Marks	20
Number of Lecture Hours/Week	04 E	Exam Marks	80
Total Number of Lecture Hours	50 E	Exam Hours	03
CREDITS -04	1	otal Marks- 100	
 Course Objectives: This course will enable studied. Understand advantages and disadvantages of structural steel. Learn Bolted connections and Welded connections and Welded connections. Design of compression members, built-up c Design of tension members, simple slab bas Design of laterally supported and un-supported and un-supported and un-supported. 	dents to of steel structures, steel code mections. columns and columns splices. se and gusseted base. rted steel beams.	provisions, and plastic	e behaviour
Modules		Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1			
Introduction: Advantages and Disadvantages of method Limit State of Strength, Structural Stabi Failure Criteria of steel, Design Consideration, J IS code provisions, Specification and Section cl Plastic Behaviour of Structural Steel: Introdu Hinge Concept, Plastic collapse load, load facto plastic collapse, Methods of Plastic analysis, Pla Beams.	f Steel Structures, Limit state lity, Serviceability Limit state Loading and load combination assification. ction, Plastic theory, Plastic r, Shape factor, Theorem of astic analysis of Continuous	s, s, 10 hours	L1,L2,L3
Module -2			
Bolted Connections: Introduction, Types of Bo Design of High Strength friction Grip(HSFG) Connections (Lap and Butt joints) Welded Connections: Introduction, Types and areas of welds, Weld Defects, Simple welded jo Advantages and Disadvantages of Bolted and W	s, lted ive 10 Hours	L1,L2,L3	
Module -3		-	
Design of Compression Members: Introductio compression members, Sections used for compr of compression members, Design of compress Compression members, Design of Laced and Ba	n, Failure modes, Behaviour ession members, Effective len ssion members and built up attened Systems.	of gth 10 Hours	L1,L2,L3
Module -4			
Design of Tension Members: Introduction, Slenderness ratio, Modes of Failure, Factors a members, Design of Tension members and Lug Design of Column Bases: Design of Simple Sla	Types of Tension members. affecting the strength of tens angles, Splices, Gussets. ab Base and Gusseted Base.	ion 10 Hours	L1,L2,L3
Module -5			-
Design of Beams: Introduction, Beam types, La affecting lateral stability, Behaviour of Beams laterally supported beams in Bending, Design of [No Numerical Problems], Shear Strength of Ste Beam to Beam Connections, Beam to Column ([No Numerical Problems]]	tteral Stability of beams, facto in Bending, Design strength of Laterally unsupported Beam cel Beams. Connection and Column Splice	rs of 1s 10 Hours rs	L1,L2,L3
 Course Outcomes: After studying this course, students will be able to: Possess a knowledge of Steel Structures Advantages and Disadvantages of Steel structures, steel code provisions and plastic behaviour of structural steel Understand the Concept of Bolted and Welded connections. Understand the Concept of Design of compression members, built-up columns and columns splices. Understand the Concept of Design of tension members, simple slab base and gusseted base. Understand the Concept of Design of laterally supported and un-supported steel beams. 			

Program Objectives:

Engineering knowledge Problem analysis Interpretation of data

Question Paper Pattern:

The question paper will have 5 modules comprising of ten questions. Each full question carrying 16 marks There will be two full questions (with a maximum of three subdivisions, if necessary) from each module. Each full question shall cover the topics as a module

The students shall answer five full questions, selecting one full question from each module. If more than one question is answered in modules, best answer will be considered for the award of marks limiting one full question answer in each module.

Text Books:

- 1. N Subramanian., "Design of Steel Structures" (2016), Oxford University Press, New Delhi.
- 2. Duggal S K., "Limit State Method of Design of Steel Structures", Tata McGraw Hill, New Delhi

Reference Books:

- 1. Dayarathnam P, "Design of Steel Structures", S Chand and Company Ltd., New Delhi.
- 2. Kazim S M A and Jindal R S, "Design of Steel Structures", Prentice Hall of India, New Delhi.
- 3. IS 800-2007: General Construction in Steel Code Practice (Third revision), Bureau of Indian Standards, New Delhi.

Course Title: Alternative Building Materials As per Choice Based Credit System (CBCS) scheme]				
Subject Code	SEMESTER:VI 15CV653	IA M	arks	20
Number of Lecture Hours/Week	03	Exam	Marks	80
Total Number of Lecture Hours	40	Exam	Hours	03
	CREDITS -03	Enuir	Total Marks	s- 100
Course objectives: This Course will enable stud	ents to:			
1. understand environmental issues due to l	building materials and	the e	energy consumption	n in
manufacturing building materials	-			
2. study the various masonry blocks, masonr	y mortar and structural b	sehavio	or of masonry und	er compression.
3. Study the alternative building materials in the	e present context.			
4. understand the alternative building technol	logies which are followed	l in pr	esent construction	field.
Modules			Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1				
Introduction: Energy in building materials, Env building materials, Embodied energy and life-cyd construction industry, Green concepts in build IGBC and LEED manuals – mandatory requirem solar passive architecture. Environmental friend technologies, Requirements for buildings of diffe Module -2	vironmental issues concerne cle energy, Global warming ings, Green building rati- ents, Rainwater harvest lly and cost effective buil erent climatic regions	ed to g and ngs – ing & lding	8 hours	L1,L2,L3
Floments of Structural Masonry · Elements	of Structural Masonry			
Elements of Structural Masonry : Elements of Structural Masonry, Masonry materials, requirements of masonry units' characteristics of bricks, stones, clay blocks, concrete blocks, stone boulders, laterite Blocks, Fal- G blocks and Stabilized mud block. Manufacture of stabilized blocks. Structural Masonry Mortars: Mortars, cementations materials, sand, natural & manufactured, types of mortars, classification of mortars as per BIS, characteristics and requirements of mortar, selection of mortar. Uses of masonry, masonry bonding, Compressive strength of masonry elements, Factors affecting compressive strength, Strength of Prisms/wallets and walls, Effect of brick bond on strength, Bond strength of masonry: Flexure and shear, Elastic properties of masonry materials and masonry, Design of masonry compression elements subjected to axial load.8 Hours			L1,L2,L3	
Module -3				
Alternative Building Materials: Lime, Pozzolaa Manufacturing process, Properties and uses. Fib Properties and applications. Fiber reinforced pla organic and synthetic, Properties and applications and industrial wastes, Types of agro wastes, T wastes, Properties and applications. Masonry bloc Construction and demolition wastes	na cements, Raw materials, ers- metal and synthetic, stics, Matrix materials, Fib . Building materials from Types of industrial and n cks using industrial wastes.	ers agro nine	8 Hours	L1,L2,L3
Module -4				
Alternative Building Technologies: Use of arc for wall constructions, composite masonry, com rammed earth, Ferro cement and ferroconcrete Materials and specifications, Properties, Constr Top down construction, Mivan Construction Tec Alternative Roofing Systems: Concepts, Filler s roofs, Masonry vaults and domes Module -5	hes in foundation, alternation, alternation fined masonry, cavity water building components, ruction methods, Application hnique. slabs, Composite beam pation	tives alls, tions. mel	8 Hours	L1,L2,L3

Equipment for Production of Alternative Materials: Machines for				
and matheds of production of precast elements. Cost concepts in buildings. Cost	8 Hours	111213		
saving techniques in planning, design and construction. Cost analysis: Case	8 110015	L1,L2,L3		
studies using alternatives.				
Course Outcomes: After studying this course, students will be able to:				
1. Solve the problems of Environmental issues concerned to building mater	rials and cost effe	ective building		
technologies;		C		
2. Suggest appropriate type of masonry unit and mortar for civil engineering con Design Structural Masonry Elements under Axial Compression.	structions; also the	y are able to		
3. Analyse different alternative building materials which will be suitable environmentally sustainable manner. Also capable of suggesting suitable agree material.	e for specific cli o and industrial wa	mate and in an stes as a building		
4. Recommend various types of alternative building materials and technology building by considering local climatic condition and building material.	gies and design a	energy efficient		
Program Objectives:				
Engineering knowledge				
Problem analysis				
Interpretation of data				
Question paper pattern:				
The question paper will have 5 modules comprising of ten questions. Each ful	l question carrying	16 marks		
There will be two full questions (with a maximum of three subdivisions, if neo	cessary) from each	module.		
Each full question shall cover the topics as a module				
The students shall answer five full questions, selecting one full question from each module. If more than one question is answered in modules, best answer will be considered for the award of marks limiting one full question answer in each module.				
Text Books:				
 KS Jagadish, BV Venkatarama Reddy and KS Nanjunda Rao, "Alt Technologies", New Age International pub. Arnold W Hendry, "Structural Masonry", Macmillan Publishers 	ernative Building	Materials and		
Reference Books:				
1. RJS Spence and DJ Cook, "Building Materials in Developing Countries", Wi	ley pub.			
2. LEED India, Green Building Rating System, IGBC pub.				
3. IGBC Green Homes Rating System, CII pub.				

4. Relevant IS Codes.

Course T As per Choice	itle: Software Ap Based Credit System	plication Lab	emel	
As per choice .	SEMESTER:V	/I	line	
Subject Code	15CVL67	IA M	larks	20
Number of Lecture Hours/Week	1I+2P	Exan	n Marks	80
Total Number of Lecture Hours	40	Exan	n Hours	03
CREDITS -02	1	Tota	l Marks- 100	
 Course objectives: This course will enable stud. Use industry standard software in a pro understand the elements of finite elements analysis and interpretation of results for Develop customized automation tools 	lents to fessional set up. ent modeling, spec r final design	ification of load	s and boundary co	ndition, performing
Modules			Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1				•
Use of civil engineering softwares: Use of softwares for: 1. Analysis of plane trusses, continuous be 2. 3D analysis of multistoried frame struct	eams, portal frame rures	S	18 hours	L1,L2,L3
 Project Management- Exercise on Project building project using any project manage a. Understanding basic features of Project manage b. Constructing Project: create WBS, Activ Time using Excel spread sheet and transmanagement software. c. Identification of Predecessor and Successor d. Constructing Network diagram (AON Dia path, Critical activities and Other non Critical study on various View options available f. Basic understanding about Resource Creating. Understanding about Splitting the activity, assigning Constrains, Merging Multiple pro GIS applications using open source software. b. To create decision maps for specific purposed 	et planning and se gement software: inagement software ities, and tasks a sferring the same activities with co gram) and analyzi cal paths, Project co on and allocation Linking multiple a ojects, Creating Ba (vare: polygon features e. (3hr	cheduling of a e nd Computation to Project nstrain ng for Critical luration, Floats. activity, sseline Project 9hrs) with a map as s)	n 12 hours	L1,L2,L3
Module -3				_
Use of EXCEL spread sheets: Design of singly reinforced and doubly reinforc one way and two way slabs, computation of curve by offset method, Design of super elevation	ed rectangular bea earthwork, Desig on	ms, design of n of horizontal	10 Hours	L1,L2,L3
Course Outcomes: After studying this course, suse software skills in a professional set up to autwork	students will be at tomate the work a	le to: nd thereby reduc	ce cycle time for co	ompletion of the
Program Objectives:				
Problem analysis Interpretation of data				
Question paper pattern: The question paper will have 3 module There will be two full questions (with a Each full question shall cover the topic Module-1: 40 Marks, Module-2: 20 Ma The students shall answer three full que question is answered in modules, best question answer in each module.	s comprising of 6 a maximum of three s as a module arks, Module-3: 20 estions, selecting of answer will be o	questions. e subdivisions, i Marks one full question considered for th	if necessary) from from each module he award of marks	each module. e. If more than one s limiting one full

Course Title: Design of RCC and Steel Structures				
As per Choice Based Credit System (CBCS) scheme]				
SEMESTER:VII				
Subject Code	15CV72	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours50Exam Hours03				
CREDITS04		Total Marks- 100		

Course objectives: This course will enable students to

- 1. Provide basic knowledge in the areas of limit state method and concept of design of RC and Steel structures
- 2. Identify, formulate and solve engineering problems in RC and Steel Structures
- 3. Give procedural knowledge to design a system, component or process as per needs and specifications of RC Structures like Retaining wall, Footing, Water tanks, Portal Frames and Steel Structures like Roof Truss, Plate Girder and Gantry Girder.
- 4. Imbibe the culture of professional and ethical responsibilities by following codal provisions in the analysis, design of RC and Steel Structures.
- 5. Provide factual knowledge on analysis and design of RC Structural elements, who can participate and succeed in competitive examinations.

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level	
Module -1	• •	• •	
Footings: Design of rectangular slab type combined footing. Retaining Walls: Design of cantilever Retaining wall and counter fort retaining wall. Water Tanks: Design of circular water tanks resting on ground (Rigid and Flexible base). Design of rectangular water tanks resting on ground. As per IS: 3370 (Part IV) Design of portal frames with fixed and hinged based supports.	25 hours	L1,L2,L3	
Module -2			
Roof Truss: Design of roof truss for different cases of loading, forces in members to given. Plate Girder: Design of welded plate girder with intermediate stiffener, bearing stiffener and necessary checks Gantry Girder: Design of gantry girder with all necessary checks	25 Hours	L1,L2,L3	
Course Outcomes: After studying this course, students will be able to: Students will acquire the basic knowledge in design of RCC and Steel Structu Students will have the ability to follow design procedures as per codal structurally safe RC and Steel members.	rres. provisions and s	kills to arrive at	
Program Objectives: Engineering knowledge Problem analysis Interpretation of data			
Question Paper Pattern: Two questions shall be asked from each module. There can be maximum of t	hree subdivisions in	each question, if	
 Two questions shall be asked from each module. There can be maximum of three subdivisions in each question, if necessary. One full question should be answered from each module. Each question carries 40 marks. Code books – IS 456, IS 800, IS 3370 (Part IV), SP (6) – Steel Tables, shall be referred for designing The above charts shall be provided during examinations. 			
 Text Books: N Krishna Raju, "Structural Design and Drawing of Reinforced Concrete and Steel", University Press Subramanian N, "Design of Steel Structures", Oxford university Press, New Delhi K S Duggal, "Design of Steel Structures", Tata McGraw Hill, New Delhi 			
 Reference Books: Charles E Salman, Johnson & Mathas, "Steel Structure Design and Behaviour", Pearson Publications Nether Cot, et.al, "Behaviour and Design of Steel Structures to EC -III", CRC Press P C Verghese, "Limit State Design of Reinforced Concrete", PHI Publications, New Delhi S N Sinha, "Reinforced Concrete Design", McGraw Hill Publication 			

Course Title:	Design Concept of Buildin	g Serv	vices	
As per Choice	SEMESTER:VII	s) sche	emej	
Subject Code	15CV743	IA M	larks	20
Number of Lecture Hours/Week	03	Exan	n Marks	80
Total Number of Lecture Hours	40 CDEDITS 02	Exan	n Hours	03
Course Objectives: This course will enable stu	dents to	Tota	I Marks- 100	
1. learn the importance of sanitation, domestic	water supply, plumbing an	d fire	services	
2. Understand the concepts of heat, ventilation	n and air conditioning			
3. Develop technical and practical knowledge	in Building Services.			
Modules			Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1				
Water Supply, Drainage and Solid Waste Dis Water requirements for different types of buildin impurities, water saving practices and their pote mains, sump and storage tank, types and sizes o multistoried buildings. Material, types of fixture bathroom– taps –quarter turn, half turn, ceramic hand shower Rainwater harvesting to include ro sizes of rainwater pipes and typical detail of a w	posal: ngs, simple method of remo- ntial Service connection fro f pipes, special installation is and fitting for a contempo- , foam flow etc, hot water r of top harvesting, type of sp rater harvesting pit	oval of om in orary nixer, pouts,	8 hours	L1,L2
Principles of drainage, surface drainage, shape a storm water over flow chambers, methods of lay Approaches for solid waste management, Solid from buildings. On-site processing and disposal	and sizes of drains and sewer ring and construction of sev wastes collection and remov methods	ers, vers val		
Module -2			-	
Heat Ventilation and Air Conditioning (HVA Behaviour of heat propagation, thermal insulatin of thermal conductivity. General methods of insulation of roofs, exposed walls. Ventilation: I of ventilation. Principles of air conditioning, Air ducting and distribution, Essentials of air-condition	(C): ng materials and their co-eff thermal insulation: Th Definition and necessity, sy r cooling, Different systems tioning system.	ficient hermal stem s of	8 Hours	L1,L2
Module -3				
Electrical and Fire Fighting Services: Electrical systems, Basics of electricity, single devices in electrical installation, Earthing for Specifications. Electrical installations in buildin Wiring systems and their choice , planning elect and distribution boards, Principles of illumination Classification of buildings based on occupancy, Standard fire, Fire fighting, protection and fire r	e/Three phase supply, prot safety, Types of earthing gs, Types of wires, trical wiring for building, M on, causes of fire and spread o esistance, Firefighting equi	ective g, ISI Iain f fire, pment	8 Hours	L1,L2,L3
and different methods of fighting fire., mear Combustibility of materials, Structural elements routes and elements, planning and design. Wet r detector, smoke detectors, fire dampers, fire doc Provisions of NBC.	as of escape, alarms, etc., and fire resistance, Fire escristers, dry risers, sprinklers, ors, etc.	cape heat		
Plumbing and Fire Fighting Lavout of Simpl	e Buildings.			
Application of above studies in preparing layout residential and public buildings, Fire fighting la smoke detectors / sprinklers, etc.	t and details - Plumbing lay yout, Reflected ceiling plan	out of of	8 Hours	L2,L3

Module -5			
Engineering Services: engineering services in a building as a system. Lifts.			
escalators, cold and hot water systems, waste water systems and electrical			
Systems. Dumps and Machinerica: Designaceting Contributed Deep well Submarsible.			
Automatic numes Severage numes Compressors Vacuum nume their			
selection installation and maintenance. Hot water boilers. Classification and			
selection, installation and maintenance – not water boners – Classification and	8 Lours	111212	
cypes of first, fire	8 110015	L1,L2,L3	
norms to be adopted. Social features required for physically handicapped and			
alderly DC/AC motors. Generators			
Building Maintanance: Dreventive and protective maintenance. Scheduled and			
contingency maintenance planning MIS for building maintenance			
Maintenance standards Economic maintenance decisions			
Course Outcomes: After studying this course students will be able to:			
1 Describe the basics of house plumbing and waste water collection and disposa	1		
2. Discuss the safety and guidelines with respect to fire safety.			
3. Describe the issues with respect to quantity of water, rain water harvesting and	l roof top harvestin	σ	
4. Understand and implement the requirements of thermal comfort in buildings		.9.	
Program Objectives:			
Engineering knowledge			
Problem analysis			
Interpretation of data			
Question paper pattern:		16 1	
The question paper will have 5 modules comprising of ten questions. Each full	question carrying	16 marks	
There will be two full questions (with a maximum of three subdivisions, if nec	essary) from each	module.	
Each full question shall cover the topics as a module			
The students shall answer five full questions, selecting one full question from	om each module.	If more than one	
question is answered in modules, best answer will be considered for the award	of marks limiting	one full question	
answer in each module.			
REFERENCE BOOKS			
1. National Building Code			
2. Charangith shah, Water supply and sanitary engineering, Galgotia publishers.			
3. Kamala & DL Kanth Rao, Environmental Engineering, Tata McGraw Hill pub	lishing co. Ltd.		
4. Technical teachers Training Institute (Madras), Environmental Engineering, Tata McGraw Hill publishing Co. Ltd.			
5. M.David Egan, Concepts in Building Fire Safety.	··· · ····		
6. U.H.Koenigsberger, "Manual of Tropical Housing and Building", Longman G	roup United Kingo	lom	
7. V.K.Jain, Fire Safety In Building 2edition, New Age International Publishers			
8. E.G.Butcher, Smoke control in Fire-safety Design.	NT N7 1		
9. E.R.Ambrose, Heat pumps and Electric Heating, John and Wiley and Sons Inc	, New York		

10. Handbook for Building Engineers in Metric systems, NBC, New Delhi

	STRUCTUR	AL ENGINEERING	G LAB-1	mal	
	[As per Choice ba	SEMESTER – I	. (CDCS) sche	mej	
Subject Code	16CSEL16	IA Marks	20		
Number of	03	Exam Marks	80		
Lecture					
Total Number of	42	Exam Hours	03		
Lecture Hours					
		CREDITS – 02			
The objective of the experiments, To the different testin	:: his course is to n investigate the p ng methods and j	nake students to performance of str equipments.	learn princi ructural elem	iples of des ients. To ev	sign of valuate
	Module	es		Teaching Hours	RBT Level
 Testing of beam Experiments or Experiments or Experiments or Natural frequency Use of Non des hammer, Ultra so 	ns for deflection, n Concrete, inclue n vibration of mu and modes. tructive testing (I nic pulse velocity	flexure and shear ding Mix design lti storey frame n NDT) equipments y meter and Profo	-12 Hrs -12 Hrs nodels for -12 Hrs - Rebound meter -06 Hrs	42	L ₁ , L ₂ , L ₃ , L ₄ , L ₅ , L ₆
Course outcomes On completion of th • Achieve Kno	: his course, studen owledge of design	ts are able to:	t of experime	enting skills	

- Understand the principles of design of experiments
 Design and develop analytical skills.
 Summarize the testing methods and equipments.

EARTHQUAKE RESISTANT STRUCTURES [As per Choice Based Credit System (CBCS) scheme]					
	SI	EMESTER – II			
Subject Code	16CSE22	IA Marks	20		
Number of	04	Exam Marks	80		
Lecture					
Hours/Week					
Total Number of	50	Exam Hours	03		
Lecture Hours					
	C	REDITS – 04			
Course objectives	:				
The objective of	this course is to	o make student	to to	learn prine	ciples of
engineering seisn	nology, To desig	n the reinforce	d cor	ncrete build	ings for
earthquake resista	ance. To evaluate t	the seismic respo	nse of	the structur	res
Modules		Teaching Hours	RBT Level		
Module -1					

Introduction to engineering seismology, Geological and	
tectonic features of India, Origin and propagation of	
seismic waves, characteristics of earthquake and its	
quantification – Magnitude and Intensity scales,	
seismic instruments. Earthquake Hazards in India,	
Earthquake Risk Evaluation and Mitigation.	10 Hours
Structural behavior under gravity and seismic loads,	
Lateral load resisting structural systems,	
Requirements of efficient earthquake resistant	
structural system, damping devises, base isolation	
systems.	

 L_1, L_2

Module -2		
The Response history and strong motion		
characteristics. Response Spectrum - elastic and		
inelastic response spectra, tripartite (D-V-A) response	10 11	$L_2, L_3, L_4,$
spectrum, use of response spectrum in earthquake	10 Hours	L_5
resistant design. Computation of seismic forces in		
multi-storied buildings – using procedures (Equivalent		
lateral force and dynamic analysis) as per IS-1893.		
Module -3		
Structural Configuration for earthquake resistant		
design, Concept of plan irregularities and vertical		
irregularities, Soft storey, Torsion in buildings. Design	10 Hours	L_2, L_4, L_5
provisions for these in IS-1893. Effect of infill masonry		
walls on frames, modeling concepts of infill masonry		

buildings

during

masonry

of

Behaviour

walls.

earthquakes, failure patterns, strength of masonry in		
shear and flexure, Slenderness concept of masonry		
walls, concepts for earthquake resistant masonry		
buildings – codal provisions.		
Module -4		
Design of Reinforced concrete buildings for		
earthquake resistance-Load combinations, Ductility		
and energy absorption in buildings. Confinement of		
concrete for ductility, design of columns and beams	10 Hours	L_2, L_4, L_5
for ductility, ductile detailing provisions as per IS-		
1893. Structural behavior, design and ductile detailing		
of shear walls.		
Module -5		
Seismic response control concepts – Seismic		
demand, seismic capacity, Overview of linear and		
nonlinear procedures of seismic analysis. Performance	10 Hours	L_2, L_5, L_6
Based Seismic Engineering methodology, Seismic		
evaluation and retrofitting of structures.		
Course outcomes:		
On completion of this course, students are able to:		
 Achieve Knowledge of design and development of prol Understand the principles of engineering seismology Design and develop analytical skills. Summarize the Seismic evaluation and retrofitting of Understand the concepts of earthquake resistance of buildings. 	olem solving structures. reinforced co	skills. oncrete
Question paper pattern:		
 The question paper will have ten questions. 		
 Each full question consists of 16 marks. 		
• There will be 2 full questions (with a maximum of four s	sub questions) from each
module.	a tamiaa umda	
 Each full question will have to answer 5 full questions, selection 	e topics unde	a module.
each module.	ng one run qu	
REFERENCE BOOKS:		
 Dynamics of Structures - Theory and Application to Earthqua ed Anil K. Chopra, Pearson Education. Earthquake Resistant Design of Building Structures, Vinod H Earthquake Resistant Design of Structures, Duggal, Oxford U Earthquake resistant design of structures - Pankaj Agarwal, H PHI India 	ake Engineerii Iosur, WILEY Jniversity Pres Manish Shrika	ng- 2nd (india) ss ande -
5 IS $=$ 1803 (Part I) 2002 IS $=$ 13020 1003 IS $=$ 4326 1003 I	5-13828+ 1003	2

- IS 1893 (Part I): 2002, IS 13920: 1993, IS 4326: 1993, IS-13828: 1993
 Design of Earthquake Resistant Buildings, Minoru Wakabayashi, McGraw Hill Pub.
- Pub.
 7. Seismic Design of Reinforced Concrete and Masonry Buildings, T Paulay and M J N Priestley, John Wiley and Sons

[A	FINITE ELEMENT As per Choice Based	T METHOD OF A d Credit System (C	NALY: BCS) :	SIS scheme]	
	S	EMESTER – II			
Subject Code	16CSE23	IA Marks	20		
Number of	04	Exam Marks	80		
Lecture					
Hours/week	50	Errom Hours	02		
Lecture Hours	50	Exam Hours	03		
	C	REDITS – 04			
Course objectives The objective of th of Stress and Str one and two di parameters and th	: is course is to ma ain, To apply the mensional proble neir inter relations	ake students to le Finite Element M ems. To evaluate of the continuum	earn j Metho e the 1.	principles of d for the an e stress an	Analysis alysis of d strain
	Modules			Teaching Hours	RBT Level
Module -1				1	
Basic concepts of elasticity – Kinematic and Static variables for various types of structural problems – approximate method of structural analysis – Rayleigh – Ritz method – Finite difference method – Finite element method. Variation method and minimization of Energy approach of element formulation. Principles of finite element method – advantages & disadvantages – Finite element procedure. Finite elements used for one, two & three dimensional problems – Element aspect ratio – mesh refinement vs. higher order elements – Numbering of nodes to minimize band width.			gh te on es & te al at to	10 Hours	L_1, L_2
Module -2				I	
Nodal displacem criterion – Comp invariance – Sha displacement fuz coordinates – La shape functions elements.	ent parameters patibility requiren ape function – F nction. Generaliz agrangian interpo for one, two &	– Convergend nents – Geometr Polynomial form zed and Natur plation function three dimension	ce ic of al – al	10 Hours	${f L_1,L_2,L_4,\ L_5}$
Module -3					
Isoparametric ele order elements, S Finite Elements parametric element Jacobian transfo strain-displacement consistent load ve	ments, Internal erendipity and La s, Sub-parametri nts, Condensation ormation Matrix. nt matrix and ctor, numerical in	nodes and high agrangian family ic and Supe of internal node Development stiffness matri ntegration.	er of r- s, of x,	10 Hours	L ₁ , L ₂ , L ₄ , L ₅

Module -4						
Application of Finite Element Method for the analysis of one & two dimensional problems, Analysis of simple beams and plane trusses, Application to plane stress / strain / axisymmetric problems using CST & Quadrilateral Elements	ication of Finite Element Method for the analysis ne & two dimensional problems, Analysis of simple ns and plane trusses, Application to plane stress train / axisymmetric problems using CST & drilateral Elements					
Module -5						
Application to Plates & Shells, Choice of displacement function (C ⁰ , C ¹ and C ² type), Techniques for Non – linear Analysis.	10 Hours	L_1, L_2				
Course outcomes: On completion of this course, students are able to:						
 Achieve Knowledge of design and development of problem solving skills. Understand the principles of stress-strain behaviour of continuum Design and develop analytical skills. Describe the state of stress in a continuum Understand the concepts of elasticity and plasticity. 						
Question paper pattern:						
The question paper will have ten questions.						
 Each full question consists of 16 marks. 						
• There will be 2 full questions (with a maximum of four sub questions) from each module.						
• Each full question will have sub questions covering all the topics under a module.						
• The students will have to answer 5 full questions, selecting one full question from each module.						
REFERENCE BOOKS:						
 Krishnamoorthy C S, "Finite Element Analysis"- Tata McGraw Hill Desai C and Abel J F, "Introduction to the Finite Element Method"- East West Press Pyt. Ltd., 1972 						
Bathe K J, "Finite Element Procedures in Engineering Analysis"- Prentice Hall						
Rajasekaran. S, "Finite Element Analysis in Engineering Design"-Wheeler						
Cook R D, Malkan D S & Plesta M.E, "Concepts and Application of Finite Element Analysis" - 3 rd Edition, John Wiley and Sons Inc., 1989						
6. Shames I H and Dym C J, "Energy and Finite Element Structural Mechanics"- McGraw Hill, New York, 1985	Methods in					

	DESIGN CONC	EPTS OF SUBSTR	UCTUF	RES	
1	As per Choice B	ased Credit System	(CBCS)	schemel	
l		SEMESTER – II	(0200)	semennej	
Subject Code	16CSE24	IA Marks	20		
Number of	04	Exam Marks	80		
Lecture					
Hours/Week					
Total Number of	50	Exam Hours	03		
Lecture Hours					
		CREDITS – 04			
Course objective	s:				
The objective of t	this course is t	o make students to) learn	principles o	f subsoil
exploration, To d	esign the sub	structures. To evalu	uate th	e soil shear	strength
parameters.	-				-
	Module	s		Teaching	RBT Level
		-		Hours	
Module -1					
Introduction Sit	e investigation	In situ testing	of		
soils Subsoil	exploration	Classification	of		
foundations sv	10 Hours				
foundations Sele	ection of found	lations Computation	201		L2, L4, L5
of Loads, Design	concepts.		5115		
	concepto.				
Module -2	<i> </i>		4		
Concept of soil s.	hear strength p	arameters, Settlem	ent		
analysis of foot	ings, Shallow	Ioundations in cl	lay,	10.11	
Snallow loundati	on	10 Hours	L2, L4, L5		
ayered soils and	sloping ground	i, Design for Eccen	tric		
	•				
		0			
Types of raits, D	earing capacity	& settlements of i			
ioundation, Rigi	d intennous, Fi	mothodo of model	ing		
the soil Cor	nbined footin	methous of model	.111g	10 Uouro	
trapezoidal) stra	n footings &	wall footings Rof	− C6 '+	10 Hours	L ₂ , L ₄ , L ₅
super structure i	nteraction effec	wall lootiligs, Rai	$\iota =$		
of structural desi	an Bosement s	labe	pts		
	gii, Dasciliciti s	siabs			
Doon Foundati	anay I aad	Transfor in D	000		
Equipolotiona Tur	ons. Load	Foundationa Ultim	eep		
bearing consoity	of different typ	es of piles in differ	ent		
soil conditions I	of unificient typ	niles tension niles			T. T. T.
hatter niles Dile	orning Rearin	g canacity settleme	nt of the	10 Hours	L ₂ , L ₃ , L ₄ ,
unlift canacity	load distribu	tion hetween ni	les		L ₅
Proportioning and	design concer	ots of piles	,		
r and and					
Module -5				1	1
		<u> </u>		10.77	
Design principles, Well construction and sinking.	L_5				
--	-------				
Foundations for tower structures: Introduction,					
Forces on tower foundations, Selection of foundation					
type, Stability and design considerations, Ring					
foundations – general concepts.					

Course outcomes:

On completion of this course, students are able to:

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of subsoil exploration
- Design and develop analytical skills.
- Identify and evaluate the soil shear strength parameters.
- Understand the concepts of Settlement analysis.

IMPORTANT NOTE:

Only design principles of all type footings as per relevant BIS codes are to be covered, design of RC elements need not be

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

REFERENCE BOOKS:

- Swami Saran "Analysis & Design of Substructures" Oxford & IBH Pub. Co. Pvt. Ltd., 1998.
- 2. Nainan P Kurian "**Design of Foundation Systems**"- Narosa Publishing House, 1992.
- 3. R.B. Peck, W.E. Hanson & T.H. Thornburn "Foundation Engineering"-Wiley Eastern Ltd., Second Edition, 1984.
- 4. J.E. Bowles **"Foundation Analysis and Design**"- McGraw-Hill Int. Editions, Fifth Ed., 1996.
- 5. W.C. Teng "Foundation Design"- Prentice Hall of India Pvt. Ltd., 1983.
- 6. Bureau of Indian Standards:IS-1498, IS-1892, IS-1904, IS-6403, IS-8009, IS-2950, IS-11089, IS-11233, IS-2911 and all other relevant codes

	STRUCTURAL	ENGINEERING I	AB-II		
[As per Choice Based Credit System (CBCS) scheme]					
	SI	EMESTER – II			
Subject Code	16CSEL26	IA Marks	20		
Number of	03	Exam Marks	80		
Lecture					
Hours/Week					
Total Number of	42	Exam Hours	03		
Lecture Hours					
	C	REDITS – 02			
Course objectives	:				
The objective of the of experiments, evaluate the differ	is course is to m To investigate th ent testing method	ake students to ne performance o ds and equipmen	learn of stru ts	principles o lctural elem	of design lents. To
Modules Teaching RBT Level Hours					
	Modules			Teaching Hours	RBT Level
1. Static and	Modules Dynamic analysis	s and design	of	Teaching Hours	RBT Level
1. Static and Multistory Buildir	Modules Dynamic analysis ng structures usin	s and design ig software (ETAI	of 3S	Teaching Hours	RBT Level
 Static and Multistory Buildir / STAADPRO 	Modules Dynamic analysis ng structures usin	s and design Ig software (ETAI	of 3S	Teaching Hours	RBT Level
 Static and Multistory Buildin / STAADPRO) Design of RC Software (ETABS) 	Modules Dynamic analysis ng structures usin C and Steel Tall	s and design ng software (ETAI l structures usi	of 3S ng	Teaching Hours 42 Hours	RBT Level L ₁ , L ₂ , L ₃ , L ₄ , L ₅ , L ₆
 Static and Multistory Buildin / STAADPRO) Design of RC software (ETABS / Control of the second s	Modules Dynamic analysis ng structures usin C and Steel Tall (STAADPRO)	s and design ag software (ETAI l structures usi	of 3S ng	Teaching Hours 42 Hours	RBT Level L ₁ , L ₂ , L ₃ , L ₄ , L ₅ , L ₆
 Static and Multistory Buildin / STAADPRO) Design of RC software (ETABS / Analysis of folder 	Modules Dynamic analysis ng structures usin C and Steel Tall (STAADPRO) ed plates and shel	s and design ag software (ETAI l structures usi ls using software	of 3S ng	Teaching Hours 42 Hours	RBT Level L ₁ , L ₂ , L ₃ , L ₄ , L ₅ , L ₆
 Static and Multistory Buildin / STAADPRO) Design of RC software (ETABS / 3. Analysis of folder Preparation of Table 1 	Modules Dynamic analysis g structures usin C and Steel Tall (STAADPRO) ed plates and shel EXCEL sheets for	s and design ag software (ETAI l structures usi ls using software structural design	of 3S ng	Teaching Hours 42 Hours	RBT Level L ₁ , L ₂ , L ₃ , L ₄ , L ₅ , L ₆
 Static and Multistory Buildin / STAADPRO) Design of RC software (ETABS / Analysis of folder Preparation of Course outcomes 	Modules Dynamic analysis ng structures usin C and Steel Tall (STAADPRO) ed plates and shel EXCEL sheets for	s and design ag software (ETAI l structures usi ls using software structural design	of 3S ng	Teaching Hours 42 Hours	RBT Level L ₁ , L ₂ , L ₃ , L ₄ , L ₅ , L ₆
 Static and Multistory Buildin / STAADPRO) Design of RC software (ETABS / 3. Analysis of folder 4. Preparation of The Course outcomest On completion of the 	Modules Dynamic analysis by structures usin C and Steel Tall (STAADPRO) ed plates and shel EXCEL sheets for this course, students	s and design ag software (ETAI l structures usi ls using software structural design s are able to:	of 3S ng	Teaching Hours 42 Hours	RBT Level L ₁ , L ₂ , L ₃ , L ₄ , L ₅ , L ₆

- Understand the principles of structural analysis and design
- Design and develop analytical skills.
- Summarize the performance of structures for static and dynamic forces.

[/	DESIGN OF C As per Choice Base	CONCRETE BRID d Credit System (C	GES BCS)	schemel	
[*	SE	EMESTER – IV	200)	serieirej	
Subject Code	16CSE 41	IA Marks	20		
Number of	04	Exam Marks	80		
Lecture					
Hours/Week					
Total Number of	50	Exam Hours	03		
Lecture Hours					
a	С	CREDITS – 04			
The objective of Structural Design structures. To eva	this course is to , To design diffe luate performance	o make student rent types of str of the structures	s to ructur s.	learn prin res and to c	ciples of letail the
	Modules			Teaching Hours	RBT Level
Module -1				•	·
Introduction: Historical Developments, Site Selection for Bridges, Classification of Bridges Forces on Bridges. Bridge substructures: Abutments, piers and wing walls Balanced Cantilever Bridge: Introduction and proportioning of components, Design of simply supported portion and design of cantilever portion, design of articulation 10 Hours		L_1, L_2, L_3, L_4			
Module -2					I
Box Culvert: Different Loading Cases IRC Class AA Tracked, Wheeled and Class A Loading, working out the worst combination of loading, Moment Distribution, Calculation of BM & SF, Structural Design of Slab Culvert, with Reinforcement Details.		L ₂ , L ₃ , L ₄			
Module -3					•
T Beam Bridge Components Ana Slab Using IRC C Loading, Struct Reinforcement De Design: Analysis o Load Using IRC C Loading A Loads Reinforcement De	Slab Design: lysis of interior Class AA Tracked, ural Design etail. T Beam Br of Cross Girder for Class AA Tracked , Structural Desi tail.	Proportioning Slab & Cantilev Wheeled Class of Slab, with idge Cross Gird Dead Load & Lith Wheeled Class gn of Beam, with	of er A th er ve A th	10 Hours	L2, L3, L4
Module -4					
T Beam Bridge M Girder for Dead AA Tracked, W COURBON'S Meth HENDRY-JAEGER IRC Class AA Tr	ain Girder Desigr Load & Live Load heeled Class A nod, Analysis of and MORICE-L racked vehicle or	n: Analysis of Ma 1 Using IRC Clas A Loading Usir Main Girder Usir JTTLE Method fo nly, BM & SF fo	in ss ng ng or or	10 Hours	L_2, L_3, L_4

		 7
different loads, Structural Design of Main Girder With		
Reinforcement Details		
Module -5		
PSC Bridges: Introduction to Pre and Post Tensioning, Proportioning of Components, Analysis and Structural		
Design of Slab, Analysis of Main Girder using	10 00000	$L_1, L_2, L_3,$
COURBON's Method for IRC Class AA tracked vehicle,	IO HOUIS	L_4
Calculation of pre-stressing force, cable profile and		
calculation of stresses, Design of End block and		
detailing of main girder		
Course outcomes:		
On completion of this course, students are able to:		
Achieve Knowledge of design and development of proble	m solving sk	ille
 Inderstand the principles of optimization 	in solving sk	
 Design and develop analytical skills 		
 Summarize the Linear Non-linear and Geometric Progr 	amming	
 Understands the concept of Dynamic programming 	amming	
Question paper pattern:		
• The question paper will have ten questions		
 Each full question consists of 16 marks 		
• There will be 2 full questions (with a maximum of four s	sub question	s) from each
module	sub question	sj nom cach
 Each full question will have sub questions covering all th 	e topics unde	er a module
• The students will have to answer 5 full questions selecti	ng one full a	uestion from
each module.		
REFERENCE BOOKS:		
1. "Essentials of Bridge Engineering"- D Johnson Victor, Co New Delhi	Oxford & IBI	H Publishing
2. "Design of Bridges"- N Krishna Raju, Oxford & IBH Pub	lishing Co Ne	ew Delhi
3. "Principles and Practice of Bridge Engineering"- S P Bir	idra Dhanpat	t Rai & Sons
New Delhi	_	
4. IRC 6 – 1966 "Standard Specifications And Code Of Pra	actice For Ro	ad Bridges"-
Section II Loads and Stresses, The Indian Road Congres	ss New Delhi	
5. IRC 21 – 1966 "Standard Specifications And Code	e Of Practic	e For Road
Bridges"-Section III Cement Concrete (Plain and rein	forced) The 1	Indian Road

- Congress New Delhi 6. IS 456 – 2000 "Indian Standard Plain and Reinforced Concrete Code of Practice"- (Fourth Revision) BIS New Delhi
- 7. IS 1343 "Indian Standard Prestressed Concrete Code of Practice"- BIS New Delhi
- 8. Raina V.K., "Concrete Bridge Practice"- Tata McGraw Hill
- 9. Bakht B & Jaeggar, "Bridge Analysis Simplified"- McGraw Hill
- 10. Ponnuswamy. S, "Bridge Engineering"- Tata McGraw Hill.
- 11. Derrick Beckett, "An Introduction to Structural Design of Concrete Bridges"- Surrey University Press

	DESIGN OF MA	ASONRY STRUCT	URES	8	
[/	As per Choice Base SF	d Credit System (C EMESTER – IV	CBCS)	scheme]	
Subject Code	16CSE 424	IA Marks	20		
Number of	03	Exam Marks	80		
Lecture			00		
Hours/Week					
Total Number of	40	Exam Hours	03		
Lecture Hours		Lixani nouro	00		
2000010110010	C	REDITS – 03			
Course objectives The objective of masonry structur resistance. To eva	: this course is to res, To design luate the strength	make students the masonry s and stability of t	to le tructu he ma	earn perforr res for ea sonry struct	nance of rthquake tures.
	Modules			Teaching Hours	RBT Level
Module -1					
Introduction, Masonry units, materials and types: History of masonry Characteristics of Brick, stone, clay block, concrete block, stabilized mud block masonry units – strength, modulus of elasticity and water absorption. Masonry materials – Classification and properties of mortars, selection of mortars.		s: .e, .ck .nd .on	8 Hours	L1, L2	
Module -2			,		
Strength of Masonry in Compression: Behaviour of Masonry under compression, strength and elastic properties, influence of masonry unit and mortar characteristics, effect of masonry unit height on compressive strength, influence of masonry bonding patterns on strength, prediction of strength of masonry in Indian context, Failure theories of masonry under compression. Effects of slenderness and eccentricity, effect of rate of absorption, effect of curing, effect of ageing, workmanship on compressive strength8 HoursL1, L2,		L_1, L_2, L_4			
Module -3					
Flexural and sh shear strength: mortar, tests for strengths, factors bond strength or strength properti strength of maso flexural and shear	ear bond, flexu Bond between r determining flexus affecting bond compressive st es of masonry onry, test procedu	ral strength ar masonry unit ar ral and shear bor strength, effect rength, orthotrop in flexure, she ares for evaluatin	nd nd of oic ar ng	8 Hours	L_1, L_2, L_4

Module -4		
Design of load bearing masonry buildings:		
Permissible compressive stress, stress reduction and shape reduction factors, increase in permissible stresses for eccentric vertical and lateral loads, permissible tensile and shear stresses, Effective height of walls and columns, opening in walls, effective length, effective thickness, slenderness ratio, eccentricity, load dispersion, arching action, lintels; Wall carrying axial load, eccentric load with different eccentricity ratios, wall with openings, freestanding wall; Design of load bearing masonry for buildings up to 3 to 8 storeys using BIS codal	8 Hours	L ₁ , L ₂ , L ₃ , L ₄
provisions		
Module -5		
Earthquake resistant masonry buildings: Behaviour of masonry during earthquakes, concepts and design procedure for earthquake resistant masonry, BIS codal provisions. Masonry arches, domes and vaults: Components and classification of masonry arches, domes and vaults, historical buildings, construction procedure	8 Hours	L_1, L_2, L_4
Course outcomes:		
 On completion of this course, students are able to: Achieve Knowledge of design and development of problem solving skills. Understand the principles of design and construction of masonry structures Design and develop analytical skills. Summarize the masonry Characteristics. 		
• Evaluate the strength and stability of the masonry structures.		
Question paper pattern:		
• The question paper will have ten questions.		
 Each full question consists of 16 marks. There will be 2 full questions (with a maximum of four sub questions) from each module. 		
 Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from 		
each module.	<u> </u>	
REFERENCE BOOKS:		
 Hendry A.W., "Structural masonry"- Macmillan Education Ltd., 2nd edition Sinha B.P & Davis S.R., "Design of Masonry structures"- E & FN Spon Dayaratnam P, "Brick and Reinforced Brick Structures"- Oxford & IBH Curtin, "Design of Reinforced and Prestressed Masonry"- Thomas Telford Sven Sahlin, "Structural Masonry"-Prentice Hall 		

- Jagadish K S, Venkatarama Reddy B V and Nanjunda Rao K S, "Alternative Building Materials and Technologies"-New Age International, New Delhi & Bangalore
- 7. IS 1905, BIS, New Delhi.
- 8. SP20(S&T),New Delhi

SOFTWA	ARE ENGINE	ERING	
[As per Choice Bas	sed Credit System (CBCS) scheme]	
(Effective from the academic year 2016 - 2017)			
(SEMESTER – IV	, T	
Subject Code	15CS42	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS – 04		
Course objectives: This course will ena	ble students to		
Outline software engineering p	rinciples and activit	ies involved in building	large
software programs.			
Identify ethical and professions software engineers	al issues and explain	why they are of concer	n to
 Describe the process of require 	ements oathering rea	mirements classification	ı
requirements specification and	requirements valida	tion.	
• Differentiate system models, u	se UML diagrams a	nd apply design patterns	i.
Discuss the distinctions between	en validation testing	and defect testing.	
• Recognize the importance of so	oftware maintenance	e and describe the intrica	icies
involved in software evolution	_1 11		
 Apply estimation techniques, s Identify software quality parage 	chedule project activ	vities and compute prici	ng.
 List software quality standards 	and outline the prac	tices involved	nents and metrics.
 Recognize the need for agile so 	offware developmen	t describe agile method	s annly
agile practices and plan for agi	lity.	i, deserre agrie metrica	s, uppij
	5		
Module 1			Teaching
			Hours
Introduction: Software Crisis, Need for	or Software Enginee	ring. Professional Softw	vare 12 Hours
Development, Software Engineering E	thics. Case Studies.	(1) Incomposited Mode	.1
Soltware Processes: Models: Water	lan Model (Sec 2.)	1.1), incremental wrote	21
2.1.2) and Spiral Model (Sec 2.1.3). Pr	ocess activities.		
Requirements Engineering:			
Requirements Engineering Processe	es (Chap 4).		
Requirements Elicitation and Analysis	(Sec 4.5). Function	al and non-functional	
requirements (Sec 4.1). The software R	lequirements Docum	ent (Sec 4.2). Requirem	ients
(Sec 4.7)	vandation (Sec 4.0).	Requirements Manager	nent
Module 2			
System Models: Context models (Sec	5.1) Interaction m	odels (Sec 5.2) Structur	al 11 Hours
models (Sec 5.3). Behavioral models (Sec	Sec 5.4). Model-driv	en engineering (Sec 5.5).
Design and Implementation: Introduc	tion to RUP (Sec 2.	4), Design Principles (C	hap
17). Object-Oriented design using the l	UML (Sec 7.1). Des	sign patterns (Sec 7.2).	
Implementation issues (Sec 7.3). Open	source development	t (Sec 7.4).	
Module 3	(C. 0.1)		
Software Testing : Development testin	g (Sec 8.1), Test-di $(Sec 8.1)$	riven development (Sec	2 8.2), 9 Hours
Kelease testing (Sec 8.3), User testing	(Sec 8.4). Test Aut	omation (Page no 42, 7	0,212,
231,444,095).	aa (Sac 0.1) D	am avalution to	
Software Evolution: Evolution process	ses (Sec 9.1). Progi	a_{man} evolution dynamics	5 (Sec
9. 4). Software maintenance (Sec 9.3). L	egacy system manag	gement (Sec 9.4).	

Module 4
Project Planning: Software pricing (Sec 23.1). Plan-driven development (Sec 23.2). 10 Hours
Project scheduling (Sec 23.3): Estimation techniques (Sec 23.5). Quality management:
Software quality (Sec 24.1). Reviews and inspections (Sec 24.3). Software measurement
and metrics (Sec 24.4). Software standards (Sec 24.2)
Module 5
Agile Software Development: Coping with Change (Sec 2.3), The Agile Manifesto: 8 Hours
Values and Principles. Agile methods: SCRUM (Ref "The SCRUM Primer, Ver 2.0")
and Extreme Programming (Sec 3.3). Plan-driven and agile development (Sec 3.2). Agile
project management (Sec 3.4), Scaling agile methods (Sec 3.5):
Course Outcomes: After studying this course, students will be able to:
• Design a software system, component, or process to meet desired needs within realistic
constraints.
 Assess professional and ethical responsibility
Function on multi-disciplinary teams
• Use the techniques, skills, and modern engineering tools necessary for engineering practice
• Analyze, design, implement, verify, validate, implement, apply, and maintain software
systems or parts of software systems.
Graduate Attributes
Project Management and Finance
Conduct Investigations of Complex Problems
Modern Tool Usage
• Ethics
Question paper pattern:
The question paper will have ten questions.
There will be 2 questions from each module.
Each question will have questions covering all the topics under a module.
The students will have to answer 5 full questions, selecting one full question from each module.
Text Books:
1. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012.
(Listed topics only from Chapters 1,2,3,4, 5, 7, 8, 9, 23, and 24)
2. The SCRUM Primer, Ver 2.0, <u>http://www.goodagile.com/scrumprimer/scrumprimer20.pdf</u>
Reference Books:
 Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGraw Hill.
2. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India
Web Reference for eBooks on Agile:
1. http://agilemanifesto.org/
2. http://www.jamesshore.com/Agile-Book/

COM	PUTER NETWO	RKS		
[As per Choice Based Credit System (CBCS) scheme]				
(Effective from the academic year 2016 -2017)				
Subject Code	$\frac{\text{SEMESTER} - V}{150852}$	IA Mortza	20	
	150.552	IA Marks	20	
Number of Lecture Hours/Week	4	Exam Marks	80	
Total Number of Lecture Hours		Exam Hours	03	
Course abiastimas This source will a	CREDITS – 04			
Course objectives: This course will e	nable students to			
Demonstration of application I	ayer protocols	DD and TCD masters	1	
Discuss transport layer service Euclein routers, D and Doutie	s and understand U	DP and TCP protoco	18	
 Explain Touters, IF and Kouth Discominate the Wireless and 	ig Aigonunns in ne Mobile Networks a	overing IEEE 202 11	Standard	
Disseminate the whereas and Illustrate concents of Multime	dia Networking Se	overnig ILEE 802.11 curity and Network N	Janagement	
Madula 1	ula Networking, Se	curity and Network N		
Module – 1			Hours	
Application Laver Principles of N	etwork Application	s. Network Applica	tion 10 Hours	
Architectures Processes Communi	cating Transport	Services Available	to	
Applications Transport Services Pr	ovided by the Inte	ernet Application-I	iver	
Protocols The Web and HTTP.	Overview of HT	ΓΡ Non-persistent	and	
Persistent Connections HTTP M	essage Format I	Iser-Server Interact	ion.	
Cookies Web Caching The Conditio	nal GET. File Tran	sfer: FTP Command	s &	
Replies, Electronic Mail in the Inter	net: SMTP. Compa	arison with HTTP. N	/ail	
Message Format, Mail Access Protocols, DNS: The Internet's Directory Service:			ice:	
Services Provided by DNS, Overview of How DNS Works, DNS Records and			and	
Messages, Peer-to-Peer Applications: P2P File Distribution, Distributed Hash			ash	
Tables, Socket Programming: creating Network Applications: Socket			eket	
Programming with UDP, Socket Programming with TCP.				
T1: Chap 2				
Module – 2				
Transport Layer : Introduction and Transport-Layer Services: Relationship			ship 10 Hours	
Between Transport and Network Layers, Overview of the Transport Layer in the			the	
Internet, Multiplexing and Demultiple	exing: Connectionle	ess Transport: UDP,U	DP	
Segment Structure, UDP Checksum, Principles of Reliable Data Transfer:			fer:	
Building a Reliable Data Transfer Protocol, Pipelined Reliable Data Transfer			sfer	
Protocols, Go-Back-N, Selective repeat, Connection-Oriented Transport TCP:			CP:	
The TCP Connection, TCP Segment	Structure, Round-T	rip Time Estimation	and	
Timeout, Reliable Data Transfer, Flo	w Control, TCP C	onnection Managem	ent,	
Principles of Congestion Control: T	The Causes and th	e Costs of Congest	ion,	
Approaches to Congestion Contra	ol, Network-assis	sted congestion-con	trol	
example, ATM ABR Congestion control, TCP Congestion Control: Fairness.				
T1: Chap 3				
Module – 3				
The Network layer: What's Inside	a Router?: Input	Processing, Switch	ing, 10 Hours	
Output Processing, Where Does Que	uing Occur? Routir	ng control plane, IPv	6,A	
Brief foray into IP Security, Routing	Algorithms: The	Link-State (LS) Rou	ing	
Algorithm, The Distance-Vector (DV)) Routing Algorithm	n, Hierarchical Rout	ing,	

Routing in the Internet, Intra-AS Routing in the Internet: RIP, Intra-AS Routing	
in the Internet: OSPF, Inter/AS Routing: BGP, Broadcast Routing Algorithms	
and Multicast.	
T1: Chap 4: 4.3-4.7	
Module – 4	
Wireless and Mobile Networks: Cellular Internet Access: An Overview of 10 J	Hours
Cellular Network Architecture, 3G Cellular Data Networks: Extending the	
Internet to Cellular subscribers, On to 4G:LTE, Mobility management: Principles,	
Addressing, Routing to a mobile node, Mobile IP, Managing mobility in cellular	
Networks, Routing calls to a Mobile user, Handoffs in GSM, Wireless and	
Mobility: Impact on Higher-layer protocols.	
T1: Chap: 6 : 6.4-6.8	
Module – 5	
Multimedia Networking: Properties of video, properties of Audio, Types of 10 J	Hours
multimedia Network Applications, Streaming stored video: UDP Streaming,	
HTTP Streaming, Adaptive streaming and DASH, content distribution Networks,	
case studies: : Netflix, You Tube and Kankan.	
Network Support for Multimedia: Dimensioning Best-Effort Networks,	
Providing Multiple Classes of Service, Diffserv, Per-Connection Quality-of-	
Service (QoS) Guarantees: Resource Reservation and Call Admission	
T1: Chap: 7: 7.1,7.2,7.5	
Course outcomes: The students should be able to:	
• Explain principles of application layer protocols	
• Recognize transport layer services and infer UDP and TCP protocols	
• Classify routers, IP and Routing Algorithms in network layer	
• Understand the Wireless and Mobile Networks covering IEEE 802.11 Standard	
Describe Multimedia Networking and Network Management	
Question paper pattern:	
The question paper will have TEN questions.	
There will be TWO questions from each module.	
Each question will have questions covering all the topics under a module.	
The students will have to answer FIVE full questions, selecting ONE full question from	each
module.	
Text Books:	
1. James F Kurose and Keith W Ross, Computer Networking, A Top-Down Appro	ach,
Sixth edition, Pearson,2017.	
Reference Books:	
1. Behrouz A Forouzan, Data and Communications and Networking, Fifth Edition,	,
MCGraw Hill, Indian Edition	
2. Larry L Peterson and Brusce S Davie, Computer Networks, fifth edition, ELSEV	IEK
A Mayank Daye Computer Networks, Second edition, Canagage Learning	
T. Mayank Dave, Computer Networks, Second Cultion, Cengage Learning	

DATABASE	MANAGEMENT	Г SYSTEM		
[As per Choice Based Credit System (CBCS) scheme]				
(Effective from the academic year 2016 - 2017)				
	SEMESTER – V			
Subject Code	15CS53	IA Marks	20	
Number of Lecture Hours/Week	4	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
	CREDITS – 04			
Course objectives: This course will e	nable students to			
Provide a strong foundation i	n database concept	s, technology, and pra	actice.	
Practice SQL programming t	hrough a variety of	database problems.		
• Demonstrate the use of concu	urrency and transact	tions in database		
• Design and build database ap	plications for real v	world problems.		
Module – 1			Teaching	
			Hours	
Introduction to Databases: Introduc	tion, Characteristic	es of database approa	ich, 10 Hours	
Advantages of using the DBMS ap	proach, History of	f database application	ons.	
Overview of Database Languages a	nd Architectures:	Data Models, Schem	ias,	
and Instances. Three schema archi	tecture and data	independence, datab	ase	
languages, and interfaces, The Databa	ase System environ	ment. Conceptual D	ata	
Modelling using Entities and R	elationships: Enti	ity types, Entity s	ets,	
attributes, roles, and structural cons	traints, Weak enti	ty types, ER diagram	ms,	
examples, Specialization and Generali	zation.			
Textbook 1:Ch 1.1 to 1.8, 2.1 to 2.6,	3.1 to 3.10			
Module – 2				
Relational Model: Relational Mode	l Concepts, Relati	onal Model Constrai	ints 10 Hours	
and relational database schemas, Up	date operations, tr	ansactions, and deal	ing	
with constraint violations. Relational Algebra: Unary and Binary relational			onal	
operations, additional relational operational	tions (aggregate, g	rouping, etc.) Examp	oles	
of Queries in relational algebra. Ma	pping Conceptual	Design into a Logi	cal	
Design: Relational Database Design	using ER-to-Rel	ational mapping. $\mathbf{S}\mathbf{Q}$)L:	
SQL data definition and data types	, specifying constr	raints in SQL, retrie	val	
queries in SQL, INSERT, DELE	TE, and UPDAT	E statements in SO	QL,	
Additional features of SQL.				
Textbook 1: Ch4.1 to 4.5, 5.1 to 5.3, 6.1 to 6.5, 8.1; Textbook 2: 3.5				
Module – 3				
SQL : Advances Queries: More co	omplex SQL retrie	eval queries, Specify	ing 10 Hours	
constraints as assertions and action	triggers, Views in	n SQL, Schema char	nge	
statements in SQL. Database Applic	cation Development	nt: Accessing databa	ises	
from applications, An introduction to	JDBC, JDBC class	es and interfaces, SQ	LJ,	
Stored procedures, Case study: The i	nternet Bookshop.	Internet Applicatio	ns:	
The three-Tier application architecture, The presentation layer, The Middle Tier			er	
Textbook 1: Ch7.1 to 7.4; Textbook	2: 6.1 to 6.6, 7.5 to	7.7.		
Module – 4				
Normalization: Database Design Th	eory – Introduction	n to Normalization us	ing 10 Hours	
Functional and Multivalued Depen	dencies: Informal	design guidelines	for	
relation schema, Functional Depend	encies, Normal Fo	orms based on Prim	ary	
Keys, Second and Third Normal Forn	ns, Boyce-Codd No	ormal Form, Multival	ued	
Dependency and Fourth Normal For	rm, Join Depender	ncies and Fifth Nori	nal	

Form. Normalization Algorithms: Inference Rules, Equivalence, and Minimal	
Cover, Properties of Relational Decompositions, Algorithms for Relational	
Database Schema Design, Nulls, Dangling tuples, and alternate Relational	
Designs, Further discussion of Multivalued dependencies and 4NF. Other	
dependencies and Normal Forms	
Textbook 1: Ch14.1 to 14.7. 15.1 to 15.6	
Module – 5	
Transaction Processing: Introduction to Transaction Processing, Transaction 10 Hours	
and System concepts. Desirable properties of Transactions. Characterizing	
schedules based on recoverability. Characterizing schedules based on	
Serializability. Transaction support in SOL. Concurrency Control in	
Databases: Two-phase locking techniques for Concurrency control. Concurrency	
control based on Timestamp ordering, Multiversion Concurrency control	
techniques. Validation Concurrency control techniques. Granularity of Data	
items and Multiple Granularity Locking. Introduction to Database Recovery	
Protocols: Recovery Concepts, NO-UNDO/REDO recovery based on Deferred	
update, Recovery techniques based on immediate update, Shadow paging,	
Database backup and recovery from catastrophic failures	
Textbook 1: 20.1 to 20.6, 21.1 to 21.7, 22.1 to 22.4, 22.7.	
Course outcomes: The students should be able to:	
• Identify, analyze and define database objects, enforce integrity constraints on a	
database using RDBMS.	
• Use Structured Ouery Language (SOL) for database manipulation.	
• Design and build simple database systems	
• Develop application to interact with databases.	
Ouestion paper pattern:	
The question paper will have TEN questions.	
There will be TWO questions from each module.	
Each question will have questions covering all the topics under a module.	
The students will have to answer FIVE full questions, selecting ONE full question from each	
module.	
Text Books:	
1. Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th	
Edition, 2017, Pearson.	
2. Database management systems, Ramakrishnan, and Genrke, 5 Edition, 2014, McGraw Hill	
Reference Books:	
1. Silberschatz Korth and Sudharshan, Database System Concepts, 6 th Edition, Mc-	
GrawHill, 2013.	
2. Coronel, Morris, and Rob, Database Principles Fundamentals of Design,	
Implementation and Management, Cengage Learning 2012.	

OBJECT ORIEN	TED MODELING	G AND DESIGN		
[As per Choice Based Credit System (CBCS) scheme]				
(Effective from	n the academic yea	nr 2016 -2017)		
	SEMESTER – V	1		
Subject Code	15CS551	IA Marks	20	
Number of Lecture Hours/Week	3	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS – 03			
Course objectives: This course will e	nable students to			
Describe the concepts involved	d in Object-Oriente	d modelling and their	benefits.	
• Demonstrate concept of use-ca	ase model, sequence	e model and state ch	art model for a	
given problem.	-			
• Explain the facets of the unit	fied process appro-	ach to design and bu	ild a Software	
system.		-		
• Translate the requirements into	o implementation for	or Object Oriented des	sign.	
• Choose an appropriate design	pattern to facilitate	development procedu	re.	
Module – 1	_		Teaching	
			Hours	
Introduction, Modelling Concepts	and Class Mod	elling: What is Ob	ect 8 Hours	
orientation? What is OO developmen	t? OO Themes; Ev	vidence for usefulness	of	
OO development; OO modelling l	history. Modelling	as Design technic	ue:	
Modelling; abstraction; The Three m	nodels. Class Mode	elling: Object and Cl	ass	
Concept; Link and associations cor	ncepts; Generalizat	ion and Inheritance;	А	
sample class model; Navigation of	class models; Adv	anced Class Modelli	ng,	
Advanced object and class concept	ts; Association en	ds; N-ary association	ns;	
Aggregation; Abstract classes; Mu	ltiple inheritance;	Metadata; Reificati	on;	
Constraints; Derived Data; Packages.				
Text Book-1: Ch 1, 2, 3 and 4				
Module – 2				
UseCase Modelling and Detailed F	Requirements: Ove	rview; Detailed obj	ct- 8 Hours	
oriented Requirements definitions; Sy	ystem Processes-A	use case/Scenario vi	ew;	
Identifying Input and outputs-The Sy	stem sequence diag	gram; Identifying Ob	ect	
Behaviour-The state chart Diagram; Ir	ntegrated Object-or	iented Models.		
Text Book-2:Chapter- 6:Page 210 to	o 250			
Module – 3	15.1.1			
Process Overview, System Conception	n and Domain Ana	lysis: Process Overvi	ew: 8 Hours	
Development stages; Development li	ife Cycle; System	Conception: Devisin	g a	
system concept; elaborating a concep	ot; preparing a pro	blem statement. Dom	ain	
Analysis: Overview of analysis; Do	main Class mode	I: Domain state mo	lel;	
Domain interaction model; Iterating th	ne analysis.			
Text Book-1:Chapter- 10,11,and 12				
Module – 4	D' ' 1' ' ' 1'			
Use case Realization : The Design	Discipline within	n up iterations: Ob	ect 8 Hours	
Oriented Design-The Bridge between	Requirements and	Implementation; Des	Ign	
Classes and Design within Class Diag	grams; Interaction	Diagrams-Realizing	Jse ·	
Lase and defining methods; Designing	g with Communica	tion Diagrams; Updat	ing	
une Design Class Diagram; Pack	kage Diagrams-	Structuring the Ma	ijor	
Components; Implementation Issues f	or Inree-Layer Des	sign.		
1 ext Book-2: Chapter 8: page 292 to	0 540			

Module – 5
Design Patterns: Introduction: what is a design pattern? Describing design 8 Hours
natterns, the catalogue of design patterns. Organizing the catalogue How design
patterns, the catalogue of design patterns, organizing the catalogue, now design
design pattern: Creational patterns: prototype and singleton (only): structural
natterns adaptor and provy (only)
Taxt Book-3: Ch-1: 11 13 14 15 16 17 18 Ch-3 Ch-4
Course outcomes: The students should be able to:
Describe the concents of object-oriented and basic class modelling
 Describe the concepts of object-oriented and basic class moderning. Drow class diagrams acquiring diagrams and interaction diagrams to solve
• Draw class diagrams, sequence diagrams and interaction diagrams to solve problems.
• Choose and apply a befitting design pattern for the given problem.
Question paper pattern:
The question paper will have TEN questions.
There will be TWO questions from each module.
Each question will have questions covering all the topics under a module.
The students will have to answer FIVE full questions, selecting ONE full question from each
module.
Text Books:
1. Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML,2 nd
Edition, Pearson Education, 2005
2. Satzinger, Jackson and Burd: Object-Oriented Analysis & Design with the Unified
Process, Cengage Learning, 2005.
3. Erich Gamma, Richard Helm, Ralph Johnson and john Vlissides: Design Patterns -
Elements of Reusable Object-Oriented Software,
Pearson Education, 2007.
Reference Books:
1. Grady Booch et. al.: Object-Oriented Analysis and Design with Applications,3 rd
Edition, Pearson Education, 2007.
2. 2.Frank Buschmann, RegineMeunier, Hans Rohnert, Peter Sommerlad, Michel Stal:
Pattern –Oriented Software Architecture. A system of patterns, Volume 1, John Wiley
and Sons.2007.
3. 3. Booch, Jacobson, Rambaugh : Object-Oriented Analysis and Design with
Applications, 3 rd edition, pearson, Reprint 2013

INTRODUCTI	ON TO SOFTWA	RE TESTING	
[As per Choice Based Credit System (CBCS) scheme]			
(Effective from	n the academic yea	r 2016 -2017)	
	SEMESTER – V	1	
Subject Code	15CS552	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS – 03		
Course objectives: This course will e	nable students to		
• Differentiate the various testin	g techniques.		
• Analyze the problem and deriv	ve suitable test cases	S.	
Apply suitable technique for de	esigning of flow gr	anh	
• Explain the need for planning	and monitoring a pr	cocess	
Module 1	and monitoring a pi	00055.	Teaching
Module – 1			Hours
Basing of Software Testing: Pagia de	finitions Softwara	Quality Paquirama	ate 9 Hours
Babayiour and Correctness Corre	otrage voreus R	Quality, Requirement	ns, o nours
Dehugging Test assas Insights from	versus Ko	Identifying testing a	
Test capacitien Strategies Test Mate	in a venn utagran	toxonomica Lovala	ses,
Test-generation Strategies, Test Metr	a Testing	taxonomies, Levels	01
testing, Testing and Verification, Stati	c lesting.		
1extbook 3: Cn 1:1.2 - 1.5, 5; 1extb	00K 1: Ch 1		
Module – 2			
NextDate function, the commission Teller Machine) problem, the currency Functional Testing: Boundary value testing, Robust Worst testing for the commission problem, Equivalence clar problem, NextDate function, and the observations, Decision tables, Test function, and the commission problem Textbook 1: Ch 2, 5, 6 & 7, Textboo	problem, the SA' problem, the SA' y converter, Saturn e analysis, Robusti triangle problem, asses, Equivalence t he commission pr cases for the trian h, Guidelines and ob k 2: Ch 3	TM (Simple Automs windshield wiper ness testing, Worst-c NextDate problem a rest cases for the trian roblem, Guidelines a ngle problem, NextD pservations.	ase and gle and vate
Module – 3			
Fault Based Testing: Overview, As analysis, Fault-based adequacy cri- Structural Testing: Overview, Stat testing, Path testing: DD paths, Te guidelines and observations, Data – based testing, Guidelines and observat T2:Chapter 16, 12 T1:Chapter 9 &	sumptions in fault iteria, Variations tement testing, Br est coverage metri Flow testing: Definitions. 10	based testing, Mutat on mutation analy anch testing, Condit ics, Basis path testi ition-Use testing, Sli	ion 8 Hours sis. ion ng, ce-
Module – 4			
Test Execution: Overview of test ex cases, Scaffolding, Generic versus speas oracles, Capture and replay Sensitivity, redundancy, restriction, process, Planning and monitoring, ,Analysis Testing, Improving the proce Planning and Monitoring the Proce	ecution, from test of ecific scaffolding, Process Framew partition, visibility Quality goals, E ess, Organizational ess: Quality and pr	case specification to Test oracles, Self-che ork :Basic princip , Feedback, the qua Dependability proper factors. ocess, Test and analy	test 8 Hours cks les: lity ties
strategies and plans, Risk planning	, monitoring the	process, Improving	the

process the quality team	
T2: Chanter 17 20	
Module – 5	
Integration and Component-Based Software Testing: Overview Integration 8 Ho	iire
testing strategies Testing components and assemblies System Accentance and	uis
Regression Testing: Overview System testing Accentance testing Usability	
Regression testing, Begression test selection techniques. Test case prioritization	
and selective execution Levels of Testing Integration Testing. Traditional	
view of testing levels Alternative life-cycle models. The SATM system	
Separating integration and system testing A closer look at the SATM system,	
Decomposition-based call graph-based Path-based integrations	
T2. Chanter 21 & 22 T1. Chanter 12 & 13	
Course outcomes: The students should be able to:	
Derive test cases for any given problem	
 Compare the different testing techniques 	
 Classify the problem into suitable testing model 	
 Classify the problem into suitable testing model Apply the appropriate technique for the design of flow graph 	
• Apply the appropriate technique for the design of flow graph.	
Create appropriate document for the software artefact.	
The question paper pattern:	
The question paper will have TEN questions.	
Freeh question will have questions according all the tonics under a module	
The students will have to answer EIVE full questions, selecting ONE full question from a	hach
medule	ach
Toute.	
1 Paul C. Jorganson: Software Testing A Craftsman's Approach 3 rd Edition Averbach	
Publications 2008	L
1 unications, 2000. 2 Mauro Dezze Michel Voung: Software Testing and Analysis Drocoss Dringiples on	d
2. Maulo rezze, Michai Toung. Software resung and Anarysis – riocess, rinciples and Techniques, Wiley India, 2000	u
A ditya P Mathur: Foundations of Software Testing Pearson Education 2008	
S. Aditya I Manual. Foundations of Software Testing, Tearson Education, 2000.	
1 Software testing Principles and Practices – Gonalaswamy Ramesh Sriniyasan Desile	an ?
nd Edition Pearson 2007	a11, <i>2</i>
2 Software Testing – Ron Patton 2nd edition Pearson Education 2004	
3 The Craft of Software Testing – Brian Marrick Pearson Education 1995	
4 Anirban Basu Software Quality Assurance Testing and Metrics PHI 2015	
5. Naresh Chauhan, Software Testing, Oxford University press	

ADVAN	CED JAVA ANI	D J2EE		
[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 - 2017)				
(Effective from	the academic yea	ar 2016 -2017)		
Subject Code	15CS553	IA Marks	20	
Number of Lecture Hours/Week	3	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS – 03			
Course objectives: This course will en	able students to			
• Identify the need for advanced J	Java concepts like	Enumerations and Colle	ctions	
Construct client-server application	ions using Java sc	ocket API		
• Make use of JDBC to access da	tabase through Ja	va Programs		
• Adapt servlets to build server si	de programs			
• Demonstrate the use of JavaBea	ans to develop cor	nponent-based Java softw	vare	
Module – 1			Teaching	
			Hours	
Enumerations, Autoboxing and	Annotations(met	tadata): Enumerations,	8 Hours	
Enumeration fundamentals, the va	ulues() and val	ueOf() Methods, java		
enumerations are class types, enum	erations Inherits	Enum, example, type		
wrappers, Autoboxing, Autoboxing an	d Methods, Auto	boxing/Unboxing occurs		
in Expressions, Autoboxing/Unbox	ing, Boolean	and character values,		
Autoboxing/Unboxing helps prevent e	errors, A word o	f Warning. Annotations,		
Annotation basics, specifying retention	on policy, Obtair	ning Annotations at run		
time by use of reflection, Annotated	element Interface	e, Using Default values,		
Marker Annotations, Single Member an	nnotations, Built-	In annotations.		
Module – 2				
The collections and Framework: C	ollections Overvi	iew, Recent Changes to	8 Hours	
Collections, The Collection Interface	es, The Collectio	n Classes, Accessing a		
collection Via an Iterator, Storing U	ser Defined Clas	sses in Collections, The		
Random Access Interface, Working V	With Maps, Com	parators, The Collection		
Algorithms, Why Generic Collection	is?, The legacy	Classes and Interfaces,		
Parting Thoughts on Collections.				
Module – 3				
String Handling :The String Const	tructors, String	Length, Special String	8 Hours	
Operations, String Literals, String C	oncatenation, Str	ing Concatenation with		
Other Data Types, String Conversio	n and toString() Character Extraction,		
charAt(), getChars(), getBytes() toC	CharArray(), Strin	g Comparison, equals()		
and equalsIgnoreCase(), regionMatche	es() startsWith()	and endsWith(), equals(
) Versus == , compareTo() Searching	Strings, Modifyi	ng a String, substring(),		
concat(), replace(), trim(), Data Co	nversion Using v	alueOf(), Changing the		
Case of Characters Within a String, A	Additional String	Methods, StringBuffer,		
StringBuffer Constructors, length() and capacity(), ensureCapacity(),		
setLength(), charAt() and setCharAt(), getChars().apr	end(), insert(), reverse(
), delete() and deleteCharAt() replace	(), substring()	Additional StringBuffer		
Methods StringBuilder	, ,, subsumg(),			
Text Book 1. Ch 15				

Module – 4

Background; The Life Cycle of a Servlet; Using Tomcat for Servlet **8 Hours** Development; A simple Servlet; The Servlet API; The Javax.servlet Package; Reading Servlet Parameter; The Javax.servlet.http package; Handling HTTP Requests and Responses; Using Cookies; Session Tracking. Java Server Pages (JSP): JSP, JSP Tags, Tomcat, Request String, User Sessions, Cookies, Session Objects

Text Book 1: Ch 31 Text Book 2: Ch 11

Module – 5

The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief Overview
of the JDBC process; Database Connection; Associating the JDBC/ODBC
Bridge with the Database; Statement Objects; ResultSet; Transaction Processing;
Metadata, Data types; Exceptions.8 Hours

Text Book 2: Ch 06

Course outcomes: The students should be able to:

- Interpret the need for advanced Java concepts like enumerations and collections in developing modular and efficient programs
- Build client-server applications and TCP/IP socket programs
- Illustrate database access and details for managing information using the JDBC API
- Describe how servlets fit into Java-based web application architecture
- Develop reusable software components using Java Beans

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Herbert Schildt: JAVA the Complete Reference, 7th/9th Edition, Tata McGraw Hill, 2007.
- 2. Jim Keogh: J2EE-TheCompleteReference, McGraw Hill, 2007.

- 1. Y. Daniel Liang: Introduction to JAVA Programming, 7thEdition, Pearson Education, 2007.
- 2. Stephanie Bodoff et al: The J2EE Tutorial, 2nd Edition, Pearson Education,2004.
- 3. Uttam K Roy, Advanced JAVA programming, Oxford University press, 2015.

ARTIFI	CIAL INTELLIG	ENCE		
[As per Choice Based Credit System (CBCS) scheme]				
(Effective from the academic year 2016 -2017)				
	SEMESTER – V	T 4 3 6 1	20	
Subject Code	15CS562	IA Marks	20	
Number of Lecture Hours/Week	3	Exam Marks	80	
Total Number of Lecture Hours 40 Exam Hours 03			03	
	CREDITS – 03			
Course objectives: This course will e	nable students to	11.00		
• Identify the problems where A	I is required and the	e different methods a	available	2
Compare and contrast different	t AI techniques ava	ilable.		
• Define and explain learning alg	gorithms		Т	aaahina
Moutie – 1				
What is artificial intelligence? Proble	ems. Problem Spac	es and search. Heur	istic 8	Hours
search technique				110415
TextBook1: Ch 1, 2 and 3				
Module – 2			I	
Knowledge Representation Issues	s, Using Predicat	e Logic, Represer	ting 8	Hours
knowledge using Rules,			-	
TextBoook1: Ch 4, 5 and 6.				
Module – 3				
Symbolic Reasoning under Uncertai	nty, Statistical rea	soning, Weak Slot	and 8	Hours
Filter Structures.				
TextBoook1: Ch 7, 8 and 9.				
Module – 4			r.	
Strong slot-and-filler structures, Game	e Playing.		8]	Hours
TextBoook1: Ch 10 and 12				
Module – 5				
Natural Language Processing, Learnin	ig, Expert Systems.		8	Hours
TextBook1: Ch 15,17 and 20	d ha ahla ta.			
Course outcomes: The students should	id be able to:			
 Identify the AI based problem Apply tashnigues to solve the 	S A I muchloma			
 Apply techniques to solve the . Define learning and explain values. 	AI problems	niquad		
 Define learning and explain va Discuss on expert systems 	inous learning teem	inques		
Question paper pattern:				
The question paper will have TEN que	estions.			
There will be TWO questions from ea	ch module.			
Each question will have questions cov	ering all the topics	under a module.		
The students will have to answer FIVI	E full questions, sel	ecting ONE full que	stion from	m each
module.				
Text Books:	· · · · · · · · · · · · · · · ·		7 7 11	
1. E. Rich, K. Knight & S. B. Na	ur - Artificial Intell	1gence, 3/e, McGraw	/ H1ll.	
Reference Books:				
1. Artificial Intelligence: A Mod	dern Approach, Stu	uart Rusell, Peter N	orving,	Pearson
Education 2nd Edition.				

- 1. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems Prentice Hal of India.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem Solving", Fourth Edition, Pearson Education, 2002.
- 3. Artificial Intelligence and Expert Systems Development by D W Rolston-Mc Graw hill.
- 4. N.P. Padhy "Artificial Intelligence and Intelligent Systems", Oxford University Press-2015

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – VSubject Code15CS563IA Marks20Number of Lecture Hours/Week3Exam Marks80Total Number of Lecture Hours40Exam Hours03
(Effective from the academic year 2016 -2017) SEMESTER – VSubject Code15CS563IA Marks20Number of Lecture Hours/Week3Exam Marks80Total Number of Lecture Hours40Exam Hours03
SEMESTER – VSubject Code15CS563IA Marks20Number of Lecture Hours/Week3Exam Marks80Total Number of Lecture Hours40Exam Hours03
Subject Code15CS563IA Marks20Number of Lecture Hours/Week3Exam Marks80Total Number of Lecture Hours40Exam Hours03
Number of Lecture Hours/Week3Exam Marks80Total Number of Lecture Hours40Exam Hours03
Total Number of Lecture Hours40Exam Hours03
CREDITS – 03
Course objectives: This course will enable students to
Provide a general overview of Embedded Systems
• Show current statistics of Embedded Systems
• Design, code, compile, and test real-time software
 Integrate a fully functional system including hardware and software
Module – 1 Teaching
Hours
Introduction to embedded systems: Embedded systems Processor embedded 8 Hours
into a system. Embedded hardware units and device in a system. Embedded
software in a system. Examples of embedded systems Design process in
embedded system. Formalization of system design. Design process and design
examples. Classification of embedded systems, skills required for an embedded
system designer.
Module – 2
Devices and communication buses for devices network: IO types and example 8 Hours
Serial communication devices Parallel device ports Sophisticated interfacing
features in device ports. Wireless devices Timer and counting devices
Watchdog timer Real time clock Networked embedded systems Serial hus
communication protocols. Parallel bus device protocols-parallel communication
internet using ISA PCI PCI-X and advanced buses. Internet enabled systems-
network protocols Wireless and mobile system protocols
Module – 3
Device drivers and interrupts and service mechanism: Programming 1/0 8 Hours
busy-wait approach without interrupt service mechanism. ISR concept Interrupt
sources Interrupt servicing (Handling) Mechanism, Multiple interrupts Context
and the periods for context switching interrupt latency and deadline
Classification of processors interrupt service mechanism from Context-saving
angle Direct memory access Device driver programming
Module 4
Inter process communication and synchronization of processos. Threads and 8 Hours
tagke: Multiple process in an application Multiple threads in an application
Tasks. Multiple process in an application, Multiple unleads in an application,
and tasks, hy their characteristics, concept and computers. Shared data Inter
and tasks by their characteristics, concept and semaphores, shared data, inter-
functions, Mailbox functions, Dipa functions, Socket functions, DPC functions
Modulo 5
Product - J Deal time operating systems: OS Services Dreeses management Timer Otto
functions Event functions Memory management Davids file and IO
subsystems management. Interrupt routings in DTOS environment and headling
of interrupt source cells. Deal time operating systems. Desig design using on
RTOS RTOS task scheduling models interrunt latency and response of the tasks

as performance metrics, OS security issues. Introduction to embedded software
development process and tools, Host and target machines, Linking and location
software.
Course outcomes: The students should be able to:
• Distinguish the characteristics of embedded computer systems.
• Examine the various vulnerabilities of embedded computer systems.
• Design and develop modules using RTOS.
• Implement RPC, threads and tasks
Question paper pattern:
The question paper will have TEN questions.
There will be TWO questions from each module.
Each question will have questions covering all the topics under a module.
The students will have to answer FIVE full questions, selecting ONE full question from each
module.
Text Books:
1. Raj Kamal, "Embedded Systems: Architecture, Programming, and Design" 2 nd / 3 rd
edition, Tata McGraw hill-2013.
Reference Books:
1. Marilyn Wolf, "Computer as Components, Principles of Embedded Computing System
Design" 3 rd edition, Elsevier-2014.

CRYPTOGRAPHY, NET	FWORK SECUR	ITY AND CYBER L	AW
[As per Choice Ba	sed Credit Systen	n (CBCS) scheme]	
(Effective from	n the academic yea	ar 2016 -2017)	
	SEMESTER – VI		
Subject Code	15CS61	IA Marks	20
Number of Lecture Hours/Week	4	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS – 04		
Course objectives: This course will e	enable students to		
• Explain the concepts of Cyber	security		
Illustrate key management issu	ues and solutions.		
• Familiarize with Cryptography	and very essential	lalgorithms	
• Introduce cyber Law and ethic	s to be followed.	C	
Module – 1			Teaching
			Hours
Introduction - Cyber Attacks, Defe	ence Strategies ar	nd Techniques, Guid	ing 10 Hours
Principles, Mathematical Background	for Cryptography	- Modulo Arithmeti	c's,
The Greatest Comma Divisor, Usefu	l Algebraic Struct	ures, Chinese Remain	der
Theorem, Basics of Cryptography	- Preliminaries,	Elementary Substitut	tion
Ciphers, Elementary Transport Ciph	ers, Other Cipher	Properties, Secret I	Key
Cryptography – Product Ciphers, DES	S Construction.		
Module – 2			
Public Key Cryptography and RSA -	- RSA Operations,	Why Does RSA Wor	rk?, 10 Hours
Performance, Applications, Practical	Issues, Public Key	y Cryptography Stand	lard
(PKCS), Cryptographic Hash -	Introduction, F	Properties, Construct	on,
Applications and Performance, The E	Birthday Attack, D	iscrete Logarithm and	its
Applications - Introduction, Diffie-He	ellman Key Excha	nge, Other Application	18.
Module – 3			
Key Management - Introduction, Di	gital Certificates, F	Public Key Infrastruct	ure, 10 Hours
Identity-based Encryption, Authentic	ation–I - One way	y Authentication, Mu	tual
Authentication, Dictionary Attacks	s, Authenticatio	on – II – Centali	sed
Authentication, The Needham-Schroe	eder Protocol, Kerł	peros, Biometrics, IPS	ec-
Security at the Network Layer – Se	curity at Different	t layers: Pros and Co	ons,
IPSec in Action, Internet Key Exch	ange (IKE) Proto	col, Security Policy	and
IPSEC, Virtual Private Networks, Sec	curity at the Transp	ort Layer - Introduct	ion,
SSL Handshake Protocol, SSL Recor	d Layer Protocol,	OpenSSL.	
Module – 4			
IEEE 802.11 Wireless LAN Sec	urity - Back	ground, Authenticat	on, 10 Hours
Confidentiality and Integrity, Viruses	s, Worms, and Oth	her Malware, Firewall	s –
Basics, Practical Issues, Intrusion	Prevention and D	etection - Introduct	ion,
Prevention Versus Detection, Types	of Instruction D	etection Systems, DI	DoS
Attacks Prevention/Detection, Web S	ervice Security – I	Motivation, Technolog	gies
for web Services, wS- Security, SAN	IL, Other Standard	S.	
Module – 5	- f (1 f) f '		
11 act aim and objectives, Scope	or the act, Maj	or Concepts, Impor	ant IV Hours
provisions, Attribution, acknowledge	digital giger trans	Deculation of rectif	rus,
authorities: Appointment of Control	uigital signatures,	Regulation of certify	ing
autionities: Appointment of Control	Departies and	diudication The ar	uie whore
certificates, Duties of Subscribers,	renames and a	iujudication, The cy	ber

regulations appellate tribunal, Offences, Network service providers not to be liable in certain cases, Miscellaneous Provisions.

Course outcomes: The students should be able to:

- Discuss cryptography and its need to various applications
- Design and develop simple cryptography algorithms
- Understand cyber security and need cyber Law

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Cryptography, Network Security and Cyber Laws – Bernard Menezes, Cengage Learning, 2010 edition (Chapters-1,3,4,5,6,7,8,9,10,11,12,13,14,15,19(19.1-19.5),21(21.1-21.2),22(22.1-22.4),25

- 1. Cryptography and Network Security- Behrouz A Forouzan, Debdeep Mukhopadhyay, Mc-GrawHill, 3rd Edition, 2015
- 2. Cryptography and Network Security- William Stallings, Pearson Education, 7th Edition
- 3. Cyber Law simplified- Vivek Sood, Mc-GrawHill, 11th reprint, 2013
- 4. Cyber security and Cyber Laws, Alfred Basta, Nadine Basta, Mary brown, ravindra kumar, Cengage learning

OPE	RATING SYSTE	MS		
[As per Choice Based Credit System (CBCS) scheme]				
(Effective fron	n the academic yea	ur 2016 -2017)		
	SEMESTER – VI			
Subject Code	15CS64	IA Marks	20	
Number of Lecture Hours/Week	4	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
	CREDITS – 04			
Course objectives: This course will e	nable students to			
Introduce concepts and termin	ology used in OS			
• Explain threading and multithe	eaded systems			
Illustrate process synchronizat	ion and concept of	Deadlock		
Introduce Memory and Virtual	memory managem	nent, File system and s	storage	
techniques			1	
Module – 1			Teaching	
			Hours	
Introduction to operating systems, S	System structures:	What operating syste	ems 10 Hours	
do; Computer System organization;	Computer System	architecture; Operat	ing	
System structure; Operating System	operations; Proces	s management; Mem	ory	
management; Storage management; F	rotection and Secu	rity; Distributed syste	em;	
User Operating Systems, Computing	vetem calle: Types	of exetom calle: System	es;	
programs: Operating system interface, S	and implementation	tion: Operating Syst	em	
structure: Virtual machines: Operating	System generation	n· System boot Proc	ess	
Management Process concept: Proc	cess scheduling: C	perations on process	ses:	
Inter process communication	believe believe uning, e	perations on process	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Module – 2				
Multi-threaded Programming: O	verview; Multithre	eading models; Thr	ead 10 Hours	
Libraries; Threading issues. Process	Scheduling: Basi	ic concepts; Schedul	ing	
Criteria; Scheduling Algorithms;	Multiple-processo	or scheduling; Thr	ead	
scheduling. Process Synchronization	on: Synchronizatio	on: The critical sect	ion	
problem: Peterson's solution: Synchr	onization hardware	e: Semaphores: Classi	cal	
problems of synchronization; Monitor	·S.	, <u>i</u> ,		
Module – 3			I	
Deadlocks : Deadlocks; System mod	el; Deadlock chara	cterization; Methods	for 10 Hours	
handling deadlocks; Deadlock pre	vention; Deadlock	avoidance; Deadl	ock	
detection and recovery from dead	llock. Memory	Management: Mem	ory	
management strategies: Background;	Swapping; Contig	uous memory allocati	on;	
Paging; Structure of page table; Segm	entation.			
Module – 4			1	
Virtual Memory Management: Bac	ckground; Demand	paging; Copy-on-wr	ite; 10 Hours	
Page replacement; Allocation of	of frames; Thra	ashing. File Syste	em,	
Implementation of File System: Fi	le system: File co	oncept; Access metho	ods;	
Directory structure; File system	mounting; File	sharing; Protecti	on:	
Implementing File system: File system	em structure; File	system implementati	on;	
Directory implementation; Allocation	Directory implementation; Allocation methods; Free space management.			
Module – 5			1	
Secondary Storage Structures, Pr	rotection: Mass s	storage structures; D	visk 10 Hours	

structure; Disk attachment; Disk scheduling; Disk management; Swap space management. Protection: Goals of protection, Principles of protection, Domain of protection, Access matrix, Implementation of access matrix, Access control, Revocation of access rights, Capability- Based systems. **Case Study: The Linux Operating System:** Linux history; Design principles; Kernel modules; Process management; Scheduling; Memory Management; File systems, Input and output; Inter-process communication.

Course outcomes: The students should be able to:

- Demonstrate need for OS and different types of OS
- Apply suitable techniques for management of different resources
- Use processor, memory, storage and file system commands
- Realize the different concepts of OS in platform of usage through case studies

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles 7th edition, Wiley-India, 2006.

- Ann McHoes Ida M Fylnn, Understanding Operating System, Cengage Learning, 6th Edition
- 2. D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-Hill, 2013.
- 3. P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition, PHI(EEE), 2014.
- 4. William Stallings Operating Systems: Internals and Design Principles, 6th Edition, Pearson.

DATA MINING AND DATA WAREHOUSING				
[As per Choice Based Credit System (CBCS) scheme]				
(Effective from the academic year 2016 -2017)				
Subject Code	$\frac{\text{SEMESTER} - \text{VI}}{1508651}$	IA Martra	20	
Subject Code	1505651	IA Marks	20	
Number of Lecture Hours/Week	3	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS – 03			
Course objectives: This course will e	nable students to			
• Define multi-dimensional data	models.	11.1		
• Explain rules related to associa	ation, classification	and clustering analys	18.	
Compare and contrast between	different classifica	tion and clustering al	gorithms	
Module – 1			Hours	
Data Warehousing & modeling:	Basic Concents:	Data Warehousing	Δ 8 Hours	
multitier Architecture Data warehous	e models: Enterpris	Data Warchouse Data m	A o nouis	
and virtual warehouse Extraction T	ransformation and	loading Data Cube		
multidimensional data model Star	s Snowflakes ar	nd Fact constellatio	ns.	
Schemas for multidimensional Data	models Dimension	ns. The role of conc	ent	
Hierarchies Measures: Their Catego	rization and com	utation Typical OL	AP	
Operations		Jutation, Typical OL	2 11	
Module – 2				
Data warehouse implementation	& Data mining.	Efficient Data Cu	ube 8 Hours	
computation: An overview Indexing	OLAP Data: Bitm	an index and join ind	ex	
Efficient processing of OLAP Oueries	OLAP server Arc	hitecture ROLAP ver	SUS	
MOLAP Versus HOLAP. : Introducti	ion: What is data n	nining. Challenges. D	Data	
Mining Tasks. Data: Types of Data. I	Data Quality. Data	Preprocessing. Measu	tres	
of Similarity and Dissimilarity.	(),	r 8,		
Module – 3				
Association Analysis: Association A	nalysis: Problem D	Definition, Frequent It	em 8 Hours	
set Generation, Rule generation. Alt	ernative Methods 1	for Generating Frequ	ent	
Item sets, FP-Growth Algorithm, Eval	uation of Associati	on Patterns.		
Module – 4				
Classification : Decision Trees Indu	action, Method for	Comparing Classific	ers, 8 Hours	
Rule Based Classifiers, Nearest Neigh	bor Classifiers, Bay	yesian Classifiers.		
Module – 5	-		I	
Clustering Analysis: Overview,	K-Means, Aggle	omerative Hierarchi	cal 8 Hours	
Clustering, DBSCAN, Cluster Eval	uation, Density-Ba	sed Clustering, Gra	ph-	
Based Clustering, Scalable Clustering	Algorithms.			
Course outcomes: The students should	ld be able to:			
• Identify data mining problems	and implement the	e data warehouse		
• Write association rules for a gi	ven data pattern.			
Choose between classification	and clustering solu	tion.		
Question paper pattern:				
The question paper will have TEN que	estions.			
There will be TWO questions from ea	ch module.	1 1 1		
Each question will have questions cov	ering all the topics	under a module.		

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Pearson, First impression, 2014.
- 2. Jiawei Han, Micheline Kamber, Jian Pei: Data Mining -Concepts and Techniques, 3rd Edition, Morgan Kaufmann Publisher, 2012.

- 1. Sam Anahory, Dennis Murray: Data Warehousing in the Real World, Pearson, Tenth Impression, 2012.
- 2. Michael.J.Berry,Gordon.S.Linoff: Mastering Data Mining, Wiley Edition, second edition,2012.

	LICATION PRO	GRAMMING	
[As per Choice Based Credit System (CBCS) scheme]			
(Effective from the academic year 2016 -2017)			
	SEMESTER – VI		20
Subject Code	15CS664	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS – 03		
Course objectives: This course will e	nable students to		
• Learn Syntax and Semantics and	nd create Functions	in Python.	
• Handle Strings and Files in Py	thon.		
Understand Lists, Dictionaries	and Regular expres	ssions in Python.	
Implement Object Oriented Pr	ogramming concep	ts in Python	.
• Build Web Services and int	roduction to Netv	ork and Database	Programmingin
Python.			Taaahing
Module – 1			Hours
Why should you learn to write progra	ams Variables exr	ressions and statemer	nts 8 Hours
Conditional execution. Functions		ressions and statemen	
Module – 2			
Iteration, Strings, Files			8 Hours
Module – 3			
Lists, Dictionaries, Tuples, Regular E	xpressions		8 Hours
Module – 4	1		
illoudie i			
Classes and objects, Classes and funct	ions, Classes and n	nethods	8 Hours
Classes and objects, Classes and funct Module – 5	ions, Classes and n	nethods	8 Hours
Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Serv	ions, Classes and n vices, Using databa	nethods ses and SQL	8 Hours
Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Ser Course outcomes: The students should	ions, Classes and n vices, Using databa ld be able to:	ethods ses and SQL	8 Hours 8 Hours
Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Ser Course outcomes: The students should • Examine Python syntax and see and functions.	ions, Classes and n vices, Using databa ld be able to: emantics and be flue	ethods ses and SQL ent in the use of Pythe	8 Hours 8 Hours on flow control
Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Ser Course outcomes: The students should • Examine Python syntax and see and functions. • Demonstrate proficiency in ha	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and l	ethods ses and SQL ent in the use of Pythe File Systems.	8 Hours 8 Hours on flow control
Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Ser Course outcomes: The students shou • Examine Python syntax and se and functions. • Demonstrate proficiency in ha • Create, run and manipulate F Dictionaries and use Regular F	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and l Python Programs u	nethods ses and SQL ent in the use of Pythe File Systems. sing core data struct	8 Hours 8 Hours on flow control ures like Lists,
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Serre Course outcomes: The students shout Examine Python syntax and set and functions. Demonstrate proficiency in hat Create, run and manipulate Ferre Dictionaries and use Regular Ferre Interpret the concepts of Object 	ions, Classes and n vices, Using databa ld be able to: emantics and be flu- ndling Strings and l Python Programs u Expressions.	ethods ses and SQL ent in the use of Pythe File Systems. sing core data struct	8 Hours 8 Hours on flow control ures like Lists,
Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Ser Course outcomes: The students shou • Examine Python syntax and se and functions. • Demonstrate proficiency in ha • Create, run and manipulate F Dictionaries and use Regular F • Interpret the concepts of Object • Implement exemplary applicat	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and l Python Programs u Expressions. et-Oriented Program	nethods ses and SQL ent in the use of Pythe File Systems. sing core data struct ming as used in Pyth	8 Hours 8 Hours 8 Hours on flow control ures like Lists, on.
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Serre Course outcomes: The students shout Examine Python syntax and set and functions. Demonstrate proficiency in hat Create, run and manipulate Ferre Dictionaries and use Regular Ferre Interpret the concepts of Object Implement exemplary applicat and Databases in Python 	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and l Python Programs u Expressions. et-Oriented Program ions related to Netw	nethods ses and SQL ent in the use of Pythe File Systems. sing core data struct ming as used in Pyth vork Programming, W	8 Hours 8 Hours on flow control ures like Lists, on. Veb Services
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Ser Course outcomes: The students shout Examine Python syntax and set and functions. Demonstrate proficiency in hat Create, run and manipulate F Dictionaries and use Regular F Interpret the concepts of Object Implement exemplary applicat and Databases in Python. 	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and l Python Programs u Expressions. et-Oriented Program ions related to Netw	nethods ses and SQL ent in the use of Pythe File Systems. sing core data struct ming as used in Pyth vork Programming, W	8 Hours 8 Hours on flow control ures like Lists, on. Veb Services
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Serre Course outcomes: The students shout Examine Python syntax and set and functions. Demonstrate proficiency in hat Create, run and manipulate Ferre Dictionaries and use Regular Ferre Interpret the concepts of Object Implement exemplary applicat and Databases in Python. 	ions, Classes and n vices, Using databa ld be able to: emantics and be flu- ndling Strings and l Python Programs u Expressions. et-Oriented Program ions related to Netw	nethods ses and SQL ent in the use of Pythe File Systems. sing core data struct ming as used in Pyth vork Programming, W	8 Hours 8 Hours on flow control ures like Lists, on. Veb Services
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Serre Course outcomes: The students shout Examine Python syntax and set and functions. Demonstrate proficiency in hat Create, run and manipulate F Dictionaries and use Regular F Interpret the concepts of Object Implement exemplary applicat and Databases in Python. Question paper pattern: The question paper will have TEN que There will be TWO questions from ear 	ions, Classes and n vices, Using databa ld be able to: emantics and be flu- ndling Strings and l Python Programs u Expressions. et-Oriented Program ions related to Netw estions. ch module.	ethods ses and SQL ent in the use of Pythe File Systems. sing core data struct ming as used in Pyth vork Programming, W	8 Hours 8 Hours on flow control ures like Lists, on. Veb Services
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Serre Course outcomes: The students shout Examine Python syntax and set and functions. Demonstrate proficiency in hat Create, run and manipulate F Dictionaries and use Regular F Interpret the concepts of Object Implement exemplary applicate and Databases in Python. Question paper pattern: The question paper will have TEN question paper will have and pattern in the proficiency of the page of the page	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and l Python Programs u Expressions. et-Oriented Program ions related to Netw estions. ch module. ering all the topics	nethods ses and SQL ent in the use of Pythe File Systems. sing core data struct ming as used in Pyth vork Programming, W	8 Hours 8 Hours on flow control ures like Lists, on. Veb Services
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Ser Course outcomes: The students shout Examine Python syntax and seand functions. Demonstrate proficiency in hat Create, run and manipulate F Dictionaries and use Regular F Interpret the concepts of Object Implement exemplary applicat and Databases in Python. Question paper pattern: The question paper will have TEN que there will be TWO questions from ea Each question will have to answer FIVI	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and l Python Programs u Expressions. et-Oriented Program ions related to Netw estions. ch module. rering all the topics E full questions, sel	ethods ses and SQL ent in the use of Pythe File Systems. sing core data struct ming as used in Pyth vork Programming, W under a module. ecting ONE full quest	8 Hours 8 Hours on flow control ures like Lists, on. Veb Services tion from each
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Serr Course outcomes: The students shout Examine Python syntax and set and functions. Demonstrate proficiency in hat Create, run and manipulate F Dictionaries and use Regular F Interpret the concepts of Object Implement exemplary applicate and Databases in Python. Question paper pattern: The question paper will have TEN question reader that the students will have to answer FIVI module. 	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and I Python Programs u Expressions. et-Oriented Program ions related to Netw estions. ch module. ering all the topics E full questions, sel	ethods ses and SQL ent in the use of Pythe File Systems. sing core data struct uning as used in Pyth vork Programming, W under a module. ecting ONE full quest	8 Hours 8 Hours on flow control ures like Lists, on. Veb Services
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Ser Course outcomes: The students shout Examine Python syntax and seand functions. Demonstrate proficiency in ha Create, run and manipulate F Dictionaries and use Regular F Interpret the concepts of Object Implement exemplary applicat and Databases in Python. Question paper pattern: The question paper will have TEN que There will be TWO questions from ea Each question will have to answer FIVI module.	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and l Python Programs u Expressions. et-Oriented Program ions related to Netw estions. ch module. rering all the topics E full questions, sel	ethods ses and SQL ent in the use of Pythe File Systems. sing core data struct ming as used in Pyth vork Programming, W under a module. ecting ONE full quest	8 Hours 8 Hours on flow control ures like Lists, on. Veb Services tion from each
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Serr Course outcomes: The students shout Examine Python syntax and set and functions. Demonstrate proficiency in hat Create, run and manipulate F Dictionaries and use Regular F Interpret the concepts of Object Implement exemplary applicat and Databases in Python. Question paper pattern: The question paper will have TEN question paper will have a set and pattern in the students will have to answer FIVI module. Text Books: Charles R. Severance, "Pytho 	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and I Python Programs u Expressions. et-Oriented Program ions related to Netw estions. ch module. rering all the topics E full questions, sel	ethods ses and SQL ent in the use of Pythe File Systems. sing core data struct uning as used in Pyth vork Programming, W under a module. ecting ONE full quest	8 Hours 8 Hours on flow control ures like Lists, on. Veb Services tion from each g Python 3", 1 st
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Serr Course outcomes: The students shout Examine Python syntax and set and functions. Demonstrate proficiency in hat Create, run and manipulate F Dictionaries and use Regular F Interpret the concepts of Object Implement exemplary applicat and Databases in Python. Question paper pattern: The question paper will have TEN question should be TWO questions from ea Each question will have to answer FIVI module. Text Books: Charles R. Severance, "Python Edition, CreateSpace Independent of the paper of the paper	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and l Python Programs u Expressions. et-Oriented Program ions related to Netv estions. ch module. rering all the topics E full questions, sel	ethods ses and SQL ent in the use of Pythe File Systems. sing core data struct ming as used in Pyth vork Programming, W under a module. ecting ONE full quest Exploring Data Using g Platform, 2016.	8 Hours 8 Hours on flow control ures like Lists, on. Veb Services tion from each g Python 3", 1 st (http://do1.dr-
 Classes and objects, Classes and funct Module – 5 Networked programs, Using Web Serre Course outcomes: The students shout Examine Python syntax and set and functions. Demonstrate proficiency in hat Create, run and manipulate Ferre Dictionaries and use Regular Ferre Interpret the concepts of Object Implement exemplary applicat and Databases in Python. Question paper pattern: The question paper will have TEN question paper will have TEN question will have questions cover the students will have to answer FIVI module. Text Books: Charles R. Severance, "Python Edition, CreateSpace Independent of the product of the product of the students of the product of t	ions, Classes and n vices, Using databa ld be able to: emantics and be flue ndling Strings and l Python Programs u Expressions. et-Oriented Program ions related to Netw estions. ch module. rering all the topics E full questions, sel n for Everybody: H pendent Publishing s/pythonlearn.pdf)	ethods ses and SQL ent in the use of Pythe File Systems. sing core data struct uning as used in Pyth vork Programming, W under a module. ecting ONE full quest Exploring Data Using g Platform, 2016. (Chapters 1 – 13, 15)	8 Hours 8 Hours on flow control ures like Lists, on. Veb Services tion from each g Python 3", 1 st (http://dol.dr- uter Scientist"

(ht	tp://greenteapress.com/thinkpython2/thinkpython2.pdf) (Chapters 15, 16, 17)
(D	ownload pdf files from the above links)
Reference	e Books:
1.	Charles Dierbach, "Introduction to Computer Science Using Python", 1 st Edition,
	Wiley India Pvt Ltd. ISBN-13: 978-8126556014
2.	Mark Lutz, "Programming Python", 4 th Edition, O'Reilly Media, 2011.ISBN-13:
	978-9350232873
3.	Wesley J Chun, "Core Python Applications Programming", 3rd Edition, Pearson
	Education India, 2015. ISBN-13: 978-9332555365
4.	Roberto Tamassia, Michael H Goldwasser, Michael T Goodrich, "Data Structures
	and Algorithms in Python",1st Edition, Wiley India Pvt Ltd, 2016. ISBN-13: 978-
	8126562176
5.	Reema Thareja, "Python Programming using problem solving approach", Oxford
	university press, 2017

WEB TECHNOLOGY AND ITS APPLICATIONS					
[As per Choice Based Credit System (CBCS) scheme]					
(Effective from the academic year 2016 -2017)					
California California	SEMESTER –			0	
Subject Code	15CS/1	IA Marks	4	20	
Total Number of Lecture Hours/ Week	50	Exam Hours	8	30)2	
Total Number of Lecture Hours	CPEDITS		(15	
Course Objectives: This course y	vill enable students	to			
Illustrate the Somentie Str	vill enable students				
Compose forms and tables	using UTML and				
 Compose forms and tables Design Client Side program 	using ITTML and	CDD at and Sorver Side n	rograma	ing DUD	
Design Cheft-Side program Infor Object Oriented Press	ms using JavaScrip	ion of DUD	lograms us	ing r m	
Examina JavaScript frama	gramming capabilit	les of FAF			
• Examine JavaScript frame	works such as jQu	ery and backbone		Taashing	
Module – 1				Hours	
Introduction to HTML, What is	HTML and Where	e did it come from	?, HTML	10 Hours	
Syntax, Semantic Markup, Stru	cture of HTML	Documents, Quick	Tour of		
HTML Elements, HTML5 Sema	ntic Structure Ele	ments, Introduction	n to CSS,		
What is CSS, CSS Syntax, Loca	ation of Styles, Se	electors, The Casca	ade: How		
Styles Interact, The Box Model, C	SS Text Styling.				
Module – 2					
HTML Tables and Forms, Intr	oducing Tables,	Styling Tables, In	troducing	10 Hours	
Forms, Form Control Elements,	Table and Form	Accessibility, Micr	oformats,		
Advanced CSS: Layout, Normal I	Flow, Positioning	Elements, Floating	Elements,		
Constructing Multicolumn Layo	Constructing Multicolumn Layouts, Approaches to CSS Layout, Responsive				
Design, CSS Frameworks.					
Module – 3					
JavaScript: Client-Side Scripting	g, What is JavaSo	cript and What ca	n it do?,	10 Hours	
JavaScript Design Principles, W	here does JavaSci	ript Go?, Syntax, J	avaScript		
Objects, The Document Object	Model (DOM),	JavaScript Events	S, Forms,		
Introduction to Server-Side Development with PHP, What is Server-Side					
Development, A Web Server's Responsibilities, Quick Tour of PHP, Program					
Modulo 4					
PHD Arrays and Superglobals Ar	rove & CET and	POST Superglob	al Arraya	10 Hours	
\$ SERVER Array \$ Files Array	av Reading/Writi	p_rOST Supergiou ng Files PHP Cl	al Allays,	10 110015	
ϕ _SERVER Allay, ϕ _Files Allay, Keading/writing Files, PHP Classes and Objects Object Oriented Overview Classes and Objects in DUD Object					
Oriented Design Error Handling and Validation What are Errors and					
Exceptions? PHP Error Reporting, PHP Error and Exception Handling					
Module – 5					
Managing State. The Problem of State	State in Web Appl	ications. Passing In	formation	10 Hours	
via Query Strings, Passing Information via the URL Path. Cookies. Serialization.					
Session State, HTML5 Web Storage, Caching, Advanced JavaScript and iOuerv.					
JavaScript Pseudo-Classes, jQuery Foundations, AJAX, Asynchronous File					
Transmission, Animation, Backbone MVC Frameworks, XML Processing and					
Web Services, XML Processing, JSON, Overview of Web Services.					
Course Outcomes: After studying this course, students will be able to					
Adapt HTML and CSS syr	ntax and semantics	to build web pages	_		

- Construct and visually format tables and forms using HTML and CSS
- Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP to generate and display the contents dynamically.
- Appraise the principles of object oriented development using PHP
- Inspect JavaScript frameworks like jQuery and Backbone which facilitates developer to focus on core features.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Randy Connolly, Ricardo Hoar, **"Fundamentals of Web Development"**, 1stEdition, Pearson Education India. (**ISBN:**978-9332575271)

- Robin Nixon, "Learning PHP, MySQL &JavaScript with jQuery, CSS and HTML5", 4thEdition, O'Reilly Publications, 2015. (ISBN:978-9352130153)
- 2) Luke Welling, Laura Thomson, **"PHP and MySQL Web Development"**, 5th Edition, Pearson Education, 2016. (**ISBN:**978-9332582736)
- Nicholas C Zakas, "Professional JavaScript for Web Developers", 3rd Edition, Wrox/Wiley India, 2012. (ISBN:978-8126535088)
- 4) David Sawyer Mcfarland, "JavaScript & jQuery: The Missing Manual", 1st Edition, O'Reilly/Shroff Publishers & Distributors Pvt Ltd, 2014 (ISBN:978-9351108078)
- 5) Zak Ruvalcaba Anne Boehm, **"Murach's HTML5 and CSS3"**, 3rdEdition, Murachs/Shroff Publishers & Distributors Pvt Ltd, 2016. (**ISBN:**978-9352133246)

MACHINE LEARNING					
[As per Choice Based Credit System (CBCS) scheme]					
(Effective from the academic year 2016 -2017)					
	SEMESTER –	VII			
Subject Code	15CS73	IA Marks	2	0	
Number of Lecture Hours/Week	03	Exam Marks	80		
Total Number of Lecture Hours	50	Exam Hours	0	3	
	CREDITS –	04			
Course Objectives: This course wi	ll enable students to)			
• Define machine learning and	d problems relevant	to machine learning	•		
• Differentiate supervised, uns	supervised and rein	forcement learning			
• Apply neural networks, Bay	ves classifier and k	nearest neighbor, fo	or problems	s appear in	
machine learning.		E ,	1	11	
• Perform statistical analysis of	of machine learning	techniques.			
Module – 1		•		Teaching	
				Hours	
Introduction: Well posed learn	ing problems, De	esigning a Learning	g system,	10 Hours	
Perspective and Issues in Machine I	Learning.				
Concept Learning: Concept lear	ning task, Concer	ot learning as searc	h, Find-S		
algorithm. Version space. Candidate	e Elimination algor	ithm. Inductive Bias.	,		
Text Book1. Sections: 1.1 – 1.3. 2.	1-2.5. 2.7	,			
Module – 2	, -				
Decision Tree Learning: Decision	n tree representati	on, Appropriate pro	blems for	10 Hours	
decision tree learning. Basic decision tree learning algorithm, hypothesis space search					
in decision tree learning. Inductive bias in decision tree learning Issues in decision					
tree learning					
Text Book1. Sections: 3.1-3.7					
Module – 3					
Artificial Neural Networks:	Introduction, Neu	ral Network repre	esentation,	08 Hours	
Appropriate problems, Perceptrons,	Backpropagation a	llgorithm.	,		
Text book 1. Sections: $4.1 - 4.6$	1 1 0	0			
Module – 4					
Bavesian Learning: Introduction	. Baves theorem.	Baves theorem and	d concept	10 Hours	
learning ML and LS error hypothesis. ML for predicting probabilities MDL					
principle. Naive Bayes classifier. Bayesian belief networks. EM algorithm					
Text book 1. Sections: 6.1 – 6.6, 6.9, 6.11, 6.12					
Module - 5	, , , , , , , , , , , , , , , , , , , ,				
Evaluating Hypothesis: Motivati	on. Estimating hy	pothesis accuracy.	Basics of	12 Hours	
sampling theorem. General approac	h for deriving con	fidence intervals. Dif	ference in		
error of two hypothesis. Comparing learning algorithms.					
Instance Based Learning: Introduction, k-nearest neighbor learning locally					
weighted regression, radial basis function, cased-based reasoning					
Reinforcement Learning: Introduction, Learning Task. O Learning					
Text book 1. Sections: 5.1-5.6. 8.1	Text book 1, Sections: 5.1-5.6, 8.1-8.5, 13.1-13.3				
Course Outcomes: After studying this course, students will be able to					
• Identify the problems for	r machine learni	ng. And select th	e either	supervised.	

unsupersvised or reinforcement learning.

- Explain theory of probability and statistics related to machine learning
- Investigate concept learning, ANN, Bayes classifier, k nearest neighbor, Q,

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.

- 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.
- 2. Ethem Alpaydın, Introduction to machine learning, second edition, MIT press.

CLOUD COMPU	TING AND ITS A	PPLICATIONS				
[As per Choice Based Credit System (CBCS) scheme]						
(Effective from	the academic yea	r 2016 -2017)				
S	EMESTER – VII	TA DØ 1				
Subject Code	15CS742	IA Marks	20			
Number of Lecture Hours/Week	3	Exam Marks	80			
Total Number of Lecture Hours	40	Exam Hours	03			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CREDITS – 03					
Course objectives: This course will e	nable students to					
• Explain the fundamentals of cl	oud computing					
• Illustrate the cloud application	programming and a	aneka platform				
Contrast different cloud platfor	rms used in industry	У				
Module – 1			Teaching			
			Hours			
Introduction ,Cloud Computing at a	Glance, The Visio	n of Cloud Comput	ng, 8 Hours			
Defining a Cloud, A Closer Loo	k, Cloud Compu	ting Reference Mo	del,			
Characteristics and Benefits, Chall	enges Ahead, Hi	storical Developme	nts,			
Distributed Systems, Virtualization,	web 2.0, Servic	re-Oriented Comput	ng,			
Application Development Infrastruct	uning Cloud Col	nputing Environme welcomment Comput	ting			
Platforms and Technologies Ame	aron Web Servi	ΔWS (ΔWS) Goo	Jing			
AppEngine Microsoft Azure Ha	adoon Force com	and Salesforce of	om			
Manirasoft Aneka	doop, Porce.com	and Salestoree.e	JIII,			
Virtualization Introduction Chara	cteristics of Vir	tualized Environme	ents			
Taxonomy of Virtualization Techniques Execution Virtualization Other Types						
of Virtualization Virtualization and Cloud Computing Pros and Cons of						
Virtualization, Technology Examples Xen: Paravirtualization, VMware: Full						
Virtualization, Microsoft Hyper-V						
Module – 2						
Cloud Computing Architecture,	Introduction, Clo	ud Reference Mo	del, 8 Hours			
Architecture, Infrastructure / Hardw	are as a Service,	Platform as a Serv	ice,			
Software as a Service, Types of Clouds, Public Clouds, Private Clouds, Hybrid						
Clouds, Community Clouds, Economics of the Cloud, Open Challenges, Cloud						
Definition, Cloud Interoperability and Standards Scalability and Fault Tolerance						
Security, Trust, and Privacy Organizational Aspects						
Aneka: Cloud Application Platform, Framework Overview, Anatomy of the						
Aneka Container, From the Ground Up: Platform Abstraction Layer, Fabric						
Services, foundation Services, Application Services, Building Aneka Clouds,						
Infrastructure Organization, Logical Organization, Private Cloud Deployment						
Mode, Public Cloud Deployment Mode, Hybrid Cloud Deployment Mode, Cloud						
Programming and Management, Aneka SDK, Management Tools						
	· • • •		1 0 77			
Concurrent Computing: Thread Progra	amming, Introducir	ng Parallelism for Sir	igle 8 Hours			
Concurrent Computing: Thread Progra Machine Computation, Programming	amming, Introducir g Applications wi	ng Parallelism for Sir th Threads, What i	igle 8 Hours			
Concurrent Computing: Thread Progra Machine Computation, Programming Thread?, Thread APIs, Techniques	amming, Introducir g Applications wi for Parallel Com	ng Parallelism for Sir th Threads, What i putation with Threa	ngle 8 Hours s a ads, eka			
Concurrent Computing: Thread Progra Machine Computation, Programming Thread?, Thread APIs, Techniques Multithreading with Aneka, Introducin Thread vs. Common Threads, Progra	amming, Introducir g Applications wi for Parallel Com ng the Thread Prog mming Application	ng Parallelism for Sir th Threads, What i putation with Threa gramming Model, An	ngle 8 Hours s a ads, eka ads			

Multiplication, Functional Decomposition: Sine, Cosine, and Tangent.				
High-Throughput Computing: Task Programming, Task Computing,				
Characterizing a Task, Computing Categories, Frameworks for Task Computing,				
Task-based Application Models, Embarrassingly Parallel Applications,				
Parameter Sweep Applications, MPI Applications, Workflow Applications with				
Task Dependencies, Aneka Task-Based Programming, Task Programming				
Model, Developing Applications with the Task Model, Developing Parameter				
Sweep Application, Managing Workflows.				
Module – 4				
Data Intensive Computing: Map-Reduce Programming, What is Data-Intensive	8 Hours			
Computing?, Characterizing Data-Intensive Computations, Challenges Ahead,				
Historical Perspective, Technologies for Data-Intensive Computing, Storage				
Systems, Programming Platforms, Aneka MapReduce Programming, Introducing				
the MapReduce Programming Model, Example Application				
Module – 5				
Cloud Platforms in Industry, Amazon Web Services, Compute Services, Storage	8 Hours			
Services, Communication Services, Additional Services, Google AppEngine,				
Architecture and Core Concepts, Application Life-Cycle, Cost Model,				
Observations, Microsoft Azure, Azure Core Concepts, SQL Azure, Windows				
Azure Platform Appliance.				
Cloud Applications Scientific Applications, Healthcare: ECG Analysis in the				
Cloud, Biology: Protein Structure Prediction, Biology: Gene Expression Data				
Analysis for Cancer Diagnosis, Geoscience: Satellite Image Processing, Business				
and Consumer Applications, CRM and ERP, Productivity, Social Networking,				
Media Applications, Multiplayer Online Gaming.				
Course outcomes: The students should be able to:				
• Explain cloud computing, virtualization and classify services of cloud comp	outing			
Illustrate architecture and programming in cloud	-			
• Describe the platforms for development of cloud applications and List the	application			
of cloud.	11			
Question paper pattern:				
The question paper will have ten questions.				
There will be 2 questions from each module.				
Each question will have questions covering all the topics under a module.				
The students will have to answer 5 full questions, selecting one full question from each				
module.				
Text Books:				
1. Rajkumar Buyya, Christian Vecchiola, and Thamarai Selvi	Mastering			
Cloud. Computing McGraw Hill Education				
Reference Books:				
I. Dan C. Marinescu, Cloud Computing Theory and Practice, Morgan	Kaufmann,			
Elsevier 2013.				
COMPUTER VISION AND ROBOTICS				
---	---------------------	---------------------------	-------------------	
[As per Choice Ba	sed Credit System	(CBCS) scheme]		
(Effective from the academic year 2016 -2017)				
SEMESTER – VII				
Subject Code	15CS752	IA Marks	20	
Number of Lecture Hours/Week	3	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS – 03			
Course objectives: This course will e	nable students to			
• Review image processing techn	iques for computer	vision		
• Explain shape and region analy	sis			
• Illustrate Hough Transform and	its applications to	detect lines circles e	llinses	
Contrast three-dimensional in	nage analysis tech	niques motion a	nalveis and	
applications of computer vision	algorithms	inques, motion a	larysis and	
Module – 1	urgoritimis		Teaching	
			Hours	
CAMERAS: Pinhole Cameras, Ra	diometry – Meas	mring Light: Light	in 8 Hours	
Space Light Surfaces Important	Special Cases So	urces. Shadows. A	and	
Shading: Qualitative Radiometry S	ources and Their	Effects Local Shad	ing	
Models Application: Photometric	Stereo Interreflec	tions Global Shac	ing	
Models, Color: The Physics of Color	or. Human Color F	Perception Represent	ing	
Color. A Model for Image Color. Surf	ace Color from Ima	age Color.		
Module – 2				
Linear Filters: Linear Filters and Co	onvolution Shift Ir	variant Linear Syste	ms 8 Hours	
Spatial Fraguency and Fourier Transforms, Sampling and Aliaging, Filters as				
Spatial Frequency and Fourier Transforms, Sampling and Allasing, Filters as Templates Edge Detection: Noise Estimating Derivatives Detecting Edges			as Tec	
Texture: Representing Texture Δ	nalysis (and Syn	thesis) Using Orier	ited	
Pyramids Application: Synthesis h	v Sampling Loca	l Models Shape fi	rom	
Texture	y bamping Loca	i Wodels, Shape h		
Module – 3				
The Geometry of Multiple Views:	Two Views Ster	eonsis Reconstruct	on 8 Hours	
Human Stereposis Binocular Fusion	Using More Can	veras Segmentation	hv	
Clustering : What Is Segmentation?	Human Vision	Grouping and Gets	alt	
Applications: Shot Boundary Detec	tion and Backgrou	and Subtraction Im	age	
Segmentation by Clustering Pixels Se	gmentation by Gra	ph-Theoretic Clusteri	ng	
Module – 4	Smentation of Ora			
Segmentation by Fitting a Model: T	The Hough Transfor	rm Fitting Lines Fitt	ing 8 Hours	
Curves Fitting as a Probabilistic Infe	rence Problem Ro	bustness Segmentat	ion	
and Fitting Using Probabilistic Met	thods: Missing Dat	a Problems Fitting	and	
Segmentation The FM Algorithm in Practice Tracking With Linear Dynamic			mic	
Models: Tracking as an Abstract Inference Problem Linear Dynamic Models			els	
Kalman Filtering Data Association, A	opplications and Ex	amples.	C 15,	
Module – 5				
Geometric Camera Models: Flem	ents of Analytica	l Euclidean Geome	try. 8 Hours	
Camera Parameters and the Perspect	ive Projection Aff	ine Cameras and Af	ine	
Projection Equations Geometric	Camera Calib	ration: Least-Sou	ares	
Parameter Estimation A Linear Approach to Camera Calibration Taking Radial			dial	
Distortion into Account Analytical	Photogrammetry	An Application Mo	bile	
Robot Localization. Model- Based	Vision: Initial	Assumptions. Obtair	ing	

Obtaining Hypotheses Using Invariants, Verification, Application: Registration In Medical Imaging Systems, Curved Surfaces and Alignment. Course outcomes: The students should be able to: Implement fundamental image processing techniques required for computer vision Perform shape analysis Implement boundary tracking techniques Apply chain codes and other region descriptors Apply Hough Transform for line, circle, and ellipse detections. Apply 3D vision techniques. Implement motion related techniques. Develop applications using computer vision techniques. Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books:	Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering,
In Medical Imaging Systems, Curved Surfaces and Alignment. Course outcomes: The students should be able to: Implement fundamental image processing techniques required for computer vision Perform shape analysis Implement boundary tracking techniques Apply chain codes and other region descriptors Apply Hough Transform for line, circle, and ellipse detections. Apply 3D vision techniques. Implement motion related techniques. Develop applications using computer vision techniques. Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books:	Obtaining Hypotheses Using Invariants, Verification, Application: Registration
 Course outcomes: The students should be able to: Implement fundamental image processing techniques required for computer vision Perform shape analysis Implement boundary tracking techniques Apply chain codes and other region descriptors Apply Hough Transform for line, circle, and ellipse detections. Apply 3D vision techniques. Implement motion related techniques. Develop applications using computer vision techniques. Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. 	In Medical Imaging Systems, Curved Surfaces and Alignment.
 Implement fundamental image processing techniques required for computer vision Perform shape analysis Implement boundary tracking techniques Apply chain codes and other region descriptors Apply Hough Transform for line, circle, and ellipse detections. Apply 3D vision techniques. Implement motion related techniques. Develop applications using computer vision techniques. Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. 	Course outcomes: The students should be able to:
 Perform shape analysis Implement boundary tracking techniques Apply chain codes and other region descriptors Apply Hough Transform for line, circle, and ellipse detections. Apply 3D vision techniques. Implement motion related techniques. Develop applications using computer vision techniques. Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books:	• Implement fundamental image processing techniques required for computer vision
 Implement boundary tracking techniques Apply chain codes and other region descriptors Apply Hough Transform for line, circle, and ellipse detections. Apply 3D vision techniques. Implement motion related techniques. Develop applications using computer vision techniques. Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. 	• Perform shape analysis
 Apply chain codes and other region descriptors Apply Hough Transform for line, circle, and ellipse detections. Apply 3D vision techniques. Implement motion related techniques. Develop applications using computer vision techniques. Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. 	Implement boundary tracking techniques
 Apply Hough Transform for line, circle, and ellipse detections. Apply 3D vision techniques. Implement motion related techniques. Develop applications using computer vision techniques. Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books:	Apply chain codes and other region descriptors
 Apply 3D vision techniques. Implement motion related techniques. Develop applications using computer vision techniques. Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. 	• Apply Hough Transform for line, circle, and ellipse detections.
 Implement motion related techniques. Develop applications using computer vision techniques. Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books: Image: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. 	• Apply 3D vision techniques.
 Develop applications using computer vision techniques. Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books: A. F. D. D. in C. and M. A. F. M. A. M. M	Implement motion related techniques.
Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books:	• Develop applications using computer vision techniques.
The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books:	Question paper pattern:
There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books:	The question paper will have ten questions.
 Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. Text Books: David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books: 	There will be 2 questions from each module.
The students will have to answer 5 full questions, selecting one full question from each module. Text Books: 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books:	Each question will have questions covering all the topics under a module.
module. Text Books: 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books:	The students will have to answer 5 full questions, selecting one full question from each
Text Books: 1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books:	module.
 David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009. Reference Books: 	Text Books:
Learning (Indian Edition), 2009. Reference Books:	1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI
Reference Books:	Learning (Indian Edition), 2009.
	Reference Books:
2. E. R. Davies: Computer and Machine Vision – Theory, Algorithms and Practicalities,	2. E. R. Davies: Computer and Machine Vision – Theory, Algorithms and Practicalities,
Elsevier (Academic Press), 4 th edition, 2013.	Elsevier (Academic Press), 4 th edition, 2013.

DIGITAL IMAGE PROCESSING			
[As per Choice Ba	sed Credit System	(CBCS) scheme]	
(Effective from	n the academic yea	nr 2016 -2017)	
	SEMESTER – VII		
Subject Code	15CS753	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS – 03		
Course objectives: This course will e	nable students to		
• Define the fundamental conce	ots in image proces	sing	
• Evaluate techniques followed	in image enhancem	ents	
• Illustrate image segmentation	and compression al	gorithms	
Module – 1			Teaching
			Hours
Introduction Fundamental Steps in D	Digital Image Proce	ssing, Components of	an 8 Hours
Image Processing System, Samplin	g and Quantizatio	n, Representing Digi	tal
Images (Data structure), Some Basic	Relationships Bet	ween Pixels- Neighbo	ors
and Connectivity of pixels in image,	Applications of Im	age Processing: Medic	al
imaging, Robot vision, Character reco	gnition, Remote Se	ensing.	
Module – 2			
Image Enhancement In The Spa	atial Domain: So	ome Basic Gray Lev	rel 8 Hours
Transformations, Histogram Process	ing, Enhancement	Using Arithmetic/Log	gic
Operations, Basics of Spatial Filteri	ng, Smoothing Spa	atial Filters, Sharpeni	ng
Spatial Filters, Combining Spatial Enl	nancement Methods	5.	
Module – 3			
Image Enhancement In Frequency	Domain:		8 Hours
Introduction, Fourier Transform, Disc	rete Fourier Transfe	orm (DFT), properties	
of DFT, Discrete Cosine Transform (DCT), Image filteri	ing in frequency domai	n.
Module – 4		1 1 1 1 1	0.11
Image Segmentation: Introduction,	Detection of isolat	ed points, line detectio	n, 8 Hours
Edge detection, Edge linking, Region	based segmentatio	n- Region growing, sp	lit
and merge technique, local processi	ng, regional proces	ssing, Hough transfor	m,
Segmentation using Threshold.			
Module – 5	l'us Dedeudeuse	Tuton aligned and an a	0.11
image compression: introduction, co	Jaing Redundancy	, Inter-pixel redundanc	y, 8 Hours
Arithmetic Coding, LZW adding, Tra	Lossiess compress	ion, Hullman Couing,	
blocking DCT implementation using	EFT Run length co	o-iniage size selection,	
Course outcomes: The students should be able to:			
• Explain fundamentals of imag	a processing		
Compare transformation algor	thms		
Compare transformation algor	iuiiis	ssion tachniques	
• Contrast enhancement, segmen	nation and complex	ssion techniques	
Question paper pattern:			
The question paper will have ten questions. There will be 2 questions from each module			
Fach question will have questions covering all the topics under a module			
The students will have to answer 5 full questions, selecting one full question from each			
	- acouono, sereem	-5 one ran question ne	

Text Books:

1. Rafael C G., Woods R E. and Eddins S L, Digital Image Processing, Prentice Hall, 3rd edition, 2008.

- 1. Milan Sonka,"Image Processing, analysis and Machine Vision", Thomson Press India Ltd, Fourth Edition.
- 2. Fundamentals of Digital Image Processing- Anil K. Jain, 2nd Edition, Prentice Hall of India.
- 3. S. Sridhar, Digital Image Processing, Oxford University Press, 2nd Ed, 2016.

MACHINE LEARNING LABORATORY					
[As per Choice Bas	sed Credit System	(CBCS) scheme]			
(Effective from	the academic yea	r 2016 -2017)			
S	SEMESTER – VII				
Subject Code	15CSL76	IA Marks	20		
Number of Lecture Hours/Week	01I + 02P	Exam Marks	80		
Total Number of Lecture Hours	40	Exam Hours	03		
	CREDITS – 02				
Course objectives: This course will e	nable students to				
1. Make use of Data sets in imple	menting the maching	ne learning algorithm	S		
2. Implement the machine learning	ig concepts and alg	orithms in any suitab	le language of		
choice.					
Description (If any):	. 11				
1. The programs can be implement	nted in either $JAVA$	A or Python.			
2. For Problems 1 to 6 and 10, p	rograms are to be	developed without us	sing the built-in		
2 Data sata can	An takan	from standard	ropositorios		
5. Data sets call (datasets html) or co	notructed by the stud	ants		
I ab Experiments:		instructed by the stud			
1 Implement and demonstratet	he FIND-Salgorit	hm for finding the	most specific		
hypothesis based on a given se	t of training data sa	mples Read the train	ing data from a		
CSV file	t of training data sa	imples. Read the train	ing data nom a		
2 For a given set of training of	lata examples stor	red in a CSV file	implement and		
demonstrate the Candidate-E	limination algorit	h m to output a descri	ption of the set		
of all hypotheses consistent wi	th the training exam	nples.	ption of the set		
3. Write a program to demons	strate the working	y of the decision t	ree based ID3		
algorithm. Use an appropriate	e data set for build	ing the decision tree	and apply this		
knowledge toclassify a new sat	mple.	0	11.5		
4. Build an Artificial Neural	Network by im	plementing the Ba	ckpropagation		
algorithm and test the same us	sing appropriate dat	a sets.			
5. Write a program to implement	nt the naïve Bayes	ian classifier for a	sample training		
data set stored as a .CSV file.	Compute the accura	acy of the classifier, o	considering few		
test data sets.					
6. Assuming a set of document	s that need to be	classified, use the r	naïve Bayesian		
Classifier model to perform the	his task. Built-in Ja	va classes/API can b	be used to write		
the program. Calculate the acc	uracy, precision, an	d recall for your data	set.		
7. Write a program to construct a	aBayesian networl	considering medica	l data. Use this		
model to demonstrate the dia	gnosis of heart pa	tients using standard	Heart Disease		
Data Set. You can use Java/Python ML library classes/API.					
8. Apply ENI algorithm to cluster a set of data stored in a .CSV file. Use the same data					
set for clustering using κ -ivitants algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Isya/Dythen MI					
library classes/API in the program					
$\begin{array}{c} \text{Hotal y Classes/AFT III use program.} \\ 0 \text{Write a program to implement } k \text{Nonrost Noighbour algorithm to classify the init.} \end{array}$					
7. While a program to implement k-invarest ineighbour algorithm to classify the first data set. Print both correct and wrong predictions. Java/Dython ML library classes can					
be used for this problem					
10. Implement the non-parametric Locally Weighted Regressionalgorithm in order to					
fit data points. Select appropriate data set for your experiment and draw graphs					
in data points. Select appropriate data set for your experiment and draw graphs.					

Study Experiment / Project:

NIL

Course outcomes: The students should be able to:

- 1. Understand the implementation procedures for the machine learning algorithms.
- 2. Design Java/Python programs for various Learning algorithms.
- 3. Applyappropriate data sets to the Machine Learning algorithms.
- 4. Identify and apply Machine Learning algorithms to solve real world problems.

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script
- Marks distribution: Procedure + Conduction + Viva:20 + 50 + 10 (80)

Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

Subject Code	15CS81	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS	- 04	
Course Objectives: This course will e	enable students to		
Assess the genesis and impact	t of IoT application	ons, architectures in real w	vorld.
Illustrate diverse methods of c	leploying smart of	bjects and connect them t	o network.
Compare different Application	n protocols for Io	Τ.	
• Infer the role of Data Analytic	cs and Security in	IoT.	
 Identifysensor technologies for various domains of Industry 	or sensing real wo	orld entities and understan	d the role of IoT in
Module – 1			Teaching
			Hours
What is IoT, Genesis of IoT, IoT and	Digitization, IoT	Impact, Convergence of I	T and 10 Hours
IoT, IoT Challenges, IoT Network	Architecture and	Design, Drivers Behind	l New
Network Architectures, Comparing Io	T Architectures,	A Simplified IoT Archited	cture,
The Core for Functional Stack, for L	ata Management	and Compute Stack.	
Module – 2			
Module – 2 Smart Objects: The "Things" in IoT, S	Sensors, Actuat of	ors, and Smart Objects, Se	nsor 10 Hours
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object	Sensors, Actuat of ts, Communication	ors, and Smart Objects, Se ons Criteria, IoT Access	nsor 10 Hours
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies.	Sensors, Actuat of ts, Communication	ors, and Smart Objects, Se ons Criteria, IoT Access	nsor 10 Hours
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3	Sensors, Actuat o ts, Communicatio	ors, and Smart Objects, Se ons Criteria, IoT Access	nsor 10 Hours
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus	Sensors, Actuat of ts, Communication siness Case for IP	ors, and Smart Objects, Se ons Criteria, IoT Access	nsor 10 Hours on, 10 Hours
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl	ors, and Smart Objects, Se ons Criteria, IoT Access , The need for Optimization ication Protocols for IoT,	nsor 10 Hours on, 10 Hours The
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods.	ors, and Smart Objects, Se ons Criteria, IoT Access , The need for Optimization ication Protocols for IoT,	nsor 10 Hours on, 10 Hours The
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods.	ors, and Smart Objects, Se ons Criteria, IoT Access , The need for Optimization ication Protocols for IoT,	nsor 10 Hours on, 10 Hours The
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods.	ors, and Smart Objects, Se ons Criteria, IoT Access , The need for Optimization ication Protocols for IoT, ta Analytics for IoT, Ma	nsor 10 Hours on, 10 Hours The 10 Hours achine 10 Hours
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int Learning, Big Data Analytics Tools	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods. troduction to Data and Technology	ors, and Smart Objects, Se ons Criteria, IoT Access , The need for Optimization ication Protocols for IoT, ta Analytics for IoT, Ma , Edge Streaming Analyt	nsor 10 Hours on, 10 Hours The 10 Hours achine 10 Hours ics,
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int Learning, Big Data Analytics Tools Network Analytics, Securing IoT, A E	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods. troduction to Data and Technology Brief History of C	ors, and Smart Objects, Se ons Criteria, IoT Access , The need for Optimization ication Protocols for IoT, ta Analytics for IoT, Ma , Edge Streaming Analyt T Security, Common Cha	nsor 10 Hours on, 10 Hours The 10 Hours achine 10 Hours lilenges
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int Learning, Big Data Analytics Tools Network Analytics, Securing IoT, A E in OT Security, How IT and OT Secur Analysis Structures: OCTAVE and Ed	Sensors, Actuat of ts, Communications siness Case for IP ompliances, Appl nsport Methods. troduction to Data and Technology Brief History of C rity Practices and	rs, and Smart Objects, Se ons Criteria, IoT Access , The need for Optimization ication Protocols for IoT, ta Analytics for IoT, Ma , Edge Streaming Analyt T Security, Common Cha Systems Vary, Formal Ri Application of Security in	nsor 10 Hours on, 10 Hours The 10 Hours achine 10 Hours ics, 10 Hours isk
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int Learning, Big Data Analytics Tools Network Analytics, Securing IoT, A E in OT Security, How IT and OT Secur Analysis Structures: OCTAVE and FA Operational Environment	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods. troduction to Data and Technology Brief History of C rity Practices and AIR, The Phased	ors, and Smart Objects, Se ons Criteria, IoT Access , The need for Optimization ication Protocols for IoT, ta Analytics for IoT, Ma , Edge Streaming Analyt T Security, Common Cha Systems Vary, Formal Ri Application of Security in	nsor 10 Hours on, 10 Hours The 10 Hours achine ics, illenges isk an
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int Learning, Big Data Analytics Tools Network Analytics, Securing IoT, A E in OT Security, How IT and OT Security Analysis Structures: OCTAVE and FA Operational Environment Module – 5	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods. troduction to Data and Technology Brief History of C rity Practices and AIR, The Phased	ors, and Smart Objects, Se ons Criteria, IoT Access , The need for Optimization ication Protocols for IoT, ta Analytics for IoT, Ma , Edge Streaming Analyt T Security, Common Cha Systems Vary, Formal Ri Application of Security in	nsor 10 Hours on, 10 Hours The 10 Hours achine ics, ullenges isk an
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int Learning, Big Data Analytics Tools Network Analytics, Securing IoT, A E in OT Security, How IT and OT Secur Analysis Structures: OCTAVE and FA Operational Environment Module – 5	Sensors, Actuat of ts, Communications siness Case for IP ompliances, Appl nsport Methods. troduction to Data and Technology Brief History of C rity Practices and AIR, The Phased	ors, and Smart Objects, Se ons Criteria, IoT Access 7, The need for Optimizative ication Protocols for IoT, ta Analytics for IoT, Ma , Edge Streaming Analyt 0T Security, Common Cha Systems Vary, Formal Ri Application of Security in	nsor 10 Hours on, 10 Hours The 10 Hours achine tics, allenges isk an 10 Hours
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int Learning, Big Data Analytics Tools Network Analytics, Securing IoT, A E in OT Security, How IT and OT Security Analysis Structures: OCTAVE and FA Operational Environment Module – 5 IoT Physical Devices and Endpoints - UNO. Installing the Software Fundan	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods. troduction to Data and Technology Brief History of C rity Practices and AIR, The Phased	ors, and Smart Objects, Se ons Criteria, IoT Access 7, The need for Optimization ication Protocols for IoT, ta Analytics for IoT, Ma , Edge Streaming Analyt 0T Security, Common Cha Systems Vary, Formal Ri Application of Security in Introduction to Arduino, A	nsor 10 Hours on, 10 Hours The 10 Hours achine tics, ullenges isk an 10 Hours 10 Hours 10 Hours
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int Learning, Big Data Analytics Tools Network Analytics, Securing IoT, A E in OT Security, How IT and OT Security Analysis Structures: OCTAVE and FA Operational Environment Module – 5 IoT Physical Devices and Endpoints - UNO, Installing the Software, Fundan Physical Devices and Endpoints - Ras	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods. troduction to Data and Technology Brief History of C rity Practices and AIR, The Phased AIR, The Phased	ors, and Smart Objects, Se ons Criteria, IoT Access 7, The need for Optimization ication Protocols for IoT, ta Analytics for IoT, Ma , Edge Streaming Analyt 7 Security, Common Cha Systems Vary, Formal Ri Application of Security in Introduction to Arduino, A o Programming. ction to RaspberryPi, Abo	nsor 10 Hours on, 10 Hours The 10 Hours achine cics, allenges isk an an Arduino IoT out the 10 Hours
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int Learning, Big Data Analytics Tools Network Analytics, Securing IoT, A E in OT Security, How IT and OT Security Analysis Structures: OCTAVE and FA Operational Environment Module – 5 IoT Physical Devices and Endpoints - UNO, Installing the Software, Fundan Physical Devices and Endpoints - Ras RaspberryPi Board: Hardware Layout	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods. troduction to Data and Technology Brief History of C rity Practices and AIR, The Phased AIR, The Phased	ors, and Smart Objects, Se ons Criteria, IoT Access 7, The need for Optimization ication Protocols for IoT, ta Analytics for IoT, Ma , Edge Streaming Analyto T Security, Common Cha Systems Vary, Formal Ri Application of Security in Introduction to Arduino, A o Programming. ction to RaspberryPi, Abo	nsor on, The achine ics, illenges isk an Arduino IoT put the iguring 10 Hours
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int Learning, Big Data Analytics Tools Network Analytics, Securing IoT, A E in OT Security, How IT and OT Security Analysis Structures: OCTAVE and FA Operational Environment Module – 5 IoT Physical Devices and Endpoints - UNO, Installing the Software, Fundan Physical Devices and Endpoints - Ras RaspberryPi Board: Hardware Layout RaspberryPi, Programming Raspberry	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods. troduction to Data and Technology Brief History of C rity Practices and AIR, The Phased AIR, The Phased AIR, The Phased AIR, The Phased	ors, and Smart Objects, Se ons Criteria, IoT Access 7, The need for Optimizativi ication Protocols for IoT, ta Analytics for IoT, Ma , Edge Streaming Analyt 0T Security, Common Cha Systems Vary, Formal Ri Application of Security in Introduction to Arduino, A o Programming. ction to RaspberryPi, Abo ems on RaspberryPi, Confi Wireless Temperature Mo	nsor 10 Hours on, 10 Hours The 10 Hours achine cics, allenges isk an an Arduino IoT put the iguring nitoring
Module – 2 Smart Objects: The "Things" in IoT, S Networks, Connecting Smart Object Technologies. Module – 3 IP as the IoT Network Layer, The Bus Optimizing IP for IoT, Profiles and Co Transport Layer, IoT Application Tran Module – 4 Data and Analytics for IoT, An Int Learning, Big Data Analytics Tools Network Analytics, Securing IoT, A E in OT Security, How IT and OT Security Analysis Structures: OCTAVE and FA Operational Environment Module – 5 IoT Physical Devices and Endpoints - UNO, Installing the Software, Fundan Physical Devices and Endpoints - Ras RaspberryPi Board: Hardware Layout RaspberryPi, Programming Raspberry System Using Pi, DS18B20 Temperat	Sensors, Actuat of ts, Communication siness Case for IP ompliances, Appl nsport Methods. troduction to Data and Technology Brief History of C rity Practices and AIR, The Phased AIR, The Phased AIR, The Phased AIR, The Phased Phased	ors, and Smart Objects, Se ons Criteria, IoT Access 7, The need for Optimization ication Protocols for IoT, ta Analytics for IoT, Ma , Edge Streaming Analyto T Security, Common Cha Systems Vary, Formal Ri Application of Security in Introduction to Arduino, A o Programming. ction to RaspberryPi, Abo oms on RaspberryPi, Confi Wireless Temperature Mo tecting Raspberry Pi via S	nsor 10 Hours on, 10 Hours The 10 Hours achine cics, an 10 Hours isk a an 10 Hours Arduino IoT out the iguring nitoring SH, Smort

Smart Cit	y Security Architecture, Smart City Use-Case Examples.	
Course O	Dutcomes: After studying this course, students will be able to	
• Ir m	nterpret the impact and challenges posed by IoT networks leading to new architect nodels.	ural
C to	Compare and contrast the deployment of smart objects and the technologies to componetwork.	nect them
• A • E	Appraise the role of IoT protocols for efficient network communication. Iaborate the need for Data Analytics and Security in IoT.	
• Il th	lustrate different sensor technologies for sensing real world entities and identify ne applications of IoT in Industry.	
Question	paper pattern:	
The quest	tion paper will have ten questions.	
There wil	l be 2 questions from each module.	
Each ques	stion will have questions covering all the topics under a module.	
The stude	ents will have to answer 5 full questions, selecting one full question from each mo	dule.
Text Boo	ks:	
1. D F	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry Sundamentals: Networking Technologies, Protocols, and Use Cases for the Int	y,''IoT ernet of
T 9'	'hings'' , 1 [°] Edition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 78-9386873743)	
2. Si	rinivasa K G, "Internet of Things", CENGAGE Leaning India, 2017	
Referenc	e Books:	
1. V	ijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands -on-	
А	pproach)", 1 st Edition, VPT, 2014. (ISBN: 978-8173719547)	
2. R	aj Kamal, "Internet of Things: Architecture and Design Princi ples" , 1 st Edition, AcGraw Hill Education, 2017. (ISBN: 978-9352605224)	

BIG	DATA ANA	LYTICS	
[As per Choice Base	d Credit Syst	em (CBCS) scheme]	
(Effective from the second sec	he academic y	year 2016 -2017)	
SEN	MESTER – V	III	
Subject Code	15CS82	IA Marks	20
Number of Lecture Hours/Week	4	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS –	04	
Course objectives: This course will e	nable students	s to	
Understand Hadoop Distribute	d File system	and examine MapReduce	Programming
Explore Hadoop tools and mar	nage Hadoop v	with Ambari	
• Appraise the role of Business i	intelligence an	d its applications across in	ndustries
Assess core data mining technic	iques for data	analytics	
Identify various Text Mining t	echniques	-	
Module – 1	-		Teaching Hours
Hadoop Distributed File System Ba	sics. Running	Example Programs and	10 Hours
Benchmarks, Hadoop MapReduce Fra	mework, Mar	Reduce Programming	
Module – 2	/ 1	0 0	
Essential Hadoop Tools, Hadoop YAI	RN Applicatio	ns. Managing Hadoop wit	h 10 Hours
Apache Ambari, Basic Hadoop Admin	nistration Proc	edures	
Module – 3			
Business Intelligence Concepts and	Application.	Data Warehousing, Data	10 Hours
Mining, Data Visualization	II ,	8,	
Module – 4			
Decision Trees, Regression, Artifici	al Neural Ne	tworks, Cluster Analysis	, 10 Hours
Association Rule Mining			
Module – 5			
Text Mining, Naïve-Bayes Analysis, S	Support Vecto	r Machines, Web Mining,	10 Hours
Social Network Analysis	111 11		
Course outcomes: The students shou	Id be able to:		
• Master the concepts of HDFS	and MapRedi	ice framework	
Investigate Hadoop related too Hadoop Administration	ols for Big Dat	a Analytics and perform b	basic
• Recognize the role of Business Intelligence, Data warehousing and Visualization in decision making			
• Infer the importance of core data mining techniques for data analytics			
Compare and contrast differen	t Text Mining	Techniques	
Question paper pattern:		1	
The question paper will have ten ques	tions.		
There will be 2 questions from each m	nodule.		
Each question will have questions covering all the topics under a module.			
The students will have to answer 5 full questions, selecting one full question			
from each module.			
Text Books: 1. Douglas Eadline, "Hadoop 2 Quick-Start Guide: Learn the Essentials of Big Data			
Computing in the Apache H 2016. ISBN-13: 978-93325703	Iadoop 2 Eco 351	system", 1 St Edition, Pea	rson Education,

2. Anil Maheshwari, "**Data Analytics**", 1 Edition, McGraw Hill Education, 2017. ISBN-13: 978-9352604180 **Reference Books:** 1) Tom White, "Hadoop: The Definitive Guide", 4 Edition, O'Reilly Media, 2) Boris Lublinsky, Kevin T.Smith, Alexey Yakubovich,"Professional Hadoop

st Solutions'', 1 Edition, Wrox Press, 2014ISBN-13: 978-8126551071
 3) Eric Sammer, "Hadoop Operations: A Guide for Developers and St Administrators'', 1 Edition, O'Reilly Media, 2012.ISBN-13: 978-9350239261

MANAGING BIG DATA				
[As per Cho	bice Based Credit System (CBCS) sc	heme]		
(Effective from the academic year 2016 -2017)				
SEMESTER - II				
Subject Code	16LNI422 / 16SCE21 / 16SCN24 /	IA Marks	20	
Number of Lecture Hours/Week	105C521 / 1051141 / 1053E422	Exom Morke	80	
Total Number of Lecture Hours	50		00	
Total Number of Lecture Hours		Exam Hours	05	
Course abjectives This source wi	CREDIIS – 04			
Course objectives: This course wi				
Define big data for business	ing for hig data analytica			
Analyze business case stud Explain managing of Pig.	les for orgunate analytics			
Explain managing of Big (Develop man reduce analy)	tics using Hadoon and related tools			
• Develop map-reduce analy	tics using Hadoop and related tools		Toophing	
Module -1			Hours	
UNDERSTANDING BIG DATA:	What is hig data _ why hig data _ Da	tal Data Storage	10Hours	
and Analysis Comparison with Ot	her Systems Rational Database Mana	gement System	10110015	
Grid Computing, Volunteer Comp	uting, convergence of key trends – un	structured data –		
industry examples of big data $- w$	eb analytics – big data and marketing	– fraud and big		
data – risk and big data – credit ris	k management – big data and algorith	nic trading – big		
data and healthcare – big data	in medicine – advertising and big	data – big data		
technologies – introduction to Had	oop - open source technologies - clou	ıd and big data –		
mobile business intelligence - C	Crowd sourcing analytics – inter an	d trans firewall		
analytics.				
Module -2				
NOSQL DATA MANAGEMENT	: Introduction to NoSQL – aggregat	e data models –	10 Hours	
aggregates – key-value and docur	nent data models – relationships – gr	aph databases –		
schema less databases – materializ	ed views – distribution models – shad	ing — version –		
map reduce – partitioning and com	bining – composing map-reduce calcul	lations.		
Module – 3		1.	10.11	
BASICS OF HADOOP: Data for	mat – analyzing data with Hadoop	- scaling out -	10 Hours	
Hadoop streaming – Hadoop pipes	- design of Hadoop distributed file s	ystem (HDFS) –		
HDFS concepts – Java Interface –	aata now – Hadoop I/O – data integrit	y – compression		
- senanzation - Avio - me-based (Module-4	lata structures.			
MAPPEDUCE APPLICATIONS	ManReduce workflows unit tests wi	th MPL Init test	10 Hours	
data and local tests – anatomy of	MapReduce job run – classic Map-re	duce - VARN -	10 Hours	
failures in classic Man-reduce an	d VARN - job scheduling - shuffle	and sort – task		
execution – MapReduce types – in	out formats – output formats	und sort tusk		
Module-5				
HADOOP RELATED TOOLS: H	pase – data model and implementation	s – Hbase clients	10 Hours	
– Hbase examples –praxis. Cassar	ndra – Cassandra data model – Cassa	ndra examples –	10 110015	
Cassandra clients –Hadoop integr	ation. Pig – Grunt – pig data mode	el – Pig Latin –		
developing and testing Pig Latin scripts. Hive – data types and file formats – HiveQL				
data definition - HiveQL data man	ipulation – HiveQL queries.	-		
Course outcomes:				
The students shall able to:				
• Describe big data and use cases from selected business domains				
• Explain NoSQL big data management				
• Install, configure, and run	Hadoop and HDFS			
• Perform map-reduce analy	tics using Hadoop			

• Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data Analytics

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 2. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.

- 1. Vignesh Prajapati, Big data analytics with R and Hadoop, SPD 2013.
- 2. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 3. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 4. Alan Gates, "Programming Pig", O'Reilley, 2011

from any of the leading reputed and refereed journals like:

- 1. IEEE Transactions, journals, magazines, etc.
- 2. ACM Transactions, journals, magazines, SIG series, etc.
- 3. Springer
- 4. Elsevier publications etc

In the area of (to name few and not limited to)

- Web Technology
- Cloud Computing
- Artificial Intelligent
- Networking
- Security
- Data mining

Course Outcomes

The students should be able to:

- Conduct survey on recent technologies
- Infer and interpret the information from the survey conducted
- Motivated towards research

Conduction:

The students have to present at least ONE technical seminar on the selected topic and submit a report for internal evaluation.

Marks Distribution: Literature Survey + Presentation (PPT) + Report + Question & Answer + Paper: 20 + 30 + 30 + 20 (100).

MACHINE LEARNING TECHNIQUES			
[As per Choice Based Credit System (CBCS) scheme]			
(Effective fr	om the academic year 2	016 -2017)	
	SEMESTER - IV		
Subject Code	16SCS41/16SIT424	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS – 04	-	
Course objectives: This course will ena	able students to		
• Explain basic concepts of learni	ng and decision trees.		
Compare and contrast neural neur	etworks and genetic algor	rithms	
• Apply the Bayesian techniques	and instant based learning	g	
Examine analytical learning and	l reinforced learning	-	
Module -1 Teach			Teaching
			Hours
INTRODUCTION, CONCEPT LEARNING AND DECISION TREES 10Hours			10Hours
Learning Problems – Designing Learning systems, Perspectives and Issues – Concept			cept
Learning - Version Spaces and Cand	idate Elimination Algor	ithm – Inductive bia	as –
Decision Tree learning – Representation	n – Algorithm – Heuristic	Space Search	
Module -2			
NEURAL NETWORKS AND G	ENETIC ALGORITH	MS: Neural Netw	vork 10 Hours
Representation – Problems – Perceptro	ns – Multilayer Networl	ks and Back Propaga	tion
Algorithms – Advanced Topics – Genetic Algorithms – Hypothesis Space Search –			
Genetic Programming – Models of Evol	ution and Learning.		
Module – 3			
BAYESIAN AND COMPUTATION	AL LEARNINGL Baye	es Theorem – Con	cept 10 Hours
Learning – Maximum Likelihood – M	Ainimum Description L	ength Principle – Ba	ayes

Ontimal Classifian Cibbs Algorithm Naïva Davas Classifian Davasian Daliaf	
Notwork EM Algorithm Drobably Learning Sample Complexity for Einite and	
Incluoir – EM Algorithmi – Probably Learning – Sample Complexity for Finite and	
mininte Hypothesis Spaces – Mistake Bound Model.	
Module-4	r
INSTANT BASED LEARNING AND LEARNING SET OF RULES: K- Nearest	10 Hours
Neighbor Learning – Locally Weighted Regression – Radial Basis Functions –Case-	
Based Reasoning – Sequential Covering Algorithms – Learning Rule Sets – Learning	
First Order Rules – Learning Sets of First Order Rules – Induction as Inverted Deduction	
– Inverting Resolution	
Module-5	
ANALYTICAL LEARNING AND REINFORCED LEARNING: Perfect Domain	10
Theories – Explanation Based Learning – Inductive-Analytical Approaches - FOCL	Hours
Algorithm – Reinforcement Learning – Task – Q-Learning – Temporal Difference	
Learning	
Course outcomes:	
On Completion of the course, the students will be able to	
• Choose the learning techniques with this basic knowledge.	
• Apply effectively neural networks and genetic algorithms for appropriate application	ons.
 Apply breed of freques and derive effectively learning rules 	
 Choose and differentiate reinforcement and analytical learning techniques 	
• Choose and differentiate reinforcement and anarytear learning teeningues	
Question paper pattern:	
The question paper will have ten questions.	
There will be 2 questions from each module.	
Each question will have questions covering all the topics under a module.	
The students will have to answer 5 full questions, selecting one full question from each mod	dule.
Text Books:	
1. Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (INDIAN EDITIO	DN), 2013.
Reference Books:	
1. Ethem Alpaydin, "Introduction to Machine Learning", 2 nd Ed., PHI Learning Pvt. I	.td., 2013.
2. T. Hastie, R. Tibshirani, J. H. Friedman, "The Elements of Statistical Learning", St	oringer; 1st
edition, 2001.	-

Computer Vision [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER - IV				
Subject Code	16SCS421	IA Marks	20	
Number of Lecture Hours/Week03Exam Marks80				
Total Number of Lecture Hours40Exam Hours03				
CREDITS – 03				
Course objectives: This course will enable students to				

- Review image processing techniques for computer vision
- Discuss shape and region analysis
- Analyze Hough Transform and its applications to detect lines, circles, ellipses
- Analyze three-dimensional image analysis techniques
- Illustrate motion analysis
- Discuss some applications of computer vision algorithms

	ANALOG ELECTRONICS			
[As per Choice Based Credit System (CBCS) scheme]				
Subject Code	15EC32	IA Marks	20	
Number of	04	Exam Marks	80	
Lecture		Linum murite		
Hours/Week				
Total Number of	50 (10 Hours per Module)	Exam Hours	03	
Lecture Hours				
	CREDITS – 04			
Course objectives	This course will enable students to:			
Explain various	BJT parameters, connections and configur	ations.		
Explain BJT Am	plifier, Hybrid Equivalent and Hybrid Mode	els.		
Explain constru	ction and characteristics of JFETs and MOS	SFETs.		
Explain various	types of FET biasing, and demonstrate the	use of FET a	mplifiers.	
Construct frequ	ency response of BJT and FET amplifiers at	various freq	uencies.	
Analyze Power a	mplifier circuits in different modes of opera	tion.		
Construct Feed	back and Oscillator circuits using FET.			
	Modules		RBT Level	
Module -1				
BJT AC Analysis: BJT Transistor Modeling, The re transistor model, Common emitter fixed bias, Voltage divider bias, Emitter follower configuration. Darlington connection-DC bias; The Hybrid equivalent model, Approximate Hybrid Equivalent Circuit- Fixed bias, Voltage divider, Emitter follower configuration; Complete Hybrid equivalent model, Hybrid π Model.				
Module -2				
Field Effect Tran Transfer Character MOSFET. FET Amplifiers: J bias configuration configuration. Sour	sistors: Construction and Characteristics ristics, Depletion type MOSFET, Enhance FET small signal model, Fixed bias configu- n, Voltage divider configuration, Com- rce-Follower Configuration, Cascade configu-	of JFETs, 1 ement type ration, Self mon Gate aration.	L1, L2, L3	
Module -3				
BJT and JFET frequency response FET Amplifier, Mill Amplifier, High free Effects. Module -4	Frequency Response: Logarithms, Dec e – BJT Amplifier with RL, Low frequency er effect capacitance, High frequency respo quency response-FET Amplifier, Multistage	ibels, Low y response- onse – BJT Frequency	L1, L2, L3	

Feedback and Oscillator Circuits: Feedback concepts, Feedback connection types, Practical feedback circuits, Oscillator operation, FET Phase shift oscillator, Wien bridge oscillator, Tuned Oscillator circuit, Crystal oscillator, UJT construction, UJT Oscillator.	L1,L2, L3
Module -5	
Power Amplifiers: Definition and amplifier types, Series fed class A	
amplifier, Transformer coupled class A amplifier, Class B amplifier	L1, L2, L3
operation and circuits, Amplifier distortion, Class C and Class D	
amplifiers. Voltage Regulators: Discrete transistor voltage regulation -	
Series and Shunt Voltage regulators.	
Course Outcomers After studying this course, students will be able to:	

Course Outcomes: After studying this course, students will be able to:

- Describe the working principle and characteristics of BJT, FET, Single stage, cascaded and feedback amplifiers.
- Describe the Phase shift, Wien bridge, tuned and crystal oscillators using BJT/FET/UJT.
- Calculate the AC gain and impedance for BJT using re and h parameters models for CE and CC configuration.
- Determine the performance characteristics and parameters of BJT and FET amplifier using small signal model.
- Determine the parameters which affect the low frequency and high frequency responses of BJT and FET amplifiers and draw the characteristics.
- Evaluate the efficiency of Class A and Class B power amplifiers and voltage regulators.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit theory", Pearson, 10th/11th Edition, 2012, ISBN:978-81-317-6459-6.

- 1. Adel S. Sedra and Kenneth C. Smith, "Micro Electronic Circuits Theory and Application", 5th Edition ISBN:0198062257
- 2. Fundamentals of Microelectronics, Behzad Razavi, John Weily ISBN 2013 978-81-265-2307-8
- 3. J.Millman & C.C.Halkias–Integrated Electronics, 2nd edition, 2010, TMH. ISBN 0-07-462245-5
- **4.** K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN:9788120351424.

DIGITAL ELECTRONICS			
[As	per Choice Based Credit Sy SEMESTER – III	(EC/TC)	
Subject Code	15EC33	IA Marks	20
Number of	04	Exam Marks	80
Lecture			
Hours/Week	50 (10 Hours per Medule)	Exam Hours	02
Lecture Hours	SO (10 Hours per Module)	Exam Hours	03
	CREDITS –	04	
Course objectives	: This course will enable stud	ents to:	
Illustrate simpli McClusky Techn	fication of Algebraic equation niques.	s using Karnaugh Maps ar	nd Quine-
Design combina	tional logic circuits.		
• Design Decoder Comparators.	s, Encoders, Digital Multiplex	er, Adders, Subtractors an	ld Binary
Describe Latche Analyza Maaly a	s and Flip-flops, Registers an	d Counters.	
 Analyze Mealy a Develop state di 	agrams Synchronous Sequen	tial Circuits.	
Modules			RBT Level
Module – 1			
Principles of con canonical forms, (Karnaugh maps-3 care terms) Sim minimization tech Reduced prime imp	mbination logic : Definition Generation of switching equa 4,5 variables, Incompletely plifying Max term equa mique, Quine-McCluskey u plicants Tables.(Text 1, Chapt	of combinational logic, ations from truth tables, specified functions (Don't tions, Quine-McCluskey using don't care terms, er 3)	L1, L2, L3
Module -2			
Analysis and des combinational logi multiplexers, Usin and subtractors, comparators.(Text	sign of combinational log c design, Decoders, BCD de ng multiplexers as Boolean fu Cascading full adders, Lo 1, Chapter 4)	c: General approach to coders, Encoders, digital nction generators, Adders ok ahead carry, Binary	L1, L2, L3
Module -3			
Flip-Flops: Basic I master-slave flip-f flops, Edge triggere 6)	Bistable elements, Latches, T lops (pulse-triggered flip-flop ed flip-flops, Characteristic ed	iming considerations, The os): SR flip-flops,JK flip- quations. (Text 2, Chapter	L1,L2
Module -4			
Simple Flip-Flops synchronous binar of a synchronous using clocked T, J	Applications: Registers, y counters, Counters based counters, Design of a sync K, D and SR flip-flops. (Text	binary ripple counters, on shift registers, Design chronous mod-n counter 2, Chapter 6)	L1,L2, L3

Module -5

Sequential Circuit Design: Mealy and Moore models, State machine	L1, L2, L3
notation, Synchronous Sequential circuit analysis, Construction of state	
diagrams, counter design. (Text 1, Chapter 6)	

Course Outcomes: After studying this course, students will be able to:

- Develop simplified switching equation using Karnaugh Maps and Quine-McClusky techniques.
- Explain the operation of decoders, encoders, multiplexers, demultiplexers, adders, subtractors and comparators.
- Explain the working of Latches and Flip Flops (SR,D,T and JK).
- Design Synchronous/Asynchronous Counters and Shift registers using Flip Flops.
- Develop Mealy/Moore Models and state diagrams for the given clocked sequential circuits.
- Apply the knowledge gained in the design of Counters and Registers.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Digital Logic Applications and Design, John M Yarbrough, Thomson Learning, 2001. ISBN 981-240-062-1.
- **2.** Donald D. Givone, "Digital Principles and Design", McGraw Hill, 2002. ISBN 978-0-07-052906-9.

- 1. D. P. Kothari and J. S Dhillon, "Digital Circuits and Design", Pearson, 2016, ISBN:9789332543539.
- 2. Morris Mano, "Digital Design", Prentice Hall of India, Third Edition.
- 3. Charles H Roth, Jr., "Fundamentals of logic design", Cengage Learning.
- 4. K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN: 9788120351424.

MICROPROCESSORS			
[As per Choice Based Credit System (CBCS) scheme]			
Subject Code	SEMESTER – IV (EC/TC)	IA Marks	20
Number of Lecture	04	Exam Marks	80
Hours/Week		Lixani marks	
Total Number of	50 (10 Hours per Module)	Exam Hours	03
Lecture Hours			
	CREDITS – 04		
Course objectives:	This course will enable students to:		
• Familiarize basic	architecture of 8086 microprocessor	•	
Program 8086 Mi	icroprocessor using Assembly Level I	Language	
• Use Macros and	Procedures in 8086 Programs		
Understand inter	tacing of 16 bit microprocessor with	memory and per	ripheral chips
Involving system	design	on and other CT	T T
• Understand the a	architecture of 8088, 8087 Coprocess	sor and other Cr	0
architectures			
Modules			RBT Level
Module -1			
8086 PROCESSOR: Historical background (refer Reference Book 1), 8086 CPU Architecture (1.1 – 1.3 of Text).			
Addressing modes, Machine language instruction formats, Machine coding the program (2.2, 2.1, 3.2 of Text).			L1, L2, L3
INSTRUCTION SET OF 8086: Data transfer and arithmetic instructions. Control/Branch Instructions, Illustration of these instructions with example programs (2.3 of Text).			
Module -2			
Logical Instruction manipulation and linstructions with Operators, Assemb (2.3, 2.4, 3.4 of Tex	ons, String manipulation instr Processor control instructions, Illust example programs. Assembler I ly Language Programming and exa t).	uctions, Flag rration of these Directives and mple programs	L1, L2, L3
Module -3			
Stack and Interrupts:L1,Introduction to stack, Stack structure of 8086, Programming for Stack.Interrupts and Interrupt Service routines, Interrupt cycle of 8086, NMI, INTR, Interrupt programming, Passing parameters to procedures, Macros, Timing and Delays. (Chap. 4 of Text).L1,			L1, L2, L3
Module -4			

8 P a s d f F R N 7	3086 Bus Configuration and Timings: Physical memory Organization, General Bus operation cycle, I/O ddressing capability, Special processor activities, Minimum mode 8086 ystem and Timing diagrams, Maximum Mode 8086 system and Timing iagrams. (1.4 to 1.9 of Text). Basic Peripherals and their Interfacing with 8086 (Part 1) : Static RAM Interfacing with 8086 (5.1.1), Interfacing I/O ports, PIO 8255, Modes of operation – Mode-0 and BSR Mode, Interfacing Keyboard and Segment digits using 8255 (Refer 5.3, 5.4, 5.5 of Text).	L1, L2, L3
N	Iodule 5	
E It (; p	Basic Peripherals and their Interfacing with 8086 (Part 2): nterfacing ADC-0808/0809, DAC-0800, Stepper Motor using 8255 5.6.1, 5.7.2, 5.8). Timer 8254 – Mode 0, 1, 2 & 3 and Interfacing programmes for these modes (refer 6.1 of Text).	L1, L2, L3
I (1	NT 21H DOS Function calls - for handling Keyboard and Display refer Appendix-B of Text).	
с Т	Other Architectures: Architecture of 8088 (refer 1.10 upto 1.10.1 of ext) and Architecture of NDP 8087 (refer 8.3.1, 8.3.5 of Text).	
V a	on-Neumann & Harvard CPU architecture and CISC & RISC CPU rchitecture (refer Reference Book 1).	
С	ourse Outcomes: At the end of the course students will be able to:	
•	Explain the History of evaluation of Microprocessors, Architecture and set of 8086, 8088, 8087, CISC & RISC, Von-Neumann & Harvard CPU Architecture, Configuration & Timing diagrams of 8086 and Instruction 8086.	instruction n set of
•	Write8086 Assembly level programs using the 8086 instruction set	
•	Write modular programs using procedures and macros.	
•	Write 8086 Stack and Interrupts programming	
•	Interface 8086 to Static memory chips and 8255, 8254, 0808 ADC, 08 Keyboard, Display and Stepper motors.	00 DAC,
•	Use INT 21 DOS interrupt function calls to handle Keyboard and Displ	lay.
Q	 uestion paper pattern: The question paper will have ten questions. Each full Question consisting of 16 marks There will be 2 full questions (with a maximum of Three sub question each module. Each full question will have sub questions covering all the topics und module. The students will have to answer 5 full questions, selecting one full q from each module. 	ns) from ler a juestion
		32

Text Book:

Advanced Microprocessors and Peripherals - A.K. Ray and K.M. Bhurchandi, TMH, 3rd Edition, 2012, ISBN 978-1-25-900613-5.

- 1. **Microprocessor and Interfacing** Douglas V Hall, SSSP Rao, 3rd edition TMH, 2012.
- 2. Microcomputer systems-The 8086 / 8088 Family Y.C. Liu and A. Gibson, 2nd edition, PHI -2003.
- 3. **The 8086 Microprocessor: Programming & Interfacing the PC** Kenneth J Ayala, CENGAGE Learning, 2011.
- 4. The Intel Microprocessor, Architecture, Programming and Interfacing Barry B. Brey, 6e, Pearson Education / PHI, 2003.

DIGITAL SIGNAL PROCESSING

B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]			
Subject Code	15EC52	IA Marks	20
Number of Lecture	04	Exam Marks	80
Hours/Week			
Total Number of	50 (10 Hours / Module)	Exam Hours	03
Lecture Hours			
CREDITS – 04			
Course objectives: This course will enable students to			

- Understand the frequency domain sampling and reconstruction of discrete time signals.
- Study the properties and the development of efficient algorithms for the computation of DFT.
- Realization of FIR and IIR filters in different structural forms.
- Learn the procedures to design of IIR filters from the analog filters using impulse invariance and bilinear transformation.
- Study the different windows used in the design of FIR filters and design appropriate filters based on the specifications.

Modules	
Module-1	RBT
	Level
Discrete Fourier Transforms (DFT): Frequency domain sampling and	LI, L2
reconstruction of discrete time signals. DFT as a linear transformation, its	
relationship with other transforms. Properties of DFT, multiplication of two	
DFTs- the circular convolution.	
Module-2	
Additional DFT properties, use of DFT in linear filtering, overlap-save and	L1, L2,
overlap-add method. Fast-Fourier-Transform (FFT) algorithms: Direct	L3
computation of DFT, need for efficient computation of the DFT (FFT	
algorithms).	
Module-3	
Radix-2 FFT algorithm for the computation of DFT and IDFT-decimation-in-time	L1, L2,
and decimation-in-frequency algorithms. Goertzel algorithm, and chirp-z	L3
transform.	
Module-4	
Structure for IIR Systems: Direct form, Cascade form, Parallel form structures.	L1, L2,
IIR filter design: Characteristics of commonly used analog filter – Butterworth	L3
and Chebyshev filters, analog to analog frequency transformations.	
Design of IIR Filters from analog filter using Butterworth filter: Impulse	
invariance, Bilinear transformation.	
Module-5	
Structure for FIR Systems: Direct form, Linear Phase, Frequency sampling	L1, L2,

structure, Lattice structure. L3 FIR filter design: Introduction to FIR filters, design of FIR filters using -Rectangular, Hamming, Hanning and Bartlett windows. **Course Outcomes:** After studying this course, students will be able to: • Determine response of LTI systems using time domain and DFT techniques. • Compute DFT of real and complex discrete time signals. • Computation of DFT using FFT algorithms and linear filtering approach. • Solve problems on digital filter design and realize using digital computations. **Question paper pattern:** • The question paper will have ten questions • Each full question consists of 16 marks. • There will be 2 full questions (with a maximum of three sub questions) from each module. • Each full question will have sub questions covering all the topics under a module The students will have to answer 5 full questions, selecting one full question from each module. **Text Book: Digital signal processing - Principles Algorithms & Applications**, Proakis & Monalakis, Pearson education, 4th Edition, New Delhi, 2007. **Reference Books:** 1. Discrete Time Signal Processing, Oppenheim & Schaffer, PHI, 2003. 2. Digital Signal Processing, S. K. Mitra, Tata Mc-Graw Hill, 3rd Edition, 2010.

3. Digital Signal Processing, Lee Tan: Elsevier publications, 2007.

<u>Verilog HDL</u> B.E., V Semester, Electronics & Communication Engineering/ Telecommunication Engineering

Subject Code15EC53IA Marks20Number of Lecture04Exam Marks80Hours/WeekTotal Number of Lecture Hours50 (10 Hours / Module)Exam Hours03CREDITS - 04
Number of Lecture Hours/Week04Exam Marks80Total Number of Lecture Hours50 (10 Hours / Module)Exam Hours03CREDITS – 04
Hours/Week Exam Hours Total Number of Lecture Hours 50 (10 Hours / Module) Exam Hours 03 CREDITS - 04
Total Number of Lecture Hours 50 (10 Hours / Module) Exam Hours 03 CREDITS – 04
Lecture Hours CREDITS – 04
CREDITS – 04
Course abientimes. This course will exclude the deute to
COURSE ODJECTIVES: This course will enable students to:
• Differentiate between Verilog and VHDL descriptions.
• Learn different Verilog HDL and VHDL constructs
Familiarize the different levels of abstraction in Verilog
 Understand Verilag Tasks and Directives
 Understand timing and dalay Simulation
• Understand unning and delay Simulation.
• Learn vHDL at design levels of data now, benavioral and structural for effectiv
modeling of digital circuits.
Module-1
Overview of Digital Design with Verilog HDL
Evolution of CAD, emergence of HDLs, typical HDL-flow, why Verilog
HDL?, trends in HDLs. (Text1)
Hierarchical Modeling Concepts
Top-down and bottom-up design methodology, differences between
modules and module instances, parts of a simulation, design block,
stimulus block. (Text1)
Module-2
Basic Concepts
Lexical conventions, data types, system tasks, compiler directives. (Text1) L3
Modules and Ports
Module definition, port declaration, connecting ports, hierarchical name
referencing. (Text1)
Module-3
Gate-Level Modeling L1, L2
Modeling using basic Verilog gate primitives, description of and/or and L3
buf/not type gates, rise, fall and turn-off delays, min, max, and typical
delays. (Text1)
Dataflow Modeling
Continuous assignments delay specification expressions operators
operands operator types (Text1)
operation types. (restri)
Module-4
Rehavioral Modeling
Structured procedures initial and always blocking and non-blocking L3

statements, delay control, generate statement, event control, conditional	
statements, Multiway branching, loops, sequential and parallel blocks.	
(Text1)	
Module-5	
Introduction to VHDL	L1, L2,
Introduction: Why use VHDL?, Shortcomings, Using VHDL for Design	L3
Synthesis, Design tool flow, Font conventions.	
Entities and Architectures: Introduction, A simple design, Design	
entities, Identifiers, Data objects, Data types, and Attributes. (Text 2)	
Course Outcomes: At the end of this course, students should be able to	
• Write Verilog programs in gate, dataflow (RTL), behavioral and switch	modeling
levels of Abstraction.	0
• Write simple programs in VHDL in different styles.	
• Design and verify the functionality of digital circuit/system using test	benches.
 Identify the suitable Abstraction level for a particular digital design 	Someries.
 Write the programs more effectively using Verilog tasks and directives. 	
 Perform timing and delay Simulation 	•
• Tertorni tinning and delay binitilation.	
Question naner nattern:	
• The question paper will have ten questions	
• The question paper will have ten questions	
• Each full question consists of 16 marks.	
• There will be 2 full questions (with a maximum of three sub questions)	from
each module.	
• Each full question will have sub questions covering all the topics under	ra
module	
• The students will have to answer 5 full questions, selecting one fu from each module	ll question
Text Books:	
1. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and S Pearson Education, Second Edition.	ynthesis",
2. Kevin Skahill, "VHDL for Programmable Logic", PHI/Pearson education,	, 2006.
Reference Books:	
1. Donald E. Thomas, Philip R. Moorby, "The Verilog Hardware I Language", Springer Science+Business Media, LLC, Fifth edition.	Description
2. Michael D. Ciletti, "Advanced Digital Design with the Verilog HDI (Prentice Hall), Second edition.	." Pearson
3. Padmanabhan, Tripura Sundari, "Design through Verilog HDL", Wiley earlier.	y, 2016 or

INFORMATION THEORY AND CODING

B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC54	IA Marks	20
Number of Lecture	04	Exam Marks	80
Hours/Week			
Total Number of	50 (10 Hours / Module)	Exam Hours	03
Lecture Hours			
CREDITS – 04			

Course Objectives: This course will enable students to:

- Understand the concept of Entropy, Rate of information and order of the source with reference to dependent and independent source.
- Study various source encoding algorithms.
- Model discrete & continuous communication channels.
- Study various error control coding algorithms.

Modules		
Module-1	RBT	
	Level	
Information Theory: Introduction, Measure of information, Information	L1, L2,	
content of message, Average Information content of symbols in Long	L3	
Independent sequences, Average Information content of symbols in Long		
dependent sequences, Markov Statistical Model of Information Sources,		
Entropy and Information rate of Markoff Sources (Section 4.1, 4.2 of Text		
1).		
Module-2		
Source Coding: Source coding theorem, Prefix Codes, Kraft McMillan	L1, L2,	
Inequality property – KMI (Section 2.2 of Text 2).	L3	
Encoding of the Source Output, Shannon's Encoding Algorithm (Sections		
4.3, 4.3.1 of Text 1).		
Shannon Fano Encoding Algorithm, Huffman codes, Extended Huffman		
coding, Arithmetic Coding, Lempel – Ziv Algorithm (Sections 3.6, 3.7, 3.8,		
3.10 of Text 3).		
Module-3		
Information Channels: Communication Channels (Section 4.4 of Text 1).	L1, L2,	
Channel Models, Channel Matrix, Joint probabilty Matrix, Binary	L3	
Symmetric Channel, System Entropies, Mutual Information, Channel		
Capacity, Channel Capacity of : Binary Symmetric Channel, Binary		
Erasure Channel, Muroga, S Theorem, Contineuos Channels (Sections 4.2,		
4.3, 4.4, 4.6, 4.7 of Text 3).		
Module-4		

Error Control Coding:	L1, L2,
Introduction, Examples of Error control coding, methods of Controlling	L3
Errors, Types of Errors, types of Codes, Linear Block Codes: matrix	
description of Linear Block Codes, Error Detection and Error Correction	
Capabilities of Linear Block Codes, Single Error Correcting hamming	
Codes, Table lookup Decoding using Standard Array.	
Binary Cyclic Codes: Algebraic Structure of Cyclic Codes, Encoding using	
an (n-k) Bit Shift register, Syndrome Calculation, Error Detection and	
Correction	
(Sections 9.1, 9.2, 9.3, 9.3.1, 9.3.2, 9.3.3 of Text 1).	
Module-5	
Some Important Cyclic Codes: Golay Codes, BCH Codes(Section 8.4 -	L1, L2,
Article 5 of Text 2).	L3
Convolution Codes : Convolution Encoder, Time domain approach,	
Transform domain approach, Code Tree, Trellis and State Diagram, The	
Viterbi Algorithm) (Section 8.5 – Articles 1,2 and 3, 8.6- Article 1 of Text 2).	
Course Outcomes: At the end of the course the students will be able to:	
- European of Dependent & Independent Source, measure of i	nformation
• Explain concept of Dependent & Independent Source, measure of a	mormation,
Depresent the information using Channen Encoding, Channen Eaco	Drofin and
• Represent the information using Shannon Encouning, Shannon Fano Huffman Encoding Algorithms	, FICHX and
Model the continuous and discrete communication channels using in	ant antant
• Model the continuous and discrete communication channels using in	քաւ, ծաւքաւ
	· •
• Determine a codeword comprising of the check bits computed u	sing Linear
Block codes, cyclic codes & convolutional codes	
• Design the encoding and decoding circuits for Linear Block codes, cyc	clic codes,
convolutional codes, BCH and Golay codes.	
Question paper pattern:	
• The question paper will have ten questions	
• Fach full question consists of 16 marks	
There will be 0 fell exceptions (with a maximum of three sub-maximum	fue and
• There will be 2 full questions (with a maximum of three sub questions each module.) from
• Each full question will have sub questions covering all the topics under	era
module	
• The students will have to answer 5 full questions, selecting one fu	all question
from each module	1
Text Books:	
1. Digital and analog communication systems, K. Sam Shanmugam, John	Wiley
India Pvt. Ltd. 1996.	5
2 Digital communication Simon Havkin John Wiley India Pyt 1 td 2008	
2. English communication, Simon Haykin, Sonn whey mula i vi. Eta, 2000	1. a. W/:1.a.a.
5. Information Theory and County, Mutanunar Kuikarin, K.S. Shivaprakas	sna, wney
India Pvt. Ltd, 2015, ISBN:978-81-265-5305-1.	
Reference Books:	
1. ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007	
2. Principles of digital communication, J. Das, S. K. Mullick, P. K. Chatt	erjee,
Wiley, 1986 - Technology & Engineering	

- 3. Digital Communications Fundamentals and Applications, Bernard Sklar, Second Edition, Pearson Education, 2016, ISBN: 9780134724058.
- 4. Information Theory and Coding, K.N.Haribhat, D.Ganesh Rao, Cengage Learning, 2017.

DSP Lab B.E., V Semester, EC/TC [As per Choice Based Credit System (CBCS) scheme]

[AS	s per choice based credit system (C		1
Subject Code	15ECL57	IA Marks	20
Number of Lecture Hours/Week	01Hr Tutorial (Instructions) + 02 Hours Laboratory=03	Exam Marks	80
RBT Levels	L1, L2, L3	Exam Hours	03
	CREDITS – 02	I	
Course objectives:	This course will enable students to		
• Simulate discre	ete time signals and verification of sa	ampling theorem.	
• Compute the D MATLAB.	OFT for a discrete signal and verificat	ion of its properties	using
• Find solution t	o the difference equations and comp	utation of convoluti	on and
Compute and a	lisplay the filtering operations and c	۰ ompare with the the	oretical
values.	alophay the intering operations and e	ompare with the th	oretical
• Implement the	DSP computations on DSP hardwar	e and verify the rest	alt.
	Laboratory Experiments	•	
 Linear and distributive Auto and cr Solving a gi Computation phase spect (i) Verification (ii) DFT com Design and different with Design and Following Experi Linear com Circular con N-point DF 	circular convolution of two given seq and associative property of convolut oss correlation of two sequences and ven difference equation. In of N point DFT of a given sequence trum (using DFT equation and verify on of DFT properties (like Linearity a nputation of square pulse and Sinc ff implementation of FIR filter to meet ndow techniques). implementation of IIR filter to meet ments to be done using DSP kit volution of two sequences onvolution of two sequences T of a given sequence	juences, Commutati tion. 1 verification of their e and to plot magnit it by built-in routin and Parseval's theore unction etc. given specifications.	ve, r propertie cude and le). em, etc.) (using
12. Impuise re 13. Implement	ation of FIR filter	ory course, the stud	lents will b
able to: • Understa frequence	and the concepts of analog to digital by domain sampling of signals.	conversion of signal	ls and

- Modelling of discrete time signals and systems and verification of its properties and results.
- Implementation of discrete computations using DSP processor and verify the results.
- Realize the digital filters using a simulation tool and a DSP processor and verify the frequency and phase response.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- **3.**Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

HDL Lab B.E., V Semester, EC/TC [As per Choice Based Credit System (CBCS) scheme]

[no per enerce Basea ereant System (ebes) seneme]			
Subject Code	15ECL58	IA Marks	20
Number of Lecture Hours/Week	01 Hr Tutorial (Instructions) + 02 Hours Laboratory = 03	Exam Marks	80
RBT Levels	L1, L2, L3	Exam Hours	03

CREDITS - 02

Course objectives: This course will enable students to:

- Familiarize with the CAD tool to write HDL programs.
- Understand simulation and synthesis of digital design.
- Program FPGAs/CPLDs to synthesise the digital designs.
- Interface hardware to programmable ICs through I/O ports.
- Choose either Verilog or VHDL for a given Abstraction level.

Note: Programming can be done using any compiler. Download the programs on a FPGA/CPLD boards such as Apex/Acex/Max/Spartan/Sinfi or equivalent and performance testing may be done using 32 channel pattern generator and logic analyzer apart from verification by simulation with tools such as Altera/Modelsim or equivalent.

Laboratory Experiments

Part-A: PROGRAMMING

- 1. Write Verilog code to realize all the logic gates
- 2. Write a Verilog program for the following combinational designs
 - a. 2 to 4 decoder
 - b. 8 to 3 (encoder without priority & with priority)
 - c. 8 to 1 multiplexer.
 - d. 4 bit binary to gray converter
 - e. Multiplexer, de-multiplexer, comparator.
- 3. Write a VHDL and Verilog code to describe the functions of a Full Adder using three modeling styles.
- 4. Write a Verilog code to model 32 bit ALU using the schematic diagram shown below

- ALU should use combinational logic to calculate an output based on the four bit op-code input.
- ALU should pass the result to the out bus when enable line in high, and tristate the out bus when the enable line is low.

• ALU should decode the 4 bit op-code according to the example given below.

OPCODE	ALU Operation
1.	A+B
2.	A-B
3.	A Complement
4.	A*B
5.	A AND B
6.	A OR B
7.	A NAND B
8.	A XOR B

- 5. Develop the Verilog code for the following flip-flops, SR, D, JK and T.
- 6. Design a 4 bit binary, BCD counters (Synchronous reset and Asynchronous reset) and "any sequence" counters, using Verilog code.

Part-B: INTERFACING (at least four of the following must be covered using VHDL/Verilog)

- 1. Write HDL code to display messages on an alpha numeric LCD display.
- **2.** Write HDL code to interface Hex key pad and display the key code on seven segment display.
- **3.** Write HDL code to control speed, direction of DC and Stepper motor.
- **4.** Write HDL code to accept Analog signal, Temperature sensor and display the data on LCD or Seven segment display.
- 5. Write HDL code to generate different waveforms (Sine, Square, Triangle, Ramp etc.,) using DAC change the frequency.
- 6. Write HDL code to simulate Elevator operation.

Course Outcomes: At the end of this course, students should be able to:

- Write the Verilog/VHDL programs to simulate Combinational circuits in Dataflow, Behavioral and Gate level Abstractions.
- Describe sequential circuits like flip flops and counters in Behavioral description and obtain simulation waveforms.
- Synthesize Combinational and Sequential circuits on programmable ICs and test the hardware.
- Interface the hardware to the programmable chips and obtain the required output.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 3. Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

B.E E&C SIXTH SEMESTER SYLLABUS

DIGITAL COMMUNICATION

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC61	IA Marks	20
Number of Lecture	04	Exam Marks	80
Hours/Week			
Total Number of	50 (10 Hours/Module)	Exam Hours	03
Lecture Hours			
CREDITS – 04			

Course Objectives: The objectives of the course is to enable students to:

- Understand the mathematical representation of signal, symbol, noise and channels.
- Apply the concept of signal conversion to symbols and signal processing to symbols in transmitter and receiver functional blocks.
- Compute performance issues and parameters for symbol processing and recovery in ideal and corrupted channel conditions.
- Compute performance parameters and mitigate for these parameters in corrupted and distorted channel conditions.

Module-1	RBT
	Level
Bandpass Signal to Equivalent Lowpass : Hilbert Transform, Pre- envelopes, Complex envelopes, Canonical representation of bandpass signals, Complex low pass representation of bandpass systems, Complex representation of band pass signals and systems (Text 1: 2.8, 2.9, 2.10, 2.11, 2.12, 2.13).	L1, L2, L3
Line codes: Unipolar, Polar, Bipolar (AMI) and Manchester code and their power spectral densities (Text 1: Ch 6.10).	
Overview of HDB3, B3ZS, B6ZS (Ref. 1: 7.2)	
Module-2	
Signaling over AWGN Channels- Introduction, Geometric representation of	L1, L2,
signals, Gram-Schmidt Orthogonalization procedure, Conversion of the continuous AWGN channel into a vector channel, Optimum receivers using coherent detection: ML Decoding, Correlation receiver, matched filter receiver (Text 1: 7.1, 7.2, 7.3, 7.4).	
Module-3	
Digital Modulation Techniques : Phase shift Keying techniques using coherent detection: generation, detection and error probabilities of BPSK and QPSK, M–ary PSK, M–ary QAM (Relevant topics in Text 1 of 7.6, 7.7). Frequency shift keying techniques using Coherent detection: BFSK	

generation, detection and error probability (Relevant topics in Text 1 of 7.8).

Non coherent orthogonal modulation techniques: BFSK, DPSK Symbol representation, Block diagrams treatment of Transmitter and Receiver, Probability of error (without derivation of probability of error equation) (Text 1: 7.11, 7.12. 7.13).

Module-4Communication through Band Limited Channels: Digital TransmissionL1, L2,through Band limited channels: Digital PAM Transmission through BandL3limited Channels, Signal design for Band limited Channels: Design of bandL3limited signals for zero ISI-The Nyquist Criterion (statement only), Design ofL3band limited signals with controlled ISI-Partial Response signals,Probability of error for detection of Digital PAM: Probability of error fordetection of Digital PAM with Zero ISI, Symbol-by-Symbol detection of datawith controlled ISI (Text 2: 9.1, 9.2, 9.3.1, 9.3.2).

Channel Equalization: Linear Equalizers (ZFE, MMSE), Adaptive Equalizers (Text 2: 9.4.2).

Module-5

Principles of Spread Spectrum: Spread Spectrum Communication	L1, L2,
Systems: Model of a Spread Spectrum Digital Communication System,	L3
Direct Sequence Spread Spectrum Systems, Effect of De-spreading on a	
narrowband Interference, Probability of error (statement only), Some	
applications of DS Spread Spectrum Signals, Generation of PN Sequences,	
Frequency Hopped Spread Spectrum, CDMA based on IS-95 (Text 2: 11.3.1,	
11.3.2, 11.3.3, 11.3.4, 11.3.5, 11.4.2).	

Course Outcomes: At the end of the course, the students will be able to:

- Associate and apply the concepts of Bandpass sampling to well specified signals and channels.
- Analyze and compute performance parameters and transfer rates for low pas and bandpass symbol under ideal and corrupted non band limited channels.
- Test and validate symbol processing and performance parameters at the receiver under ideal and corrupted bandlimited channels.
- Demonstrate by simulation and emulation that bandpass signals subjected to corrupted and distorted symbols in a bandlimited channel, can be demodulated and estimated at receiver to meet specified performance criteria.

Question paper pattern:

- The question paper will have ten questions
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Books:

- 1. Simon Haykin, "Digital Communication Systems", John Wiley & sons, First Edition, 2014, ISBN 978-0-471-64735-5.
- 2. John G Proakis and Masoud Salehi, "Fundamentals of Communication Systems", 2014 Edition, Pearson Education, ISBN 978-8-131-70573-5.

- 1. B.P.Lathi and Zhi Ding, "Modern Digital and Analog communication Systems", Oxford University Press, 4th Edition, 2010, ISBN: 978-0-198-07380-2.
- 2. Ian A Glover and Peter M Grant, "Digital Communications", Pearson Education, Third Edition, 2010, ISBN 978-0-273-71830-7.
- 3. John G Proakis and Masoud Salehi, "Communication Systems Engineering", 2nd Edition, Pearson Education, ISBN 978-93-325-5513-6.

ARM MICROCONTROLLER & EMBEDDED SYSTEMS

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

ARM MICROCONTROLLER & EMBEDDED SYSTEMS

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) Scheme]

Course Code	15EC62	IA Marks	20
Number of Lecture	04	Exam Marks	80
Hours/Week			
Total Number of	50 (10 Hours / Module)	Exam Hours	03
Lecture Hours			
CREDITS – 04			

Course objectives: This course will enable students to:

- Understand the architectural features and instruction set of 32 bit microcontroller ARM Cortex M3.
- Program ARM Cortex M3 using the various instructions and C language for different applications.
- Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- Develop the hardware software co-design and firmware design approaches.
- Explain the need of real time operating system for embedded system applications.

Module-1

ARM-32 bit Microcontroller: Thumb-2 technology and applications of ARM, Architecture of ARM Cortex M3, Various Units in the architecture, Debugging support, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation, reset sequence (Text 1: Ch 1, 2, 3) **L1, L2**

Module-2

ARM Cortex M3 Instruction Sets and Programming: Assembly basics, Instruction list and description, Useful instructions, Memory mapping, Bit-band operations and CMSIS, Assembly and C language Programming (Text 1: Ch-4, Ch-5, Ch-10 (10.1, 10.2, 10.3, 10.5 only) **L1, L2, L3**

Module-3

Embedded System Components: Embedded Vs General computing system, Classification of Embedded systems, Major applications and purpose of ES. Core of an Embedded System including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, Optocoupler, Relay, Piezo buzzer, Push button switch, Communication Interface (onboard and external types), Embedded firmware, Other system components.

(Text 2: All the Topics from Ch-1 and Ch-2, excluding 2.3.3.4 (stepper motor), 2.3.3.8 (keyboard) and 2.3.3.9 (PPI) sections). **L1, L2, L3**

Module-4

Embedded System Design Concepts: Characteristics and Quality Attributes of Embedded Systems, Operational and non-operational quality attributes, Embedded
Systems-Application and Domain specific, Hardware Software Co-Design and Program Modelling (excluding UML), Embedded firmware design and development (excluding C language).

(Text 2: Ch-3, Ch-4, Ch-7 (Sections 7.1, 7.2 only), Ch-9 (Sections 9.1, 9.2, 9.3.1, 9.3.2 only) **L1, L2, L3**

Module-5

RTOS and IDE for Embedded System Design: Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread preemption, Preemptive Task scheduling techniques, Task Communication, Task synchronization issues – Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS, Integration and testing of Embedded hardware and firmware, Embedded system Development Environment – Block diagram (excluding Keil), Disassembler/decompiler, simulator, emulator and debugging techniques (Text 2: Ch-10 (Sections 10.1, 10.2, 10.3, 10.5.2, 10.7, 10.8.1.1, 10.8.1.2, 10.8.2.2, 10.10 only), Ch 12, Ch-13 (a block diagram before 13.1, 13.3, 13.4, 13.5, 13.6 only) **L1, L2, L3**

Course outcomes: After studying this course, students will be able to:

- Describe the architectural features and instructions of 32 bit microcontroller ARM Cortex M3.
- Apply the knowledge gained for Programming ARM Cortex M3 for different applications.
- Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- Develop the hardware / software co-design and firmware design approaches.
- Explain the need of real time operating system for embedded system applications.

Text Books:

- Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", 2nd Edition, Newnes, (Elsevier), 2010.
- 2. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, 2nd Edition.

<u>COMPUTER COMMUNICATION NETWORKS</u> B.E., VI Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

СОМІ	PUTER COMMUNICATION NETW	ORKS	
B.E., VI Semest	er, Electronics & Communication	on Engineering /	
	Telecommunication Engineerin	g	
[As per C]	hoice Based Credit System (CBC	S) Schemej	20
Number of Lecture	04	Exam Marks	80
Hours/Week			
Total Number of	50 (10 Hours / Module)	Exam Hours	03
Lecture Hours			
	<u>CREDITS - 04</u>		
Course Objectives: This	course will enable students to:		
• Understand the layer suite.	ing architecture of OSI reference r	nodel and TCP/IP j	protocol
Understand the proto	cols associated with each layer.		
• Learn the different ne	tworking architectures and their	representations.	
• Learn the various rou	ting techniques and the transport	layer services.	
	Module-1		
Introduction: Data Con	nmunications: Components, Re	presentations, Da	ta Flow,
Networks: Physical Struct	ures, Network Types: LAN, WAN, S	Switching, Internet	•
Network Models: Proto	col Layering: Scenarios, Princip	oles, Logical Con	nections,
TCP/IP Protocol Suite: La	ayered Architecture, Layers in To	CP/IP suite, Descr	ription of
Domultiplaying The OSI	and Decapsulation, Addres	sing, Multiplexir	ng and
Demuluplexing, the OSI M	luction: Nodes and Links Ser	vices Categories'	of link
Sublayers Link Layer ad	dressing [.] Types of addresses AR	P Data Link Cont	rol (DLC)
services: Framing, Flow a	nd Error Control. Data Link Laver	Protocols: Simple	Protocol.
Stop and Wait protocol, Pi	ggybacking. L1, L2		,
	Module-2		
Media Access Control:	Random Access: ALOHA, CSM	A, CSMA/CD, CS	SMA/CA.
Controlled Access: Reserva	ation, Polling, Token Passing.		
Wired LANs: Ethernet:	Ethernet Protocol: IEEE802, Eth	ernet Evolution, S	Standard
Ethernet: Characteristics	, Addressing, Access Method, I	Efficiency, Implem	entation,
Fast Ethernet: Access N	lethod, Physical Layer, Gigabit	Ethernet: MAC S	Sublayer,
Physical Layer, 10 Gigabit	Ethernet. LI, LZ		
Wingloss I ANs. Introducti	Module-3	anastanistica IEEE	7 009 11.
Architecture MAC Subl	on. Architectural Comparison, Cr.	Physical Layor B	Luotooth
Architecture Lavers	ayer, Addressing Mechanism, I	liysical Layer, D	iuetootii.
Connecting Devices: Hi	ubs Switches Virtual LANs: M	lembership Confi	guration
Communication between S	Switches and Routers. Advantages	5.	0
Network Layer: Introdu	ction, Network Layer services:	Packetizing, Rout	ting and
Forwarding, Other servic	es, Packet Switching: Datagram	Approach, Virtua	l Čircuit
Approach, IPV4 Addresses	s: Address Space, Classful Addres	sing, Classless Ad	dressing,

DHCP, Network Address Resolution, Forwarding of IP Packets: Based on destination Address and Label. **L1, L2**

Module-4

Network Layer Protocols: Internet Protocol (IP): Datagram Format, Fragmentation, Options, Security of IPv4 Datagrams, ICMPv4: Messages, Debugging Tools, Mobile IP: Addressing, Agents, Three Phases, Inefficiency in Mobile IP.

Unicast Routing: Introduction, Routing Algorithms: Distance Vector Routing, Link State Routing, Path vector routing, Unicast Routing Protocol: Internet Structure, Routing Information Protocol, Open Shortest Path First, Border Gateway Protocol Version 4. **L1, L2, L3**

Module-5

Transport Layer: Introduction: Transport Layer Services, Connectionless and Connection oriented Protocols, Transport Layer Protocols: Simple protocol, Stop and wait protocol, Go-Back-N Protocol, Selective repeat protocol, User Datagram Protocol: User Datagram, UDP Services, UDP Applications, Transmission Control Protocol: TCP Services, TCP Features, Segment, Connection, State Transition diagram, Windows in TCP, Flow control, Error control, TCP congestion control. **L1, L2**

Course Outcomes: At the end of the course, the students will be able to:

- Identify the protocols and services of Data link layer.
- Identify the protocols and functions associated with the transport layer services.
- Describe the layering architecture of computer networks and distinguish between the OSI reference model and TCP/IP protocol suite.
- Distinguish the basic network configurations and standards associated with each network.
- Construct a network model and determine the routing of packets using different routing algorithms.

Text Book:

Data Communications and Networking , Forouzan, $5^{\rm th}$ Edition, McGraw Hill, 2016 ISBN: 1-25-906475-3

Reference Books:

- 1. Computer Networks, James J Kurose, Keith W Ross, Pearson Education, 2013, ISBN: 0-273-76896-4
- 2. Introduction to Data Communication and Networking, Wayarles Tomasi, Pearson Education, 2007, ISBN:0130138282

B.E E&C SEVENTH SEMESTER SYLLABUS

MICROWAVES AND ANTENNAS

B.E., VII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Course Code	15EC71	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50 (10 Hours / Module)	Exam Hours	03	

CREDITS – 04

Course objectives: This course will enable students to:

- Describe the microwave properties and its transmission media
- Describe microwave devices for several applications
- Understand the basics of antenna theory
- Select antennas for specific applications

Module-1

Microwave Tubes: Introduction, Reflex Klystron Oscillator, Mechanism of Oscillations, Modes of Oscillations, Mode Curve (Qualitative Analysis only). (Text 1: 9.1, 9.2.2) **Microwave Transmission Lines:** Microwave Frequencies, Microwave devices, Microwave Systems, Transmission Line equations and solutions, Reflection Coefficient and Transmission Coefficient, Standing Wave and Standing Wave Ratio, Smith Chart, Single Stub matching. (Text 2: 0.1, 0.2, 0.3, 3.1, 3.2, 3.3, 3.5, 3.6 Except Double stub matching) **L1, L2**

Module-2

Microwave Network theory: Symmetrical Z and Y-Parameters for Reciprocal Networks, S matrix representation of Multi-Port Networks. (Text 1: 6.1, 6.2, 6.3) **Microwave Passive Devices:** Coaxial Connectors and Adapters, Attenuators, Phase Shifters, Waveguide Tees, Magic tees. (Text 1: 6.4.2, 6.4.14, 6.4.15, 6.4.16) **L1, L2**

Module-3

Strip Lines: Introduction, Micro Strip lines, Parallel Strip lines, Coplanar Strip lines, Shielded Strip Lines. (Text 2: Chapter 11)

Antenna Basics: Introduction, Basic Antenna Parameters, Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity and Gain, Antenna Apertures, Effective Height, Bandwidth, Radio Communication Link, Antenna Field Zones & Polarization. (Text 3: 2.1- 2.11, 2.13,2.15) **L1, L2, L3**

Module-4

Point Sources and Arrays: Introduction, Point Sources, Power Patterns, Power Theorem, Radiation Intensity, Field Patterns, Phase Patterns, Arrays of Two Isotropic Point Sources, Pattern Multiplication, Linear Arrays of n Isotropic Point Sources of equal Amplitude and Spacing.(Text 3: 5.1 – 5.10,5.13)

Electric Dipoles: Introduction, Short Electric Dipole, Fields of a Short Dipole (General and Far Field Analyses), Radiation Resistance of a Short Dipole, Thin Linear Antenna (Field Analyses), Radiation Resistances of Lambda/2 Antenna. (Text 3: 6.1 -6.6) **L1, L2, L3, L4**

Module-5

Loop and Horn Antenna: Introduction, Small loop, Comparison of Far fields of Small Loop and Short Dipole, The Loop Antenna General Case, Far field Patterns of Circular Loop Antenna with Uniform Current, Radiation Resistance of Loops, Directivity of Circular Loop Antennas with Uniform Current, Horn antennas Rectangular Horn Antennas.(Text 3: 7.1-7.8, 7.19, 7.20)

Antenna Types: Helical Antenna, Helical Geometry, Practical Design Considerations of Helical Antenna, Yagi-Uda array, Parabola General Properties, Log Periodic Antenna. (Text 3: 8.3, 8.5, 8.8, 9.5, 11.7) **L1, L2, L3**

Course Outcomes: At the end of the course, students will be able to:

- Describe the use and advantages of microwave transmission
- Analyze various parameters related to microwave transmission lines and waveguides
- Identify microwave devices for several applications
- Analyze various antenna parameters necessary for building an RF system
- Recommend various antenna configurations according to the applications

Text Books:

- Microwave Engineering Annapurna Das, Sisir K Das TMH Publication, 2nd, 2010.
- 2. Microwave Devices and circuits- Liao, Pearson Education.
- 3. **Antennas and Wave Propagation,** John D. Krauss, Ronald J Marhefka and Ahmad S Khan,4th Special Indian Edition, McGraw-Hill Education Pvt. Ltd., 2010.

Reference Books:

- 1. **Microwave Engineering** David M Pozar, John Wiley India Pvt. Ltd. 3rdEdn, 2008.
- 2. Microwave Engineering Sushrut Das, Oxford Higher Education, 2ndEdn, 2015.
- 3. **Antennas and Wave Propagation** Harish and Sachidananda: Oxford University Press, 2007.

DIGITAL IMAGE PROCESSING

B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC72	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours /	Exam Hours	03	
Lecture Hours	Module)			
	CREDI	TS – 04		
Course Objectives: 7	The objectives of this co	ourse are to:		
• Understand the	fundamentals of digita	l image processin	g	
 Understand the Understand the Understand the processing Understand the processing 	e image transform used e image enhancement te e image restoration tec e Morphological Operati	in digital image p chniques used in hniques and met ons and Segmen	processing digital image pr hods used in di tation used in d	rocessing igital image igital image
	Module-1			RBT Level
Digital Image Fund	damentals. What is Di	oital Image Proce	ssing? Origins	L1 L2
of Digital Image Pro	cessing. Examples of fi	elds that use DIP	Fundamental	11, 12
Steps in Digital Image Processing, Components of an Image Processing				
System. Elements of Visual Perception. Image Sensing and Acquisition.				
Image Sampling and Quantization, Some Basic Relationships Between				
Pixels, Linear and Nonlinear Operations.				
[Text: Chapter 1 and Chapter 2: Sections 2.1 to 2.5, 2.6.2]				
	Module-2			
 Spatial Domain: Some Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters Frequency Domain: Preliminary Concepts, The Discrete Fourier Transform (DFT) of Two Variables, Properties of the 2-D DFT, Filtering in the Frequency Domain, Image Smoothing and Image Sharpening Using Frequency Domain Filters, Selective Filtering. [Text: Chapter 3: Sections 3.2 to 3.6 and Chapter 4: Sections 4.2, 4.5 to 4.10] 				L1, L2, L3
	Module-3			
Restoration: Noise models, Restoration in the Presence of Noise Only using Spatial Filtering and Frequency Domain Filtering, Linear, Position- Invariant Degradations, Estimating the Degradation Function, Inverse Filtering, Minimum Mean Square Error (Wiener) Filtering, Constrained Least Squares Filtering. [Text: Chapter 5: Sections 5.2, to 5.9]			L1, L2, L3	
	Module-4			

Color Image Processing: Color Fundamentals, Color Models, Pseudocolor	L1, L2,
Image Processing.	L3
Wavelets: Background, Multiresolution Expansions.	
Morphological Image Processing: Preliminaries, Erosion and Dilation,	
Opening and Closing, The Hit-or-Miss Transforms, Some Basic	
Morphological Algorithms.	
[Text: Chapter 6: Sections 6.1 to 6.3, Chapter 7: Sections 7.1 and 7.2,	
Chapter 9: Sections 9.1 to 9.5]	
Module-5	
Segmentation: Point Line and Edge Detection Thresholding Region-	I1 I2
Based Segmentation Segmentation Using Morphological Watersheds	L_1, L_2, L_3
Based Segmentation, Segmentation: Composition Boundary descriptors	L3
Tout Chapter 10: Sections 10.2 to 10.5 and Chapter 11: Sections 11.1	
[11.1] and 11.0]	
anu 11.2	
Course Outcomes: At the end of the course students should be able to:	
• Understand image formation and the role human visual system plays it	n
perception of gray and color image data	-
• Apply image processing techniques in both the spatial and frequency (F	Courier)
• Apply mage processing techniques in both the spatial and nequency (i	ourierj
uomanis.	. 1
• Design image analysis techniques in the form of image segmentation ar	ia to
evaluate the Methodologies for segmentation.	
Conduct independent study and analysis of Image Enhancement techn	iques.
Question paper pattern:	
• The question paper will have ten questions.	
 Each full question consists of 16 marks. 	
• There will be 2 full questions (with a maximum of Three sub questions)	from each
module.	
• Each full question will have sub questions covering all the topics under	a module.
The students will have to answer 5 full questions, selecting one full questions.	stion from
each module.	
Text Book	
Digital Image Processing Rafel C Congoleg and Richard F Woods DUI	3rd
Edition 2010	JIU
Reference Books:	
1. Digital Image Processing- S.Jayaraman, S.Esakkirajan, T.Veerakumar,	Tata
McGraw Hill 2014.	
2. Fundamentals of Digital Image Processing-A. K. Jain, Pearson 2004.	

OPERATING SYSTEM

B.E., V Semester, Electronics & Communication Engineering / **Telecommunication Engineering** [As per Choice Based Credit System (CBCS) scheme]

[2.11	s per enoice Dubeu ereu		j senencj	
Subject Code	15EC553	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Evam Hours	03	
Lecture Hours		Exam nours	00	
Lecture mours				
		15 - 03		
Course objectives:	This course will enable	students to:		
 Understand th 	le services provided by a	n operating syste	em.	
 Understand he 	ow processes are synchro	onized and schee	luled.	
 Understand di 	fferent approaches of me	emory manageme	ent and virtual r	nemory
management.		• •		C C
• Understand th	e structure and organization	ation of the file s	vstem	
Understand in	terprocess communicati	on and deadlock	situations	
	terprocess communicati	on and deduloes	Situations.	
	Module-1			PBT
	module-1			Lovol
Introduction to On	anating Sustains			
Introduction to Op	erating systems		1 0/ /	L1, L2
OS, Goals of an C	DS, Operation of an O	S, Computation	al Structures,	
Resource allocation	techniques, Efficiency,	System Perform	ance and User	
Convenience, Clas	ses operating System	n, Batch proc	essing, Multi	
programming, Time Sharing Systems, Real Time and distributed Operating				
Systems (Topics fror	n Sections 1.2, 1.3, 2.2 1	to 2.8 of Text).		
	Module-2			
Process Manageme	ent: OS View of Proces	sses, PCB, Fund	lamental State	L1, L2
Transitions, Threads, Kernel and User level Threads, Non-preemptive				
scheduling- FCFS a	and SRN, Preemptive Se	cheduling- RR a	and LCN, Long	
term. medium term	and short term schedu	uling in a time s	sharing system	
(Topics from Section	ns 3.3. 3.3.1 to 3.3.4. 3	.4. 3.4.1. 3.4.2 .	4.2. 4.3. 4.4.1	
of Text)		,,, ,	,,	
of ready.	Module-3			
Memory Manageme	moune-o	allocation Non	Contiguos	1110
Momory Allocation	Desing Segmentation S	allocation, Noll-		
Vietuol Moreory Mor	raging, Segmentation, S	eginentation with	n paging,	
Virtual Melliory Mar	lagement, Demand Pagin	ilg, Pagilig Haluv	vale, vivi	
handler, FIFO, LRU	page replacement policie	c = 1 $c = 1$	ections 5.5 to	
5.9, 6.1 to $6.3, exce$	pt Optimal policy and 6.	3.10f Text).		
	Module-4			
File Systems: File s	systems and IOCS, File	Operations, File	Organizations,	L1, L2, L3
Directory structures	s, File Protection, Inter	face between Fi	le system and	
IOCS, Allocation of	f disk space, Implemer	nting file access	s (Topics from	
Sections 7.1 to 7.8 c	of Text).			
	Module-5			
Message Passing	and Deadlocks: Ov	erview of Mes	sage Passing.	L1, L2, L3
Implementing mess	sage passing, Mailbox	es, Deadlocks.	Deadlocks in	
impromotion in the second)		1
resource allocation	n, Resource state m	odelling, Deadl	ock detection	
File Systems: File s Directory structures IOCS, Allocation of Sections 7.1 to 7.8 c Message Passing Implementing mess	systems and IOCS, File s, File Protection, Inter f disk space, Implemen of Text). Module-5 and Deadlocks: Over sage passing, Mailbox	Operations, File face between Finting file access erview of Mes es, Deadlocks,	Organizations, le system and s (Topics from sage Passing, Deadlocks in	L1, L2, L3

11.5 of Text).	
Course outcomes: After studying this course, students will be able to:	
 Explain the goals, structure, operation and types of operating systems. Apply scheduling techniques to find performance factors. Explain organization of file systems and IOCS. Apply suitable techniques for contiguous and non-contiguous memory Describe message passing, deadlock detection and prevention methods 	allocation.
Question paper pattern:	
 The question paper will have ten questions 	
• Each full question consists of 16 marks.	
• There will be 2 full questions (with a maximum of three sub questions) module.	from each
• Each full question will have sub questions covering all the topics under	a module
• The students will have to answer 5 full questions, selecting one full que each module	estion from
Text Book:	
Operating Systems – A concept based approach, by Dhamdare, TMH, 2 nd edit	tion.
Reference Books:	
1. Operating systems concepts, Silberschatz and Galvin, John Wiley India P 5 th edition,2001.	vt. Ltd,
2. Operating system-internals and design system, William Stalling, Pearson Education, 4th ed, 2006.	
3. Design of operating systems, Tannanbhaum, TMH, 2001.	

Object Oriented Programming Using C++

B.E. V Semester (Open Elective)

[As per Choice Based Credit Sy	ystem (CBCS)scheme]
--------------------------------	---------------------

P	er onoice Dasea oreants	<u>System (ODOB</u>)Se	memej	
Subject Code	15EC562	IA Marks	20	
Number of	03	Exam Marks	80	
Lecture				
Hours/Week				
Total Number of	40 (08 Hrs/ Module	Exam Hours	03	
Lecture Hours				
	CREDITS -	- 03		
Course objectives	: This course will enable	e students to:		
Define Encapsu	llation, Inheritance and	Polymorphism.		
 Solve the proble 	m with object oriented	approach		
 Analyze the problem 	blom statement and bui	ld object oriented	d system r	nodel
 Analyze the pro Describe the comparison of the comparison	sharactors and bohavi	or of the object	$\frac{1}{2}$ system i	mouel.
• Describe the C	characters and benavio	of the object	is that to	sinprise a
• Explain function	n overloading operator	overloading and	virtual fur	octions
• Explain function	human and a biast ari	overioaung and	viituai iui	neuronis.
 Discuss the ac anianted program 	wantages of object of	ented programm	ing over	procedure
oriented progra	mming.			
	Madula 1			DPT
	Mouule -1			Level
Beginning with C	++ and its features:			L1, L2
What is C++?, A	Applications and strue	cture of C++ p	orogram,	
Different Data typ	es, Variables, Different	Operators, expr	ressions,	
operator overloadi	ng and control structu	res in C++ (Top	ics from	
Ch -2,3 of Text).				
	Module -2			
Functions, classe	s and Objects:			L1, L2,
Functions, Inline f	unction, function overlo	ading, friend and	d virtual	L3
functions, Specify	ing a class, C++ progra	am with a class	, arrays	
within a class, m	nemory allocation to ol	ojects, array of	objects,	
members, pointers	s to members and men	nber functions (Selected	
Topics from Chap-	4,5 of Text).			
	Module -3			
Constructors, I	Destructors and O	perator over	loading:	L1, L2,
Constructors, Mul	tiple constructors in a	class, Copy cons	structor,	L3
Dynamic construc	tor, Destructors, Defini	ng operator over	loading,	
Overloading Unary	/ and binary operators,	Manipulation of	f strings	
using operators (Se	elected topics from Chap	o-6, 7 of Text).		
	Module -4			
Inheritance, Poin	ters, Virtual Functions	s, Polym <mark>orphisn</mark>	n:	L1, L2,
Derived Classes, S	Single, multilevel, multi	ple inheritance,	Pointers	L3
to objects and de	erived classes, this po	inter, Virtual aı	nd pure	
virtual functions (S	Selected topics from Cha	p-8.9 of Text).	-	

	Γ		
Module -5			
Streams and Working with files: C++ streams and stream	L1, L2,		
classes, formatted and unformatted I/O operations, Output with	L3		
manipulators, Classes for file stream operations, opening and			
closing a file, EOF (Selected topics from Chap-10, 11 of Text).			
 Course Outcomes: At the end of the course, students will be able to: Explain the basics of Object Oriented Programming concepts. Apply the object initialization and destroy concept using constructors and destructors. Apply the concept of polymorphism to implement compile time polymorphism in programs by using overloading methods and operators. Use the concept of inheritance to reduce the length of code and evaluate the usefulness. Apply the concept of run time polymorphism by using virtual functions. 			
 Apply the concept of run time polymorphism by using virtual overriding functions and abstract class in programs. Use I/O operations and file streams in programs. 	functions,		
Question paper pattern:			
• The question paper will have ten questions.			
Each full Question consisting of 16 marks			
• There will be 2 full questions (with a maximum of Three sub of from each module.	juestions)		
• Each full question will have sub questions covering all the topic module.	s under a		
 The students will have to answer 5 full questions, selecting question from each module. 	one full		
Text Book:			
Object Oriented Programming with C++, E.Balaguruswamy, TEdition, 2013.	ſMH, 6th		
Reference Book:			
Object Oriented Programming using C++, Robert Lafore, publication 2010.	Galgotia		

POWER ELECTRONICS

B.E., VII Semester, Electronics & Communication Engineering

,			
[As	per Choice Based Credit Syste	em (CBCS) scheme]	_
	POWER ELECTRON	ICS	
B.E., VII Sei	mester, Electronics & Comm	nunication Enginee	ring
[As per	Choice Based Credit System	m (CBCS) Scheme]	_
Course Code	15EC73	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50 (10 Hours / Module)	Exam Hours	03
	CREDITS - 04		.

Course Objectives: This course will enable students to:

- Understand the construction and working of various power devices.
- Study and analysis of thyristor circuits with different triggering conditions.
- Learn the applications of power devices in controlled rectifiers, converters and inverters.
- Study of power electronics circuits under various load conditions.

Module-1

Introduction - Applications of Power Electronics, Power Semiconductor Devices, Control Characteristics of Power Devices, types of Power Electronic Circuits, Peripheral Effects. Power Transistors: Power BJTs: Steady state characteristics. Power MOSFETs: device operation, switching characteristics, IGBTs: device operation, output and transfer characteristics, di/dt and dv/dt limitations. (Text 1) **L1, L2**

Module-2

Thyristors - Introduction, Principle of Operation of SCR, Static Anode-Cathode Characteristics of SCR, Two transisitor model of SCR, Gate Characteristics of SCR, Turn-ON Methods, Turn-OFF Mechanism, Turn-OFF Methods: Natural and Forced Commutation – Class A and Class B types, Gate Trigger Circuit: Resistance Firing Circuit, Resistance capacitance firing circuit, UJT Firing Circuit. (Text 2) **L1, L2, L3**

Module-3

Controlled Rectifiers - Introduction, Principle of Phase-Controlled Converter Operation, Single-Phase Full Converter with RL Load, Single-Phase Dual Converters, Single-Phase Semi Converter with RL load.

AC Voltage Controllers - Introduction, Principles of ON-OFF Control, Principle of Phase Control, Single phase controllers with resistive and inductive loads. (Text 1) **L1, L2, L3**

Module-4

DC-DC Converters - Introduction, principle of step-down operation and it's analysis with RL load, principle of step-up operation, Step-up converter with a resistive load, Performance parameters, Converter classification, Switching mode regulators: Buck regulator, Boost regulator, Buck-Boost Regulators, Chopper circuit design. (Text 1) **L1, L2**

Module-5

Pulse Width Modulated Inverters- Introduction, principle of operation, performance parameters, Single phase bridge inverters, voltage control of single phase inverters, current source inverters, Variable DC-link inverter, Boost inverter, Inverter circuit design.

Static Switches: Introduction, Single phase AC switches, DC Switches, Solid state

relays, Microelectronic relays. (Text 1) L1, L2

Course Outcomes: At the end of the course students should be able to:

- Describe the characteristics of different power devices and identify the various applications associated with it.
- Illustrate the working of power circuit as DC-DC converter.
- Illustrate the operation of inverter circuit and static switches.
- Determine the output response of a thyristor circuit with various triggering options.
- Determine the response of controlled rectifier with resistive and inductive loads.

Evaluation of Internal Assessment Marks:

It is suggested that at least 4 experiments of Power Electronics to be conducted by the students. This activity can be considered for the evaluation of 05 marks out of 20 Internal Assessment (IA) Marks, reserved for the other activities.

Text Books:

- 1. Mohammad H Rashid, Power Electronics, Circuits, Devices and Applications, 3rd/4th Edition, Pearson Education Inc, 2014, ISBN: 978-93-325-1844-5.
- 2. M.D Singh and K B Khanchandani, Power Electronics, 2nd Edition, Tata Mc-Graw Hill, 2009, ISBN: 0070583897

Reference Books:

- 1. L. Umanand, Power Electronics, Essentials and Applications, John Wiley India Pvt. Ltd, 2009.
- 2. Dr. P. S. Bimbhra, "Power Electronics", Khanna Publishers, Delhi, 2012.
- 3. P.C. Sen, "Modern Power Electronics", S Chand & Co New Delhi, 2005.
- 4. Earl Gose, Richard Johnsonbaugh, Steve Jost, Pattern Recognition and Image Analysis, ePub eBook.

MULTIMEDIA COMMUNICATION

B.E., VII Semester, Electronics & Communication Engineering/ **Telecommunication Engineering**

[As per Choice Based credit System (CBCS) Scheme

Subject Code	15EC741	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (08 Hours /	Exam Hours	03
Lecture Hours	Module)		
CREDITS – 03			
Course objectives: This course will enable students to:			

- Gain fundamental knowledge in understanding the basics of different multimedia networks and applications.
- Understand digitization principle techniques required to analyze different media • types.
- Analyze compression techniques required to compress text and image and gain knowledge of DMS.
- Analyze compression techniques required to compress audio and video.
- Gain fundamental knowledge about multimedia communication across different networks.

EMBEDDED CONTROLLER LAB

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15ECL67	IA Marks	20
Number of Lecture Hours/Week	01Hr Tutorial (Instructions) + 02 Hours Laboratory = 03	Exam Marks	80
RBT Levels	L1, L2, L3	Exam Hours	03

CREDITS – 02

Course objectives: This course will enable students to:

- Understand the instruction set of ARM Cortex M3, a 32 bit microcontroller and the software tool required for programming in Assembly and C language.
- Program ARM Cortex M3 using the various instructions in assembly level language for different applications.
- Interface external devices and I/O with ARM Cortex M3.
- Develop C language programs and library functions for embedded system applications.

Laboratory Experiments

PART-A: Conduct the following Study experiments to learn ALP using ARM Cortex M3 Registers using an Evaluation board and the required software tool.

- 1. ALP to multiply two 16 bit binary numbers.
- 2. ALP to find the sum of first 10 integer numbers.

PART-B: Conduct the following experiments on an ARM CORTEX M3 evaluation board using evaluation version of Embedded 'C' & Keil uVision-4 tool/compiler.

- 1. Display "Hello World" message using Internal UART.
- 2. Interface and Control a DC Motor.
- 3. Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.

- 4. Interface a DAC and generate Triangular and Square waveforms.
- 5. Interface a 4x4 keyboard and display the key code on an LCD.
- 6. Using the Internal PWM module of ARM controller generate PWM and vary its duty cycle.
- 7. Demonstrate the use of an external interrupt to toggle an LED On/Off.
- 8. Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay in between.

9. Interface a simple Switch and display its status through Relay, Buzzer and LED.

10. Measure Ambient temperature using a sensor and SPI ADC IC.

Course outcomes: After studying this course, students will be able to:

- Understand the instruction set of 32 bit microcontroller ARM Cortex M3, and the software tool required for programming in Assembly and C language.
- Develop assembly language programs using ARM Cortex M3 for different applications.
- Interface external devices and I/O with ARM Cortex M3.
- Develop C language programs and library functions for embedded system applications.

Conduction of Practical Examination:

- 1. PART-B experiments using Embedded-C are only to be considered for the practical examination. PART-A ALP programs are for study purpose and can be considered for Internal Marks evaluation.
- 2. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 3. Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

B.E ELECTRICA CHOIC	L AND ELECTRON E BASED CREDIT (SEMESTER -	IICS ENGINEERING(EI SYSTEM (CBCS) III	EE)	
TRANSFOR	MERS AND GENER	ATORS (Core Course)		
Subject Code	15EE33	IA Marks	20	
Number of Lecture Hours/Week	Number of Lecture Hours/Week 04 Exam Hours 03			
Total Number of Lecture Hours	50	Exam Marks	80	
	Credits - 04	1		
 Course objectives: To understand the concepts of trans To suggest a suitable three phase tr To understand the concepts of gene To explain the requirement for the 	sformers and their ana ansformer connection erator and to evaluate t parallel operation of tr	lysis. for a particular operation. heir performance. ransformers and synchrono	us generators.I	•
Module-1				Teaching Hours
Single phase Transformers: Review of Principle of operation, constructional details of shell type and core type single-phase transformers, EMF equation, losses and commercial efficiency, conditions for maximum efficiency (No question shall be set from the review portion). Salient features of ideal transformer, operation of practical transformer under no - load and on - load with phasor diagrams. Equivalent circuit, Open circuit and Short circuit tests, calculation of equivalent circuit parameters and predetermination of efficiency- commercial and all-day. Voltage regulation and its significance. Three-phase Transformers: Introduction, Constructional features of three-phase transformers. Choice between single unit three-phase transformer and a bank of three single-phase transformers. Transformer connection for three phase operation – star/star, delta/delta, star/delta, zigzag/star and V/V, choice of connection. Phase conversion - Scott connection for three-phase to two-phase conversion. Labelling of three-phase transformer terminals, vector groups. Equivalent circuit of three phase transformers. \blacksquare Revised Bloom's L ₁ – Remembering, L ₂ – Understanding, L ₃ – Applying, L ₄ – Analysing.			10	
Module-2				
Parallel Operation of Transformers: operation – Single phase and three phaseAutotransformers and Tap changing economy, equivalent circuit, three phase by tap changing – off circuit and on load Tertiary winding Transformers: New regulation, tertiary winding in star/star trRevised Bloom's Taxonomy Level	Necessity of Paral Load sharing in case transformers: Intro- auto connection and cessity of tertiary with ansformers, rating of t L_3 – Applying, L_4 – An	Ilel operation, conditions of similar and dissimilar tu duction to auto transform voltage regulation. Voltag nding, equivalent circuit ertiary winding.■ nalysing.	for parallel cansformers. her - copper ge regulation and voltage	10
Module-3				
Module-3 Transformers (continuation): Cause and effects of harmonics, Current inrush in transformers, noise in transformers. Objects of testing transformers, polarity test, Sumpner's test. 1(Direct current Generator – Review of construction, types, armature windings, relation between no load and terminal voltage (No question shall be set from the review portion). Armature reaction, Commutation and associated problems, no load and full load characteristics. Reasons for reduced dependency on dc generators. Synchronous generators- Review of construction and operation of salient & non-salient pole synchronous generators (No question shall be set from the review portion). Armature windings, winding factors, emf equation. Harmonics – causes, reduction and elimination. Armature reaction, Synchronous reactance, Equivalent circuit.■ Revised Bloom's L ₂ – Understanding, L ₃ – Applying, L ₄ – Analysing, L ₅ – Evaluating.				10
Taxonomy Level				
Module-4		1 1 , • .• • • • •		10
Synchronous generators (continuati excitation control for constant terminal v	on): Generator load	a characteristic. Voltage at and output. Parallel ope	regulation, ration of	10

B.E ELECTRICAL AND ELECTRONICS ENGINEERING(EEE) CHOICE BASED CREDIT SYSTEM (CBCS) SEMESTER - III

15EE33 TRANSFORMERS AND GENERATORS (Core Course) (continued)				
Mo	dule-4(continued)			Teaching
Syn infir curv Syn Qua Revi Taxo	chronous generators(continuation): generators (continuation): generators – General load diagram, E es and V – curves. Power angle character chronous generators(continuation): E drature reactance, power angle diagram, r sed Bloom's L_1 – Remembering, L_2 – U momy Level	nerators and load sharing. S lectrical load diagram, mech- istic and synchronizing power ffects of saliency, two-reac eluctance power, slip test. \blacksquare Inderstanding, L ₃ – Applying,	Synchronous generation and diagram L_4 – Analysing.	rator on am, O – rect and
Moo	lule-5			
Syn of re reac Perf pole Revi Taxe	chronous generators(continuation): Opeactance- short circuit ratio, synchronoustance. Voltage regulation by EMF, MMF,formance of synchronous generators: Ogenerators. Starting, synchronizing and csed Bloom's L_1 – Remembering, L_2 – Umomy Level	en circuit and short circuit cl s reactance, adjusted synchron ZPF and ASA methods. Capability curve for large turb ontrol. Hunting and dampers. Inderstanding, L_3 – Applying,	haracteristics, Associate the second	d Potier d salient
C				
Cot	irse outcomes:			
At tl	ne end of the course the student will be ab	le to:		
•	Explain the construction and operation an	d performance of transformers	5.	
•	Explain different connections for the three	e phase operations, their advar	ntages and applica	tions.
•	Explain the construction and operation of	Synchronous machines and ev	valuate the regula	tion of
	synchronous machines by different metho	ds.	C	
•	Analyze the operation of the synchronous	machine connected to infinite	e machine.	
Gra Eng	iduate Attributes (As per NBA)			
	meeting Knowledge, Froblem analysis.			
 Question paper pattern: The question paper will have ten questions. Each full question is for 16 marks. There will be 2full questions (with a maximum of four sub questions in one full question) from each module. Each full question with sub questions will cover the contents under a module. Students will have to answer 5 full questions, selecting one full question from each module. 				
Tex	t/Reference Books		-	
1	Electric Machines	D. P. Kothari, et al	McGraw Hill	4 th Edition, 2011
2	Performance and Design of A.C. Machines	M. G. Say	CBS Publishers	3^{10} Edition, 2002
3	Principles of Electric Machines and power Electronics	P.C.Sen	Wiley	2 nd Edition, 2013
4	Electric Machines	MulukuntlaS.Sarma,at el	Cengage	1 st Edition, 2009
5	Electrical Machines, Drives and Power	Theodore Wildi	Pearson	6 th Edition, 2014
6	Electrical Machines	M.V. Deshpande	PHI Learning	1 st Edition, 2013
7	Electrical Machines	AbhijitChakrabarti et al	McGraw Hill	1 st Edition. 2015
8	A Textbook of Electrical Machines	K.R.SiddapuraD.B.Raval	Vikas	1 st Edition, 2014

B.E ELECTRIC CHOI	AL AND ELECTRONI CE BASED CREDIT S SEMESTER - 1	CS ENGINEERING (EI YSTEM (CBCS) III	EE)	
ANALOG	ELECTRONIC CIRC	UITS (Core Course)		
Subject Code	15EE34	IA Marks		20
Number of Lecture Hours/Week 04 Exam Hours			()3
Total Number of Lecture Hours	50	Exam Marks	8	30
~	Credits - 04			
Course objectives:				
• Provide the knowledge for the anal	ysis of diode and transiste	or circuits.		
• Develop skills to design the electro	nic circuits like amplifier	s and oscillators.		
• Highlight the importance of FET at	nd MOSFET.∎			
Module-1				Teaching Hours
Diode Circuits: Review of diodes as r	ectifiers (No question sha	all be set from review por	tion). Diode	10
clipping and clamping circuits.		1	,	10
Transistor biasing and stabilization:	Operating point, analysis	and design of fixed bias	circuit, self-	
bias circuit, Emitter stabilized bias ci	rcuit, voltage divider bia	s circuit, stability factor	of different	
biasing circuits. Problems.				
Transistor switching circuits: Transi	istor switching circuits,Pl	NP transistors, thermal co	ompensation	
	T TT 1 / 1° T	A 1 '		
Taxonomy Level	L_2 – Understanding, L_3 –	- Applying.		
Module-2				
Transistor at low frequencies: BJ	Γ transistor modelling, C	CE fixed bias configurat	ion, voltage	10
divider bias, emitter follower, CB configuration, collector feedback configuration, analysis using h – parameter model relation between h – parameters model of CE CC and CB modes. Millers theorem			10	
and its dual.				
Transistor frequency response: General frequency considerations, low frequency response, Miller				
effect capacitance, high frequency response, multistage frequency effects.				
Revised Bloom'sL2 – UnderstandingTaxonomy Level	, L_3 – Applying, L_4 – Ana	alysing, L_5 – Evaluating.		
Module-3				
Multistage amplifiers: Cascade and cascode connections, Darlington circuits, analysis and design. Feedback amplifiers: Feedback concept, different types, practical feedback circuits, analysis and design of feedback circuits.			10	
Revised Bloom's L ₁ – Remembering, Taxonomy Level	L_2 – Understanding, L_3 –	- Applying, L ₄ – Analysin	ıg.	
Module-4				
Power amplifiers : Amplifier types, analysis and design of different power amplifiers, distortion in power amplifiers. Oscillators: Principle of operation, analysis and derivation of frequency of oscillation of phase shift			10	
oscillator, Wien bridge oscillator, RF a	nd crystal oscillator and f	requency stability. ■		
Revised Bloom's L1 – Remembering, Taxonomy Level	L_2 – Understanding, L_3 –	- Applying, L ₄ – Analysin	ıg.	
Module-5				
FETs: Construction, working andchar MOSFET, JFET and MOSFET amplifi	aracteristics of JFET an ers, analysis and design.	d MOSFET. Biasing of	f JFET and	10
Revised Bloom's L1 – Remembering, Taxonomy Level	L_2 – Understanding, L_3 –	- Applying, L ₄ – Analysin	ıg.	

18

MATERIAL SCIENCE

[AS PER CHOICE ASED CREDIT SYSTEM (CBCS) SCHEME]

	AFCT		
SEN	VIEST	EK –	111

SEWESTER			
Subject Code	15 ME 32	IA Marks	20
Number of Lecture Hrs / Week	04	Exam Marks	80
Total Number of Lecture Hrs	50	Exam Hours	03
CREDITS – 04			

COURSE OBJECTIVES:

This course provides

- 1. The foundation for understanding the structure and various modes of failure in materials common in mechanical engineering.
- 2. Topics are designed to explore the mechanical properties of metals and their alloys, polymers, ceramics ,smart materials and composites.
- 3. The means of modifying such properties, as well as the processing and failure of materials.
- 4. Concepts of use of materials for various applications are highlighted.

COURSE OUTCOMES:

The student shall be able to

- 1. Describe the mechanical properties of metals, their alloys and various modes of failure.
- 2. Understand the microstructures of ferrous and non-ferrous materials to mechanical properties.
- 3. Explain the processes of heat treatment of various alloys.
- 4. Understand the properties and potentialities of various materials available and material selection procedures.
- 5. Know about composite materials and their processing as well as applications.

MODULE 1

Basics, Mechanical Behavior, Failure of Materials

Introduction to Crystal Structure – Coordination number, atomic packing factor, Simple Cubic, BCC, FCC and HCP Structures, Crystal imperfections – point, line, surface and volume imperfections, Atomic Diffusion: Phenomenon, Fick's laws of diffusion; Factors affecting diffusion.

Mechanical Behavior:

Stress-strain diagrams showing ductile and brittle behavior of materials, Engineering and true strains, Linear and nonlinear elastic behavior and properties, Mechanical properties in plastic range. Stiffness, Yield strength, Offset Yield strength, Ductility, Ultimate Tensile strength, Toughness, Plastic deformation of single crystal by slip and twinning, Mechanisms of strengthening in metals

Fracture: Type I, Type II and Type III,

Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, Fatigue properties, S-N diagram, Fatigue testing.Creep: Description of the phenomenon with examples, three stages of creep, creep properties, Stress relaxation.Concept of fracture toughness, numerical on diffusion, strain and stress relaxation10 Hours

MODULE 2

Alloys, Steels, Solidification

Concept of formation of alloys: Types of alloys, solid solutions, factors affecting solid solubility (Hume Rothery rules), Binary phase diagrams: Eutectic, and Eutectoid systems, Lever rule, Substitutional and interstitial solid solutions, Intermediate phases, Gibbs phase rule Effect of non- equilibrium cooling, Coring and Homogenization Iron-Carbon (Cementite) diagram: description of phases, Effect of common alloying elements in steel, Common alloy steels, Stainless steel, Tool steel, Specifications of steels. Solidification: Mechanism of solidification, Homogenous and Heterogeneous nucleation, Crystal growth, Cast metal structures Solidification of Steels and Cast irons. Numerical on lever rule

MODULE 3

Heat Treatment, Ferrous and Non-Ferrous Alloys

Heat treating of metals: Time-Temperature-Transformation (TTT) curves, Continuous Cooling Transformation (CCT) curves, Annealing: Recovery, Recrystallization and Grain growth, Types of annealing, Normalizing, Hardening, Tempering, Martempering, Austempering, Concept of hardenability, Factors affecting it hardenability, surface hardening methods: carburizing, cyaniding, nitriding, flame hardening and induction hardening, Age hardening of aluminum-copper alloys and PH steels. Ferrous materials: Properties, Compositions and uses of Grey cast iron, Malleable iron, SG iron and steel, 10 Hours

MODULE 4

Other Materials, Material Selection

Ceramics: Structure types and properties and applications of ceramics. Mechanical / Electrical behavior and processing of Ceramics.

Plastics: Various types of polymers/plastics and their applications. Mechanical behaviors and processing of plastics, Failure of plastics.

Other materials: Brief description of other materials such as optical and thermal materials Smart materials – fiber optic materials, piezo-electrics, shape memory alloys Shape Memory Alloys – Nitinol, superelasticity, Biological applications of smart materials - materials used as implants in human Body, Selection of Materials, Performance of materials in service Residual life assessment – use of non-destructive testing, Economics, Environment and Sustainability 10 Hours

MODULE 5

Composite Materials

Composite materials - Definition, classification, types of matrix materials & reinforcements, Metal Matrix Composites (MMCs), Ceramic Matrix Composites (CMCs) and Polymer Matrix Composites (PMCs), Particulate-reinforced and fiberreinforced composites, Fundamentals of production of composites, Processes for production of composites, Characterization of composites, Constitutive relations of composites, Determination of composite properties from component properties, Hybrid composites, Applications of composite materials, Numericals on determining properties of composites 10 Hours

TEXT BOOKS:

- 1. Smith, Foundations of Materials Science and Engineering, 4th Edition, McGraw Hill, 2009.
- 2. William D. Callister, Material science and Engineering and Introduction, Wiley, 2006.

REFERENCE BOOKS

- 1. V.Raghavan, Materials Science and Engineering, , PHI, 2002
- 2. Donald R. Askland and Pradeep.P. Phule, The Science and Engineering of Materials, Cengage Learning, 4lh Ed., 2003.
- 3. George Ellwood Dieter, Mechanical Metallurgy, McGraw-Hill.
- 4. ASM Handbooks, American Society of Metals.

Scheme of Examination:

Two question to be set from each module. Students have to answer five full questions, choosing at least one full question from each module.

METAL CASTING AND WELDING

[AS PER CHOICE ASED CREDIT SYSTEM (CBCS) SCHEME]

SEMESTER – III / IV				
Subject Code	15 ME 35 A	IA Marks	20	
Number of Lecture Hrs / Week	04	Exam Marks	80	
Total Number of Lecture Hrs	50	Exam Hours	03	
CREDITS – 04				

COURSE OBJECTIVE

- To provide detailed information about the moulding processes.
- To provide knowledge of various casting process in manufacturing.
- To impart knowledge of various joining process used in manufacturing.
- To provide adequate knowledge of quality test methods conducted on welded and casted components.

COURSE OUTCOMES

CO	Course Outcomes	Blooms	РО
No.		level	
CO1	Describe the casting process, preparation of Green, Core, dry sand molds and Sweep, Shell, Investment and plaster molds.	U	PO1
CO2	Explain the Pattern, Core, Gating, Riser system and Jolt, Squeeze, Sand Slinger Molding Machines.	U	PO1
CO3	Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces.	U	PO1
CO4	Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.	U	PO1
CO5	Explain the Solidification process and Casting of Non-Ferrous Metals.	U	PO1
CO6	Describe the Metal Arc, TIG, MIG, Submerged and Atomic Hydrogen Welding processes used in manufacturing.	U	PO1
CO7	Explain the Resistance spot, Seam, Butt, Projection, Friction, Explosive, Thermit, Laser and Electron Beam Special type of welding process used in manufacturing.	U	PO1
CO8	Describe the Metallurgical aspects in Welding and inspection methods for the quality assurance of components made of casting and joining process.	U	PO1
	Total Hours of instruction	50	

MODULE -1

INTRODUCTION & BASIC MATERIALS USED IN FOUNDRY

Introduction: Definition, Classification of manufacturing processes. Metals cast in the foundry-classification, factors that determine the selection of a casting alloy.

Introduction to casting process & steps involved. Patterns: Definition, classification, materials used for pattern, various pattern allowances and their importance.

Sand molding: Types of base sand, requirement of base sand. Binder, Additives definition, need and types

Preparation of sand molds: Molding machines- Jolt type, squeeze type and Sand slinger. Study of important molding process: Green sand, core sand, dry sand, sweep mold, CO2 mold, shell mold, investment mold, plaster mold, cement bonded mold. Cores: Definition, need, types. Method of making cores, concept of gating (top, bottom, parting line, horn gate) and risering (open, blind) Functions and types

10 Hours

MODULE -2

MELTING & METAL MOLD CASTING METHODS

Melting furnaces: Classification of furnaces, Gas fired pit furnace, Resistance furnace, Coreless induction furnace, electric arc furnace, constructional features & working principle of cupola furnace.

Casting using metal molds: Gravity die casting, pressure die casting, centrifugal casting, squeeze casting, slush casting, thixocasting, and continuous casting processes

10 Hours

MODULE -3

SOLIDIFICATION & NON FERROUS FOUNDRY PRACTICE

Solidification: Definition, Nucleation, solidification variables, Directional solidification-need and methods. Degasification in liquid metals-Sources of gas, degasification methods.

Fettling and cleaning of castings: Basic steps involved. Sand Casting defects- causes, features and remedies. Advantages & limitations of casting process

Nonferrous foundry practice: Aluminum castings - Advantages, limitations, melting of aluminum using lift-out type crucible furnace. Hardeners used, drossing, gas absorption, fluxing and flushing, grain refining, pouring temperature. Stir casting set up, procedure, uses, advantages and limitations.

10 Hours

10 Hours

MODULE -4

WELDING PROCESS

Welding process: Definition, Principles, Classification, Application, Advantages & limitations of welding. Arc welding: Principle, Metal arc welding (MAW), Flux Shielded Metal Arc Welding (FSMAW), Inert Gas Welding (TIG & MIG) Submerged Arc Welding (SAW) and Atomic Hydrogen Welding (AHW).

Special type of welding: Resistance welding principles, Seam welding, Butt welding, Spot welding and Projection welding. Friction welding, Explosive welding, Thermit welding, Laser welding and electron beam welding.

MODULE -5

SOLDERING , BRAZING AND METALLURGICAL ASPECTS IN WELDING

Structure of welds, Formation of different zones during welding, Heat Affected Zone (HAZ), Parameters affecting HAZ. Effect of carbon content on structure and properties of steel, Shrinkage in welds & Residual stresses, Concept of electrodes, filler rod and fluxes. Welding defects- Detection, causes & remedy.

Soldering, brazing, gas welding: Soldering, Brazing, Gas Welding: Principle, oxy-Acetylene welding, oxy-hydrogen welding, air-acetylene welding, Gas cutting, powder cutting.

Inspection methods: Methods used for inspection of casting and welding. Visual, magnetic particle, fluorescent particle, ultrasonic. Radiography, eddy current, holography methods of inspection.

10 Hours

TEXT BOOKS:

- 1. "Manufacturing Process-I", Dr.K. Radhakrishna, Sapna Book House, 5th Revised Edition 2009.
- 2. "Manufacturing & Technology: Foundry Forming and Welding", P.N. Rao, 3rd Ed., Tata McGraw Hill, 2003.

REFERENCE BOOKS:

- 1. "Process and Materials of Manufacturing", Roy A Lindberg, 4th Ed. Pearson Edu. 2006.
- 2. "Manufacturing Technology", Serope Kalpakjian, Steuen. R. Sechmid, Pearson Education Asia, 5th Ed. 2006.
- 3. **"Principles of metal casting"**, Rechard W. Heine, Carl R. Loper Jr., Philip C. Rosenthal, Tata McGraw Hill Education Private Limited Ed.1976.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consisting of 16 marks.
- There will be **2** full questions (with a **maximum** of **4** sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.

MACHINE TOOLS AND OPERATIONS

[AS PER CHOICE ASED CREDIT SYSTEM (CBCS) SCHEME]

SEMESTER – III / IV				
Subject Code	15 ME 35 B	IA Marks	20	
Number of Lecture Hrs / Week	04	Exam Marks	80	
Total Number of Lecture Hrs	50	Exam Hours	03	
CREDITS – 04				

COURSE OBJECTIVES:

- To introduce students to different machine tools in order to produce components having different shapes and sizes.
- To enrich the knowledge pertaining to relative motion and mechanics required for various machine tools.
- To develop the knowledge on mechanics of machining process and effect of various parameters on economics of machining.

COURSE OUTCOMES:

- Explain the construction & specification of various machine tools.
- Describe various machining processes pertaining to relative motions between tool & work piece.
- Discuss different cutting tool materials, tool nomenclature & surface finish.
- Apply mechanics of machining process to evaluate machining time.
- Analyze tool wear mechanisms and equations to enhance tool life and minimize machining cost.

MODULE 1

MACHINE TOOLS

Introduction, Classification, construction and specifications of lathe, drilling machine, milling machine, boring machine, broaching machine, shaping machine, planing machine, grinding machine [Simple sketches showing major parts of the machines] 10 hours

MODULE 2

MACHINING PROCESSES

Introduction, Types of motions in machining, turning and Boring, Shaping, Planing and Slotting, Thread cutting, Drilling and reaming, Milling, Broaching, Gear cutting and Grinding, Machining parameters and related quantities.

[Sketches pertaining to relative motions between tool and work piece only] 10 Hours

MODULE 3

CUTTING TOOL MATERIALS, GEOMETRY AND SURFACE FINISH

Introduction, desirable Properties and Characteristics of cutting tool materials, cutting tool geometry, cutting fluids and its applications, surface finish, effect of machining parameters on surface finish.

Machining equations for cutting operations: Turning, Shaping, Planing, slab milling, cylindrical grinding and internal grinding, Numerical Problems 10 Hours

MODULE 4

MECHANICS OF MACHINING PROCESSES

Introduction, Chip formation, Orthogonal cutting, Merchants model for orthogonal cutting, Oblique cutting, Mechanics of turning process, Mechanics of drilling process, Mechanics of milling process, Numerical problems. 10 Hours

MODULE 5

TOOL WEAR, TOOL LIFE: Introduction, tool wear mechanism, tool wear equations, tool life equations, effect of process parameters on tool life, machinability, Numerical problems

ECONOMICS OF MACHNING PROCESSES: Introduction, choice of feed, choice of cutting speed, tool life for minimum cost and minimum production time, machining at maximum efficiency, Numerical problems 10 Hours

TEXT BOOKS:

- 1. Fundamentals of metal cutting and Machine Tools, B.L. Juneja, G.S. Sekhon and Nitin Seth, New Age International Publishers 2nd Edition, 2003
- 2. All about Machine Tools, Heinrich Gerling, New Age International Publishers revised 2nd Edition, 2006

REFERENCE BOOKS:

- 1. Fundamental of Machining and Machine Tools, Geoffrey Boothroyd and Winston A. Knight, CRC Taylor & Francis, Third Edition.
- 2. Metal cutting principles, Milton C. Shaw, Oxford University Press, Second Edition, 2005.

Scheme of Examination:

Two question to be set from each module. Students have to answer five full questions, choosing at least one full question from each module.

MECHANICAL MEASUREMENTS AND METROLOGY

[AS PER CHOICE ASED CREDIT SYSTEM (CBCS) SCHEME]

SEMESTER – III / IV				
Subject Code	15 ME 36 B / 46B	IA Marks	20	
Number of Lecture Hrs / Week	04	Exam Marks	80	
Total Number of Lecture Hrs	50	Exam Hours	03	
CREDITS – 03				

COURSE OBJECTIVES

Students are expected to -

- Understand metrology, its advancements & measuring instruments,
- Acquire knowledge on different standards of length, calibration of End Bars, linear and angular measurements, Screw thread and gear measurement & comparators.
- Equip with knowledge of limits, fits, tolerances and gauging.
- Acquire knowledge of measurement systems and methods with emphasis on different transducers, intermediate modifying and terminating devices.
- Understand the measurement of Force, Torque, Pressure, Temperature and Strain.

COURSE OUTCOMES

At the end of the course students will be able to -

	Description	CL	POs
CO1	Understand the objectives of metrology, methods of measurement, selection of measuring instruments, standards of measurement and calibration of end bars.	U	PO1, PO6
CO2	Describe slip gauges, wringing of slip gauges and building of slip gauges, angle measurement using sine bar, sine center, angle gauges, optical instruments and straightness measurement using Autocollimator.	U	PO1, PO6
CO3	Explain tolerance, limits of size, fits, geometric and position tolerances, gauges and their design.	U	PO1, PO6
CO4	Understand the principle of Johnson Mikrokator, sigma comparator, dial indicator, LVDT, back pressure gauges, Solex comparators and Zeiss Ultra Optimeter	U	PO1, PO6
CO5	Describe measurement of major diameter, minor diameter, pitch, angle and effective diameter of screw threads by 2 – wire, 3 – wire methods, screw thread gauges and tool maker's microscope.	U	PO1, PO6
CO6	Explain measurement of tooth thickness using constant chord method, addendum comparator methods and base tangent method, composite error using gear roll tester and measurement of pitch, concentricity, run out and involute profile.	U	PO1, PO6
CO7	Understand laser interferometers and Coordinate measuring machines.	U	PO1, PO6
CO8	Explain measurement systems, transducers, intermediate modifying devices and terminating devices.	U	PO1, PO6
CO9	Describe functioning of force, torque, pressure, strain and temperature measuring devices.	U	PO1, PO6
	Total Hours of Instructions		50

MODULE -1

Introduction to Metrology: Definition, objectives and concept of metrology, Need of inspection, Principles, process, methods of measurement, Classification and selection of measuring instruments and systems. Accuracy, precision and errors in measurement.

System of measurement, Material Standard, Wavelength Standards, Subdivision of standards, Line and End standards, Classification of standards and Traceability, calibration of End bars (Numericals), standardization.

Linear Measurement and angular measurements:

Slip gauges- Indian standards on slip gauge, method of selection of slip gauge, stack of slip gauge, adjustable slip gauge, wringing of slip gauge, care of slip gauge, slip gauge accessories, problems on building of slip gauges (M87, M112). Measurement of angles- sine bar, sine center, angle gauges, optical instruments for angular measurements, Auto collimator-applications for measuring straightness and squareness. **10 Hours**

MODULE -2

System of Limits, Fits, Tolerance and Gauging:

Definition of tolerance, Specification in assembly, Principle of interchangeability and selective assembly, limits of size, Indian standards, concept of limits of size and tolerances, definition of fits, hole basis system, shaft basis system, types of fits and their designation (IS 919-1963), geometric tolerance, position-tolerances.

Classification of gauges, brief concept of design of gauges (Taylor's principles), Wear allowance on gauges, Types of gauges-plain plug gauge, ring gauge, snap gauge, limit gauge and gauge materials.

Comparators:

Functional requirements, classification, mechanical- Johnson Mikrokator, sigma comparators, dial indicator, electricalprinciples, , LVDT, Pneumatic- back pressure gauges, solex comparators and optical comparators- Zeiss ultra-optimeter.

10 Hours

MODULE -3

Measurement of screw thread and gear:

Terminology of screw threads, measurement of major diameter, minor diameter, pitch, angle and effective diameter of screw threads by 2-wire and 3- wire methods, best size wire. Screw thread gauges, Tool maker's microscope.

Gear tooth terminology, tooth thickness measurement using constant chord method, addendum comparator method and base tangent method, measurement of pitch, concentricity, run out, and involute profile. Gear roll tester for composite error.

Advances in metrology:

Basic concepts of lasers, advantages of lasers, laser interferometers, types, applications. Basic concepts of Coordinate Measuring Machines-constructional features, applications. **10 Hours**

MODULE -4

Measurement systems and basic concepts of measurement methods:

Definition, significance of measurement, generalized measurement system, definitions and concept of accuracy, precision, calibration, threshold, sensitivity, hysteresis, repeatability, linearity, loading effect, system response-time delay. Errors in measurement, classification of errors. Transducers, transfer efficiency, primary and secondary transducers, electrical, mechanical, electronic transducers, advantages of each type transducers.

Intermediate modifying and terminating devices: Mechanical systems, inherent problems, electrical intermediate modifying devices, input circuitry, ballast circuit, electronic amplifiers. Terminating devices, Cathode ray oscilloscope, Oscillographs. 10 Hours

MODULE -5

Force, Torque and Pressure Measurement:

Direct methods and indirect method, force measuring inst. Torque measuring inst., Types of dynamometers, Absorption dynamometer, Prony brake and rope brake dynamometer, and power measuring instruments. Pressure measurement, principle, use of elastic members, Bridgeman gauge, McLeod gauge, Pirani gauge.

Measurement of strain and temperature:

Theory of strain gauges, types, electrical resistance strain gauge, preparation and mounting of strain gauges, gauge factor, methods of strain measurement. Temperature Compensation, Wheatstone bridge circuit, orientation of strain gauges for force and torque, Strain gauge based load cells and torque sensors.

Resistance thermometers, thermocouple, law of thermocouple, materials used for construction, pyrometer, optical pyrometer. **10 Hours**

TEXT BOOKS:

- 1. Mechanical Measurements, Beckwith Marangoni and Lienhard, Pearson Education, 6th Ed., 2006.
- 2. Engineering Metrology, R.K. Jain, Khanna Publishers, Delhi, 2009.

REFERENCE BOOKS:

- 1. Engineering Metrology and Measurements, Bentley, Pearson Education.
- 2. Theory and Design for Mechanical Measurements, III edition, Richard S Figliola, Donald E Beasley, WILEY India Publishers.
- 3. Engineering Metrology, Gupta I.C., Dhanpat Rai Publications.
- 4. Deoblin's Measurement system, Ernest Deoblin, Dhanesh manick, McGraw –Hill.
- 5. Engineering Metrology and Measurements, N.V.Raghavendra and L.Krishnamurthy, Oxford University Press.

Scheme of Examination:

Two question to be set from each module. Students have to answer five full questions, choosing at least one full question from each module.

MATERIALS TESTING LAB

[AS PER CHOICE ASED CREDIT SYSTEM (CBCS) SCHEME]

SEMESTER – III / IV				
Subject Code	15MEL37A/47A	IA Marks	20	
Number of Lecture Hrs / Week	01	Exam Marks	80	
No of Practical Hours / Week	02	Exam Hours	03	
CREDITS – 02				

COURSE OBJECTIVES

Students are expected-

- 1. To learn the concept of the preparation of samples to perform characterization such as microstructure, volume fraction of phases and grain size.
- 2. To understand mechanical behavior of various engineering materials by conducting standard tests.
- 3. To learn material failure modes and the different loads causing failure.
- 4. To learn the concepts of improving the mechanical properties of materials by different methods like heat treatment, surface treatment etc.

COURSE OUTCOMES

At the end of the course, the students will be able to:

- 1. Acquire experimentation skills in the field of material testing.
- 2. 2. Develop theoretical understanding of the mechanical properties of materials by performing experiments.
- 3. Apply the knowledge to analyze a material failure and determine the failure inducing agent/s.
- 4. Apply the knowledge of testing methods in related areas.
- 5. Know how to improve structure/behavior of materials for various industrial applications.

PART – A

- 1. Preparation of specimen for Metallographic examination of different engineering materials. To report microstructures of plain carbon steel, tool steel, gray C.I, SG iron, Brass, Bronze & composites.
- Heat treatment: Annealing, normalizing, hardening and tempering of steel. Metallographic specimens of heat treated components to be supplied and students should report microstructures of furnace cooled, water cooled, air cooled, tempered steel. Students should be able to distinguish the phase changes in a heat treated specimen compared to untreated specimen.
- 3. Brinell, Rockwell and Vickers's Hardness tests on untreated and heat treated specimens.
- 4. To study the defects of Cast and Welded components using

Non-destructive tests like:

- a) Ultrasonic flaw detection
- b) Magnetic crack detection
- c) Dye penetration testing.

PART – B

- 5. Tensile, shear and compression tests of steel, aluminum and cast iron specimens using Universal Testing Machine
- 6. Torsion Test on steel bar.
- 7. Bending Test on steel and wood specimens.
- 8. Izod and Charpy Tests on Mild steel and C.I Specimen.
- 9. To study the wear characteristics of ferrous and non-ferrous materials under different parameters.
- 10. Fatigue Test (demonstration only).

Students should make observations on nature of failure and manifestations of failure in each of the experiments apart from reporting values of mechanical properties determined after conducting the tests.

Scheme of Examination:

ONE question from part -A:	25 Marks
ONE question from part -B:	40 Marks
Viva -Voice:	15 Marks

Total : 80 Marks

KINEMATICS OF MACHINES

Subject Code : 15ME42 Hours/Week : 04 Total Hours : 50 IA Marks : 20 Exam Hours : 03 Exam Marks : 80

Course objectives

Students will

- 1. Familiarize with mechanisms and motion analysis of mechanisms.
- 2. Understand methods of mechanism motion analysis and their characteristics.
- 3. Analyse motion of planar mechanisms, gears, gear trains and cams.

Course outcomes

Students will be able to

- 1. Identify mechanisms with basic understanding of motion.
- 2. Comprehend motion analysis of planar mechanisms, gears, gear trains and cams.
- 3. Carry out motion analysis of planar mechanisms, gears, gear trains and cams.

MODULE - 1

Introduction: Definitions: Link, kinematic pairs, kinematic chain, mechanism, structure, degrees of freedom, Classification links, Classifiction of pairs based on type of relative motion, Grubler's criterion, mobility of mechanism, Groshoff's criteria, inversions of Grashoff's chain.

Mechanisms: Quick return motion mechanisms-Drag link mechanism, Whitworth mechanism and Crank and slotted lever Mechanism. Oldham's coupling, Straight line motion mechanisms Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisms:Geneva wheel mechanism, Ratchet and Pawl mechanism, toggle mechanism, pantograph, condition for correct steering, Ackerman steering gear mechanism. **10 Hours**

MODULE -2

Velocity and Acceleration Analysis of Mechanisms (Graphical Method): Velocity and acceleration analysis of four bar mechanism, slider crank mechanism. Mechanism illustrating Coriolis component of acceleration. Angular velocity and angular acceleration of links, velocity of rubbing.

Velocity Analysis by Instantaneous Center Method: Definition, Kennedy's theorem, Determination of linear and angular velocity using instantaneous center method.

Klein's Construction: Analysis of velocity and acceleration of single slider crank mechanism. 10 Hours

MODULE – 3

Velocity and Acceleration Analysis of Mechanisms (Analytical Method): Velocity and acceleration analysis of four bar mechanism, slider crank mechanism using complex algebra method.

Freudenstein's equation for four bar mechanism and slider crank mechanism. **Function Generation** for four bar mechanism.

10 Hours

Module – 4

Spur Gears: Gear terminology, law of gearing, path of contact, arc of contact, contact ratio of spur gear. Interference in involute gears, methods of avoiding interference, back lash, condition for minimum number of teeth to avoid interference, expressions for arc of contact and path of contact

Gear Trains: Simple gear trains, compound gear trains. Epicyclic gear trains:aAlgebraic and tabular methods of finding velocity ratio of epicyclic gear trains, torque calculation in epicyclic gear trains.

10 Hours

Cams: Types of cams, types of followers. displacement, velocity and acceleration curves for uniform velocity, Simple Harmonic Motion, Uniform Acceleration Retradation, Cycloidal motion. Cam profiles: disc cam with reciprocating / oscillating follower having knife-edge, roller and flat-face follower inline and offset.

Analysis of Cams: Analysis of arc cam with flat faced follower.

10 Hours

Graphical Solutions may be obtained either on the Graph Sheets or in the Answer Book itself.

TEXT BOOKS:

- 1. Rattan S.S, Theory of Machines, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 4th Edition, 2014.
- 2. Ambekar A. G., Mechanism and Machine Theory, PHI, 2009.

REFERENCE BOOKS:

- 1. Michael M Stanisic, Mechanisms and Machines-Kinematics, Dynamics and Synthesis, Cengage Learning, 2016.
- 2. Sadhu Singh, **Theory of Machines**, Pearson Education (Singapore)Pvt. Ltd, Indian Branch New Delhi, 2nd Edi. 2006.

NOTE: Feedback and suggestions are invited till 20th January 2017

IV - SEMESTER: MECHANICAL ENGINEERING

Course	Code	Credits	L-T-P	Assessment		Exam
				SEE	CIA	Duration
Applied Thermodynamics	15ME43	04	3-2-0	80	20	3Hrs

Courselearning objectives:

- To have a working knowledge of basic performance of Gas power cycles.
- To Calculate the forces exerted by a fluid at rest on submerged surfaces and understand the force of buoyancy
- To understand and evaluate the performance of steam power cycles their various Engineering applications
- To know how fuel burns and their thermodymic properties.
- To Understand mechanism of power transfer through belt, rope, chain and gear drives in I C Engines
- To determine performance parameters of refrigeration and air-conditioning systems.
- Evaluate the performance parameters of reciprocating air compressor as a function of receiver pressure.

Module - I

Gas Power Cycles :Air standard cycles; Carnot, Otto, Diesel, Dual and Stirling cycles, p-v and T -s diagrams, description, efficiencies and mean effective pressures. Comparison of Otto and Diesel cycles. Gas turbine (Brayton) cycle; description and analysis. Regenerative gas turbine cycle. Inter-cooling and reheating in gas turbine cycles.

Jet propulsion: Introduction to the principles of jet propulsion, turbojet, turboprop, Ramjet and turbofan engines and their processes . Principles of rocket propulsion, Introduction to rocket engine.10 Hours

Module –II

Vapour Power Cycles: Carnotvapour power cycle, drawbacks as a reference cycle. Simple Rankine cycle; description, T-s diagram, analysis for performance. Comparison of Carnot and Rankine cycles. Effects of pressure and temperature on Rankine cycle performance. Actual vapourpower cycles. Ideal and practical regenerative Rankine cycles, open and closed feed water heaters. Reheat Rankine cycle. Characteristics of an Ideal working fluid in Vapour power cycles, Binary Vapour cycles

10 Hours

Module –III

Combustion Thermodynamics: Theoretical (Stoichiometric) air for combustion of fuels. Excess air, mass balance, Exhaust gas analysis, A/F ratio. Energy balance for a chemical reaction, enthalpy of formation, enthalpy and internal energy of combustion. Combustion efficiency. Dissociation and equilibrium, emissions.

NOTE: Feedback and suggestions are invited till 20th January 2017

I.C.Engines: Classification of IC engines, Combustion of SI engine and CI engine, Detonation and factors affecting detonation, Performance analysis of I.C Engines, heat balance, Morse test, IC Engine fuels, Ratings and Alternate Fuels. Automotive Pollutions and its effects on environment. 10 Hours

Module –IV

Refrigeration Cycles:Vapour compression refrigeration system; description, analysis, refrigerating effect. Capacity, power required, units of refrigeration, COP, Refrigerants and their desirable properties, alternate Refrigerants. Any one case study on cold storage or industrial refrigerator. Air cycle refrigeration; reversed Carnot cycle, reversed Brayton cycle,Vapour absorption refrigeration system. Steam jet refrigeration.

Pscychrometrics and Air-conditioning Systems:Properties of Atmospheric air, and Psychometric properties of Air, Psychometric Chart, Analyzing Air-conditioning Processes; Heating, Cooling, Dehumidification and Humidification, Evaporative Cooling. Adiabatic mixing of twomoist air streams. Cooling towers.

10 Hours

Module –V

Reciprocating Compressors: Operation of a single stage reciprocating compressors. Work input through p-v diagram and steady state steady flow analysis. Effect of Clearance and Volumetric efficiency. Adiabatic, Isothermal and Mechanical efficiencies. Multi-stage compressor, saving in work, Optimum intermediate pressure, Inter-cooling, Minimum work for compression.

Steam nozzles: Flow of steam through nozzles, Shape of nozzles, effect of friction, Critical pressure ratio, Supersaturated flow.

10 Hours

Course outcomes

Students will be able to

- Apply thermodynamic concepts to analyze the performance of gas power cycles including propulsion systems.
- Evaluate the performance of steam turbine components.
- Understand combustion of fuels and combustion processes in I C engines including alternate fuels and pollution effect on environment.
- Apply thermodynamic concepts to analyze turbo machines.
- Determine performance parameters of refrigeration and air-conditioning systems.
- Understand the principles and applications of refrigeration systems.

NOTE: Feedback and suggestions are invited till 20th January 2017

- Analyze air-conditioning processes using the principles of psychrometry and Evaluate cooling and heating loads in an air-conditioning system.
- Understand the working, applications, relevance of air and identify methods for performance improvement.

Text Books:

- 1. Thermodynamics an engineering approach, by Yunus A. Cenegal and Michael A. Boles. Tata McGraw hill Pub. Sixth edition, 2008.
- 2. Basic and Applied Thermodynamics" by P.K. Nag, Tata McGraw Hill, 2nd Edi. 2009
- 3. Fundamentals of Thermodynamics by G.J. Van Wylen and R.E. Sonntag, Wiley Eastern. Fourth edition 19993.

Reference Books:

- 1. Thermodynamics for engineers, Kenneth A. Kroos and Merle C. Potter, Cengage Learning, 2016
- 2. Principles of Engineering Thermodynamics, Michael J, Moran, Howard N. Shapiro, Wiley, 8th Edition
- 3. An Introduction to Thermo Dynamics byY.V.C.Rao, Wiley Eastern Ltd, 2003.
- 4. Thermodynamics by Radhakrishnan. PHI, 2nd revised edition.
- 5. I.C Engines by Ganeshan.V. Tata McGraw Hill, 4rth Edi. 2012.
- 6. I.C.Engines by M.L.Mathur& Sharma. DhanpatRai& sons- India

E- Learning

- Nptel.ac.in
- VTU, E- learning
- MOOCS
- Open courseware

Scheme of Examination:

Two question to be set from each module. Students have to answer five full questions, choosing at least one full question from each module.

IV- SEMESTER: MECHANICAL ENGINEERING

Course	Code	Credits	L-T-P	Assessment		Exam Duration
				SEE	CIA	
Fluid Mechanics	15ME44	04	3-2-0	80	20	3Hrs

Course objectives:

- To have a working knowledge of the basic properties of fluids and understand the continuum approximation
- To Calculate the forces exerted by a fluid at rest on submerged surfaces and understand the force of buoyancy
- To understand the flow characteristic and dynamics of flow field for various Engineering applications
- To know how velocity changes and energy transfers in fluid flows are related to forces and torques and to understand why designing for minimum loss of energy in fluid flows is so important.
- To discuss the main properties of laminar and turbulent pipe flow and appreciate their differences and the concept of boundary layer theory.
- Understand the concept of dynamic similarity and how to apply it to experimental modeling
- To appreciate the consequences of compressibility in gas flow and understand the effects of friction and heat transferon compressible flows

MODULE -1

Basics:Introduction, Properties of fluids-mass density, weight density, specific volume, specific gravity, viscosity, surface tension, capillarity, vapour pressure, compressibility and bulk modulus. Concept of continuum, types of fluids etc,pressure at a point in the static mass of fluid, variation of pressure, Pascal's law,Absolute, gauge, atmospheric and vacuum pressurespressure measurement by simple, differential manometers and mechanical gauges.

Fluid Statics: Totalpressure and center of pressure for horizontal plane, vertical plane surface and inclined plane surface submerged in static fluid.Buoyancy, center of buoyancy, meta center and meta centric heightits application in shipping, stability of floating bodies.

10Hrs

MODULE -2

Fluid Kinematics and Dynamics:

Fluid Kinematics: Types of Flow-steady, unsteady, uniform, non-uniform, laminar, turbulent, one, two and three dimensional, compressible, incompressible, rotational, irrotational, stram lines, path lines, streak lines, velocity components, convective and local acceleration, velocity potential, stream function, continuity equation in Cartesian co-ordinates. Rotation, vorticity and circulation, Laplace equation in velocity potential and Poisson equation in stream function, flow net, Problems.

Fluid Dynamics:

Momentum equation, Impacts of jets- force on fixed and moving vanes, flat and curved. Numericals.Euler's equation, Integration of Euler's equation to obtain Bernoulli's equation, Bernoulli's theorem, Application of Bernoulli's theorem such as venture meter, orifice meter, rectangular and triangular notch, pitot tube, orifices etc., related numericals.

12 Hours

MODULE -3

Laminar and turbulent flow:Reynods Number, Entrance flow and Developed flow,Navier- Stokes Equation (no derivation),Laminar flow between parallel plates,Poiseuille equation – velocity profile, Couette flow,Fully developed laminar flow in circular pipes, Hagen - Poiseuille equation,related numericals.

Energy consideration in pipe flow, Loss of Pressure Head due to Fluid Friction, DarcyWeishach formula, major and minor losses in pipes,Commercial pipe, Colebrook equation, Moody equation/ diagram. Pipes in series, parallel, equivalent pipe, Related Numericals and simple pipe design problems.

10Hrs

MODULE -4

Flow over bodies:Development of boundary layer, Prandtl'sboundary layer equations, Blasius solution, laminar layer over a flat plate, boundary layer separation and its control.

Basic concept of Lift and Drag, Types of drag, Co-efficient of drag and lift, streamline body and bluff body, flow around circular bodies and airfoils, Lift and drag on airfoil, Numericals.
Dimensional analysis: Need for dimensional analysis, Dimensions and units, Dimensional Homogeneity and dimensionless ratios, methods of dimensional analysis, Rayleigh's method, Buckingham Pi theorem, Similitude and Model studies. Numericals.

10Hrs

MODULE -5

Compressible Flows:Introduction, thermodynamicrelations of perfect gases, internal energy andenthalpy, speed of sound, pressure field due to a moving source,basic Equations for one-dimensional flow, stagnation and sonic Properties, normal and oblique shocks.

Introduction to CFD: Necessity, limitations, philosophy behind CFD, applications.

08Hrs

Course outcomes:

Students will be able to

- CO1: Identify and calculate the key fluid properties used in the analysis of fluid behavior.
- CO2: Understand and apply the principles of pressure, buoyancy and floatation
- CO3:Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical and chemical engineering.
- CO4:Understand and apply the principles of fluid kinematics and dynamics.
- CO5:Understand the concept of boundary layer in fluid flow and apply dimensional analysis to form dimensionless numbers in terms of input output variables.
- CO6: Understand the basic concept of compressible flow and CFD

Text Books:

- 1. Fluid Mechanics (SI Units), Yunus A. Cengel John M.Cimbala, 3rd Ed., Tata McGraw Hill, 2014.
- 2. Fluid Mechanics, F M White, McGraw Hill Publications Eighth edition. 2016
- 3. Mechanics of Fluids, Merle C. Potter, Devid C. Wiggerrt, Bassem H. Ramadan, Cengage learning, Fourth editions 2016.

Reference Books:

- 1. Fundamentals of Fluid Mechanics by Munson, Young, Okiishi& Huebsch, John Wiley Publications.7th edition.
- 2. Fluid Mechanics, Pijush.K.Kundu, IRAM COCHEN, ELSEVIER, 3rd Ed. 2005.

NOTE: Feedback and suggestions are invited till 20th January 2017

- 3. Fluid Mechanics, John F.Douglas, Janul and M.Gasiosek and john A.Swaffield, Pearson Education Asia, 5th ed., 2006.
- 4. Introduction to Fluid Mechanics by Fox, McDonald, John Wiley Publications,8th edition.
- E- Learning
 - Nptel.ac.in
 - VTU, E- learning
 - MOOCS
 - Open courseware

Scheme of Examination:

Two question to be set from each module. Students have to answer five full questions, choosing at least one full question from each module.

MACHINE TOOLS AND OPERATIONS

[AS PER CHOICE ASED CREDIT SYSTEM (CBCS) SCHEME] SEMESTER - III / IV

E						
Subject Code	15 ME 45 B	IA Marks	20			
Number of Lecture Hrs / Week	04	Exam Marks	80			
Total Number of Lecture Hrs	50	Exam Hours	03			
CREDITS – 04						

COURSE OBJECTIVES:

- To introduce students to different machine tools in order to produce components having different shapes and sizes.
- To enrich the knowledge pertaining to relative motion and mechanics required for various machine tools.
- To develop the knowledge on mechanics of machining process and effect of various parameters on economics of machining.

COURSE OUTCOMES:

- Explain the construction & specification of various machine tools.
- Describe various machining processes pertaining to relative motions between tool & work piece.
- Discuss different cutting tool materials, tool nomenclature & surface finish.
- Apply mechanics of machining process to evaluate machining time.
- Analyze tool wear mechanisms and equations to enhance tool life and minimize machining cost.

MODULE 1 MACHINE

TOOLS

Introduction, Classification, construction and specifications of lathe, drilling machine, milling machine, boring machine, broaching machine, shaping machine, planing machine, grinding machine [Simple sketches showing major parts of the machines]

10 hours

MODULE 2

MACHINING PROCESSES

Introduction, Types of motions in machining, turning and Boring, Shaping, Planing and Slotting, Thread cutting, Drilling and reaming, Milling, Broaching, Gear cutting and Grinding, Machining parameters and related quantities.

[Sketches pertaining to relative motions between tool and work piece only]

10 Hours

MODULE 3

CUTTING TOOL MATERIALS, GEOMETRY AND SURFACE FINISH

Introduction, desirable Properties and Characteristics of cutting tool materials, cutting tool geometry, cutting fluids and its applications, surface finish, effect of machining parameters on surface finish.

NOTE: Feedback and suggestions are invited till 20th January 2017

Machining equations for cutting operations: Turning, Shaping, Planing, slab milling, cylindrical grinding and internal grinding, Numerical Problems

10 Hours

MODULE 4

MECHANICS OF MACHINING PROCESSES

Introduction, Chip formation, Orthogonal cutting, Merchants model for orthogonal cutting, Oblique cutting, Mechanics of turning process, Mechanics of drilling process, Mechanics of milling process, Numerical problems. 10 Hours

MODULE 5

TOOL WEAR, TOOL LIFE: Introduction, tool wear mechanism, tool wear equations, tool lifeequations, effect of process parameters on tool life, machinability, Numerical problemsECONOMICS OF MACHNING PROCESSES: Introduction, choice of feed, choice of cutting speed, toollife for minimum cost and minimum production time, machining at maximum efficiency, Numericalproblems10 Hours

TEXT BOOKS:

- 1. Fundamentals of metal cutting and Machine Tools, B.L. Juneja, G.S. Sekhon and Nitin Seth, New Age International Publishers 2nd Edition, 2003
- 2. All about Machine Tools, Heinrich Gerling, New Age International Publishers revised 2nd Edition, 2006

REFERENCE BOOKS:

- 1. Fundamental of Machining and Machine Tools, Geoffrey Boothroyd and Winston A. Knight, CRC Taylor & Francis, Third Edition.
- 2. **"Manufacturing Technology,** Vol 2, P N Rao, McGraw Hill Education, 3rd Edition
- 3. Metal cutting principles, Milton C. Shaw, Oxford University Press, Second Edition, 2005.

Scheme of Examination:

Two question to be set from each module. Students have to answer five full questions, choosing at least one full question from each module.

MACHINE SHOP

[AS PER CHOICE ASED CREDIT SYSTEM (CBCS) SCHEME] SEMESTER – III / IV							
Subject Code	15MEL48 B	IA Marks	20				
Number of Lecture Hrs / Week	01	Exam Marks	80				
No of Practical Hours / Week	02	Exam Hours	03				
CREDITS – 02							

.

COURSE OBJECTIVES

- To provide an insight to different machine tools, accessories and attachments
- To train students into machining operations to enrich their practical skills
- To inculcate team qualities and expose students to shop floor activities
- To educate students about ethical, environmental and safety standards

COURSE OUTCOMES

At the end of the course, the students will be able to

COs	Description	CL	POs
CO1	Perform turning , facing , knurling , thread cutting, tapering , eccentric turning and allied operations	A	PO1, PO6, PO9
CO2	Perform keyways / slots , grooves etc using shaper	А	PO1, PO6, PO9
CO3	Perform gear tooth cutting using milling machine	А	PO1, PO6, PO9
CO4	Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder	U	PO1, PO6
CO5	Understand Surface Milling/Slot Milling	U	PO1, PO6
CO6	Demonstrate precautions and safety norms followed in Machine Shop	U	PO8
C07	Exhibit interpersonal skills towards working in a team	U	PO9

PART – A

Preparation of three models on lathe involving

Plain turning, Taper turning, Step turning, Thread cutting, Facing, Knurling, Drilling, Boring, Internal Thread cutting and Eccentric turning.

PART – B

Cutting of V Groove/ dovetail / Rectangular groove using a shaper Cutting of Gear Teeth using Milling Machine

PART –C For demonstration

Demonstration of formation of cutting parameters of single point cutting tool using bench grinder / tool & cutter grinder. Demonstration of surface milling /slot milling

One Model from Part – A	40
Marks One Model from Part	— B
	20
Marks	
Viva – Voce	20
<u>Marks</u> Total	80
Marks	

(Professional Elective-I)

Subject Code			15ME554			
Teaching Hours / Week			IA Marks	20		
Lecture	e Tutorial Practical		Exam Marks	80		
03	00	00	Exam Hours	03		
CREDITS – 03						

[AS PER CHOICE BASED CREDIT SYSTEM (CBCS) SCHEME] SEMESTER – V

Course Outcomes

On completion of the course, the students will be able to

- 1. Understand the compare traditional and non-traditional machining process and recognize the need for Non-traditional machining process.
- 2. Understand the constructional features, performance parameters, process characteristics, applications, advantages and limitations of USM, AJM and WJM.
- 3. Identify the need of Chemical and electro-chemical machining process along with the constructional features, process parameters, process characteristics, applications, advantages and limitations.
- 4. Understand the constructional feature of the equipment, process parameters, process characteristics, applications, advantages and limitations EDM & PAM.
- 5. Understand the LBM equipment, LBM parameters, and characteristics. EBM equipment and mechanism of metal removal, applications, advantages and limitations LBM & EBM.

MODULE 1

INTRODUCTION

Introduction to Non-traditional machining, Need for Non-traditional machining process, Comparison between traditional and non-traditional machining, general classification Nontraditional machining processes, classification based on nature of energy employed in machining, selection of non-traditional machining processes, Specific advantages, limitations and applications of non-traditional machining processes. **08 hours**

MODULE 2

Ultrasonic Machining (USM): Introduction, Equipment and material process, Effect of process parameters: Effect of amplitude and frequency, Effect of abrasive grain diameter, effect of slurry, tool & work material. Process characteristics: Material removal rate, tool wear, accuracy, surface finish, applications, advantages & limitations of USM.

Abrasive Jet Machining (AJM): Introduction, Equipment and process of material removal, process variables: carrier gas, type of abrasive, work material, stand-off distance (SOD).Process characteristics-Material removal rate, Nozzle wear, accuracy & surface finish. Applications, advantages & limitations of AJM.

 Water Jet Machining (WJM): Equipment & process, Operation, applications, advantages and limitations of WJM.
 08

hours

MODULE 3

ELECTROCHEMICAL MACHINING (ECM)

Introduction, Principle of electro chemical machining: ECM equipment, elements of ECM operation, Chemistry of ECM. ECM Process characteristics: Material removal rate, accuracy, surface finish.

Process parameters: Current density, Tool feed rate, Gap between tool & work piece, velocity of electrolyte flow, type of electrolyte, its concentration temperature, and choice of electrolytes. ECM Tooling: ECM tooling technique & example, Tool & insulation materials.

Applications ECM: Electrochemical grinding and electrochemical honing process. Advantages, disadvantages and application of ECG, ECH.

CHEMICAL MACHINING (CHM)

Elements of the process: Resists (maskants), Etchants. Types of chemical machining processchemical blanking process, chemical milling process.

Process characteristics of CHM: material removal rate, accuracy, surface finish, advantages, limitations and applications of chemical machining process. **10 hours**

MODULE 4

ELECTRICAL DISCHARGE MACHINING (EDM)

Introduction, mechanism of metal removal, EDM equipment: spark erosion generator (relaxation type), dielectric medium-its functions & desirable properties, electrode feed control system. Flushing types; pressure flushing, suction flushing, side flushing, pulsed flushing. EDM process parameters: Spark frequency, current & spark gap, surface finish, Heat Affected Zone. Advantages, limitations & applications of EDM, Electrical discharge grinding, Traveling wire EDM.

PLASMA ARC MACHINING (PAM)

Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma torch, process parameters, process characteristics. Safety precautions. Safety precautions, applications, advantages and limitations. **08 hours**

MODULE 5

LASER BEAM MACHINING (LBM)

Introduction, generation of LASER, Equipment and mechanism of metal removal, LBM parameters and characteristics, Applications, Advantages & limitations.

ELECTRON BEAM MACHINING (EBM)

Introduction, Principle, equipment and mechanism of metal removal, applications, advantages and limitations. **08**

hours

Text Books:

- 1. Modern Machining Process by P.C Pandey and H S Shah, McGraw Hill Education India Pvt. Ltd. 2000
- 2. Production technology, HMT, McGraw Hill Education India Pvt. Ltd. 2001

Reference Books

1. New Technology, Dr. Amitabha Bhattacharyya, The Institute of Engineers (India), 2000

NOTE: Feedback and suggestions are invited till 20th January 2017

2. Modern Machining process, Aditya, 2002.

FINITE ELEMENT METHOD

Sub Code	:	15ME61	IA Marks	: 20
Hrs/ Week	:	03L+ 02T,	Exam Hours	: 03
Credits	:	04		
Total Hrs.	:	54	Exam Marks	: 80

Course Objectives:

- 1. To learn basic principles of finite element analysis procedure .
- 2. To learn the theory and characteristics of finite elements that represent engineering structures.
- 3. To learn and apply finite element solutions to structural, thermal, dynamic problem to develop the knowledge and skills needed to effectively evaluate finite element analyses.

Course outcomes:

Upon successful completion of this course you should be able to:

- 1. Understand the concepts behind formulation methods in FEM.
- 2. Identify the application and characteristics of FEA elements such as bars, beams, plane and iso-parametric elements.
- 3. Develop element characteristic equation and generation of global equation.
- 4. Able to apply suitable boundary conditions to a global equation for bars, trusses, beams, circular shafts, heat transfer, fluid flow, axi symmetric and dynamic problems and solve them displacements, stress and strains induced.

Module I

Introduction to Finite Element Method : General description of the finite element method. NOTE: Feedback and suggestions are invited till 20th January 2017, Engineering applications of finite element method. Boundary conditions: homogeneous and nonhomogeneous for structural, heat transfer and fluid flow problems. Potential energy method, Rayleigh Ritz method, Galerkin's method, Displacement method of finite element formulation. Convergence criteria, Discretisation process, Types of elements: 1D, 2D and 3D, Node numbering, Location of nodes. Strain displacement relations, Stress strain relations, Plain stress and Plain strain conditions, temperature effects.

NOTE: Feedback and suggestions are invited till 20th January 2017

Interpolation models: Simplex, complex and multiplex elements, Linear interpolation polynomials in terms of global coordinates 1D, 2D, 3D Simplex Elements.

Module II

One-Dimensional Elements-Analysis of Bars and Trusses,

Linear interpolation polynomials in terms of local coordinate's for 1D, 2D elements. Higher order interpolation functions for 1D quadratic and cubic elements in natural coordinates, , , Constant strain triangle, Four-Nodded Tetrahedral Element (TET 4), Eight-Nodded Hexahedral Element (HEXA 8), 2D isoparametric element, Lagrange interpolation functions, Numerical integration: Gaussian quadrature one point, two point formulae, 2D integrals. Fore terms: Body force, traction force and point loads,

Numerical Problems: Solution for displacement, stress and strain in 1D straight bars, stepped bars and tapered bars using elimination approach and penalty approach, Analysis of trusses.

12 Hours

12Hours

Module III

Beams and Shafts: Boundary conditions, Load vector, Hermite shape functions, Beam stiffness matrix based on Euler-Bernoulli beam theory, Examples on cantilever beams, propped cantilever beams, Numerical problems on simply supported, fixed straight and stepped beams using direct stiffness method with concentrated and uniformly distributed load.

Torsion of Shafts: Finite element formulation of shafts, determination of stress and twists in circular shafts.

08 Hours

Module IV

Heat Transfer: Basic equations of heat transfer: Energy balance equation, Rate equation: conduction, convection, radiation, energy generated in solid, energy stored in solid, 1D finite element formulation using vibrational method, Problems with temperature gradient and heat fluxes, heat transfer in composite sections, straight fins.

Fluid Flow: Flow through a porous medium, Flow through pipes of uniform and stepped sections, Flow through hydraulic net works.

10 Hours

Module V

Axi-symmetric Solid Elements: Derivation of stiffness matrix of axisymmetric bodies with triangular elements, Numerical solution of axisymmetric triangular element(s) subjected to surface forces, point loads, angular velocity, pressure vessels.

NOTE: Feedback and suggestions are invited till 20th January 2017

Dynamic Considerations: Formulation for point mass and distributed masses, Consistent element mass matrix of one dimensional bar element, truss element, axisymmetric triangular element, quadrilateral element, beam element. Lumped mass matrix of bar element, truss element, Evaluation of eigen values and eigen vectors, Applications to bars, stepped bars, and beams.

12 Hours

Text Books:

- Logan, D. L., A first course in the finite element method,6th Edition, Cengage Learning, 2016.
- 2. Rao, S. S., Finite element method in engineering, 5th Edition, Pergaman Int. Library of Science, 2010.
- 3. Chandrupatla T. R., Finite Elements in engineering, 2nd Edition, PHI, 2013.

Reference Books:

- 1. J.N.Reddy, "Finite Element Method"- McGraw -Hill International Edition.Bathe K. J. Finite Elements Procedures, PHI.
- Cook R. D., et al. "Concepts and Application of Finite Elements Analysis" 4th Edition, Wiley & Sons, 2003.

Computer Integrated Manufacturing

[AS PER CHOICE BASED CREDIT SYSTEM (CBCS)] SEMESTER – VI

Subject Code	15ME62	IA Marks	20	
No. Of Credits	04	Exam Marks	80	
Hrs/Week	04	Exam Hours	03	Course
Total Hours	50			Objectives
		L		:

CLO1	To impart knowledge of CIM and Automation and different concepts of automation by developing mathematical models.
CLO2	To make students to understand the Computer Applications in Design and Manufacturing [CAD / CAM) leading to Computer integrated systems. Enable them to perform various transformations of entities on display devices.
CLO3	To expose students to automated flow lines, assembly lines, Line Balancing Techniques, and Flexible Manufacturing Systems.
CLO4	To expose students to computer aided process planning, material requirement planning, capacity planning etc.
CLO5	To expose the students to CNC Machine Tools, CNC part programming, and industrial robots.
CLO6	To introduce the students to concepts of Additive Manufacturing, Internet of Things, and Industry 4.0 leading to Smart Factory.

Course Outcomes:

After studying this course, students will be able to:

CO1	Able to define Automation, CIM, CAD, CAM and explain the differences between these
	concepts.
	Solve simple problems of transformations of entities on computer screen.
CO2	Explain the basics of automated manufacturing industries through mathematical models and analyze different types of automated flow lines.
CO3	Analyze the automated flow lines to reduce down time and enhance productivity.
CO4	Explain the use of different computer applications in manufacturing, and able to prepare
	part programs for simple jobs on CNC machine tools and robot programming.
CO5	Visualize and appreciate the modern trends in Manufacturing like additive manufacturing,
	Industry 4.0 and applications of Internet of Things leading to Smart Manufacturing.

Module - 1

1. Introduction to CIM and Automation:

Automation in Production Systems, automated manufacturing systems- types of **NOTE:** Feedback and suggestions are invited till 20th Lanuary 2017 integrated Manufacturing, computerized elements of a CIM system, CAD/CAM and CIM.

Mathematical models and matrices: production rate, production capacity, utilization and availability, manufacturing lead time, work-in- process, numerical problems.

5 Hours

Automated Production Lines and Assembly Systems: Fundamentals, system configurations, applications, automated flow lines, buffer storage, control of production line, analysis of transfer lines, analysis of flow lines without storage, partial automation, analysis of automated flow lines with storage buffer, fundamentals of automated assembly systems, numerical problems. 5 Hours

Module – 2

3. CAD and Computer Graphics Software: The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry.

Transformations: 2D transformations, translation, rotation and scaling, homogeneous transformation matrix, concatenation, numerical problems on transformations.

5 Hours

 Computerized Manufacture Planning and Control System: Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAPP, Production Planning and Control Systems, typical activities of PPC System, computer integrated production management system, Material Requirement Planning, inputs to MRP system, working of MRP, outputs and benefits, Capacity Planning, Computer Aided Quality Control, Shop floor control.

Module - 3

- Flexible Manufacturing Systems: Fundamentals of Group Technology and Flexible Manufacturing Systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, computer control systems, FMS planning and design issues, Automated Storage and Retrieval Systems, AS/RS and Automatic parts identification systems and data capture.
- 6. Line Balancing: Line balancing algorithms, methods of line balancing, numerical problems on largest candidate rule, Kilbridge and Wester method, and Ranked Positional Weights method, Mixed Model line balancing, computerized line balancing methods.
 5 Hours

Module - 4.

Computer Numerical Control: Introduction, components of CNC, CNC programming, manual part programming, G Codes, M Codes, programming of simple components in turning, drilling and milling systems, programming with canned cycles. Cutter radius compensations.

Hours

8. Robot Technology: Robot anatomy, joints and links, common robot configurations, robot control systems, accuracy and repeatability, end effectors, sensors in robotics. Robot programming methods: on-line and off-line methods. Robot industrial applications: material handling, processing and assembly and inspection.

5 Hours

NOTE: Feedback and suggestions are invited till 20th January 2017

9. Additive Manufacturing Systems: Basic principles of additive manufacturing, slicing CAD models for AM, advantages and limitations of AM technologies, Additive

manufacturing processes: Photo polymerization, material jetting, binder jetting, material extrusion, Powder bed sintering techniques, sheet lamination, direct

NOTE: Feedback and suggestions are invited till 20th January 2017

energy deposition techniques, applications of AM. Recent trends in manufacturing, Hybrid manufacturing. 5

Hours

 Future of Automated Factory: Industry 4.0, functions, applications and benefits. Components of Industry 4.0, Internet of Things (IOT), IOT applications in manufacturing, Big-Data and Cloud Computing for IOT, IOT for smart manufacturing, influence of IOT on predictive maintenance, industrial automation, supply chain optimization, supply-chain & logistics, cyber-physical manufacturing systems.
 5 Hours

Text Books:

- 1. Automation, Production Systems and Computer-Integrated Manufacturing, by Mikell P Groover, 4th Edition, 2015, Pearson Learning.
- 2. CAD / CAM Principles and Applications by P N Rao, 3rd Edition, 2015, Tata McGraw-Hill.
- 3. CAD/CAM/CIM, Dr. P. Radhakrishnan, 3rd edition, New Age International Publishers, New Delhi.

Reference Books:

- 1. "CAD/CAM" by Ibrahim Zeid, Tata McGraw Hill.
- 2. "Principles of Computer Integrated Manufacturing", S.Kant Vajpayee, 1999, Prentice Hall of India, New Delhi.
- 3. "Work Systems And The Methods, Measurement And Management of Work", Groover M. P., Pearson/Prentice Hall, Upper Saddle River, NJ, 2007.
- 4. "Computer Automation in Manufacturing", Boucher, T. O., Chapman & Hall, London, UK, 1996.
- "Introduction to Robotics: Mechanics And Control", Craig, J. J., 2nd Ed., Addison-Wesley Publishing Company, Readong, MA, 1989.
- 6. Internet of Things (IoT): Digitize or Die: Transform your organization. Embrace the digital evolution. Rise above the competition, by Nicolas Windpassinger, Amazon.
- 7. "Internet of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti (Universities Press)
- 8. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 2nd Ed. (2015), Ian Gibson, David W. Rosen, Brent Stucker
- 9. "Understanding Additive Manufacturing", Andreas Gebhardt, Hanser Publishers, 2011
- 10. Industry 4.0: The Industrial Internet of Things, Apress, 2017, by Alasdair Gilchrist

Course	Code	Crodits	I_T_D	Assessment		Exam	
Course	Code	CIEUILS	L-1-F	SEE	CIA	Duration	
Heat Transfer	15ME63	04	3-2-0	80	20	3Hrs	

VI - SEMESTER: MECHANICAL ENGINEERING

Pre-requisites: Basic and Applied Thermodynamics

Course learning objectives:

- Study the modes of heat transfer.
- Learn how to formulate and solve 1-D steady and unsteady heat conduction problems.
- Apply empirical correlations for fully-developed laminar, turbulent internal flows and external boundary layer convective flow problems.
- Study the basic principles of heat exchanger analysis and thermal design.
- Understand the principles of boiling and condensation including radiation heat transfer related engineering problems.

Module – I

Introductory concepts and definitions: Modes of heat transfer: Basic laws governing conduction, convection, and radiation heat transfer; Thermal conductivity; convective heat transfer coefficient; radiation heat transfer combined heat transfer mechanism, Types of boundary conditions. General Heat Conduction Equation: Derivation of the equation in (i) Cartesian, (ii) Polar and (iii) Spherical Co-ordinate Systems.

Steady-state one-dimensional heat conduction problems in Cartesian System: Steady-state onedimensional heat conduction problems (i) with and without heat generation and (ii) with and without varying thermal conductivity - in Cartesian system with various possible boundary conditions, Thermal Resistances in Series and in Parallel. **8 Hours**

Module – II

Critical Thickness of Insulation: Concept, Derivation, Extended Surfaces or Fins: Classification, Straight Rectangular and Circular Fins, Temperature Distribution and Heat Transfer Calculations, Fin Efficiency and Effectiveness, Applications

Transient [Unsteady-state] heat conduction: Definition, Different cases - Negligible internal thermal resistance, negligible surface resistance, comparable internal thermal and surface resistance, Lumped body, Infinite Body and Semi-infinite Body, Numerical Problems, Heisler and Grober charts.

9

Η						
	0				Мо	dule – III
	u					
	r					
	S					
		e	 	• •		

Numerical Analysis of Heat Conduction: Introduction, one-dimensional steady conduction, one dimensional unsteady conduction, two-dimensional steady and unsteady conduction, the difference equation, boundary conditions, solution methods, cylindrical coordinates and irregular boundaries. Thermal Radiation: Fundamental principles - Gray, White, Opaque, Transparent and Black bodies, Spectral emissive power, Wien's, Rayleigh-Jeans' and Planck's laws, Hemispherical Emissive Power, Stefan-Boltzmann law for the total emissive power of a black body, Emissivity and Kirchhoff's Laws, View factor, Net radiation exchange in a two-body enclosure, Typical examples for these enclosures, Radiation Shield.

Module - IV

NOTE: Feedback and suggestions are invited till 20th January 2017 Forced Convection: Boundary Layer Theory, Velocity and Thermal Boundary Layers, Prandtl number, Governing Equations – Continuity, Navier-Stokes and Energy equations, Boundary layer assumptions, Integral and Analytical solutions to above equations, Turbulent flow, Various empirical solutions, Forced convection flow over cylinders and spheres, Internal flows –laminar and turbulent flow solutions, Forced Convection Cooling of Electronic Devices.

NOTE: Feedback and suggestions are invited till 20th January 2017

Dr. Muzzamil Ahamed S

Free convection: Laminar and Turbulent flows, Vertical Plates, Vertical Tubes and Horizontal Tubes, Empirical solutions. **8 Hours**

Module – V

Heat Exchangers: Definition, Classification, applications, LMTD method, Effectiveness - NTU method, Analytical Methods, Fouling Factors, Chart Solution Procedures for solving Heat Exchanger problems: Correction Factor Charts and Effectiveness-NTU Charts, compact heat exchangers.

Heat Transfer with Phase Change: Introduction to boiling, pool boiling, Bubble Growth Mechanisms, Nucleate Pool Boiling, Critical Heat Flux in Nucleate Pool Boiling, Pool Film Boiling, Critical Heat Flux, Heat Transfer beyond the Critical Point, filmwise and dropwise Condensation, heat pipes, entrainment, wicking and boiling limitations. **9 Hours**

Course Outcomes

At the end of the course, the student will be able to:

- Understand the basic modes of heat transfer.
- Compute temperature distribution in steady-state and unsteady-state heat conduction
- Understand and interpret heat transfer through extended surfaces.
- Interpret and compute forced and free convective heat transfer.
- Explain the principles of radiation heat transfer and understand the numerical formula for heat conduction problems.
- Design heat exchangers using LMTD and NTU methods.

TEXT BOOKS:

- 1. Principals of heat transfer, Frank Kreith, Raj M. Manglik, Mark S. Bohn, Seventh Edition, Cengage learning, 2011.
- 2. Yunus A. Cengel Heat transfer, a practical approach, Fifth edition, Tata Mc Graw Hill.

REFERENCE BOOKS:

- 1. Heat nd mass transfer, Kurt C, Rolle, second edition, Cengage learning.
- 2. Heat Transfer, M. Necati Ozisik, A Basic Approach, McGraw Hill, New York, 2005.
- 3. Fundamentals of Heat and Mass Transfer, Incropera, F. P. and De Witt, D. P., 5th Edition, John Wiley and Sons, New York, 2006.
- 4. Heat Transfer, Holman, J. P., 9th Edition, Tata McGraw Hill, New York, 2008.

E-Books/Web references:

- 1. A Text book of Heat Transfer, John H Lienhard, 4th Edition,
- 2. NPTEL Heat Transfer course for Mechanical Engineering,
- http://nptel.ac.in/courses/112101097/
- 3. Heat Transfer, Chris Long & Naser Sayma, Bookboon.com

MOOCs:

1. Fluid flow, Heat and Mass Transfer-http://ocw.tudelft.nl/courses/appliedearth- sciences/fluid-flow-heat-mass-transfer/course

2. Heat transfer course- https://legacy.saylor.org/me204/Intro/

Scheme of Examination:

Two question to be set from each module. Students have to answer five full questions, choosing at least one full question from each module.

Course	Codo Crodita		ітр	Assessment		Exam
course	Coue	Creuits	L-1-P	SEE	CIA	Duration
Heat Transfer Lab	15MEL67	02	1-0-2	80	20	3Hrs

V - SEMESTER: MECHANICAL ENGINEERING

Co requisite Courses: Heat Transfer

Course Objectives:

- The primary objective of this course is to provide the fundamental knowledge necessary to understand the behavior of thermal systems.
- This course provides a detailed experimental analysis, including the application and heat transfer through solids, fluids, and vacuum. Convection, conduction, and radiation heat transfer in one and two dimensional steady and unsteady systems are examined.

PART – A

- 1. Determination of Thermal Conductivity of a Metal Rod.
- 2. Determination of Overall Heat Transfer Coefficient of a Composite wall.
- 3. Determination of Effectiveness on a Metallic fin.
- 4. Determination of Heat Transfer Coefficient in a free Convection on a
- 5.Determination of Heat Transfer Coefficient in a Forced Convention Flow through a Pipe.
- 6. Determination of Emissivity of a Surface.
- 7. Analysis of steady and transient heat conduction, temperature distribution of plane wall and cylinder using Numerical approach (ANSYS/CFD package).

PART – B

- 1. Determination of Steffan Boltzmann Constant.
- 2. Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchangers.
- 3. Experiments on Boiling of Liquid and Condensation of Vapour.
- 4. Performance Test on a Vapour Compression Refrigeration.
- 5. Performance Test on a Vapour Compression Air Conditioner.
- 6. Experiment on Transient Conduction Heat Transfer.
- 7. Determination of temperature distribution along a rectangular and circular fin subjected to heat loss through convection using Numerical approach (ANSYS/CFD package)

Course Outcomes: At the end of this course students are able to,

- Perform experiments to determine the thermal conductivity of a metal rod
- Conduct experiments to determine convective heat transfer coefficient for free and forced convection and correlate with theoretical values.
- Estimate the effective thermal resistance in composite slabs and efficiency in pin-fin
- Determine surface emissivity of a test plate
- Estimate performance of a refrigerator and effectiveness of fin

Dr. Muzzamil Ahamed S

• Calculate temperature distribution of study and transient heat conduction through plane wall, cylinder and fin using numerical approach.

Dr. Muzzamil Ahamed S

Reading:

- 1. M. Necati Ozisik, Heat Transfer A Basic Approach, McGraw Hill, New York, 2005.
- 2. Incropera, F. P. and De Witt, D. P., Fundamentals of Heat and Mass Transfer, 5th Edition, John Wiley and Sons, New York, 2006.
- 3. Holman, J. P., Heat Transfer, 9th Edition, Tata McGraw Hill, New York, 2008.

Scheme of Examination:

ONE question from part -A: 25 Marks

ONE question from part -B: 40 Marks

Viva – Voice : 15 Marks

Total: 80 Marks

MECHATRONICS

Γ	Corrego	Cala	Crue l'Ar	ттр	Assessment		E
	Course	Code	Creans	L-1-P	SEE	CIA	Exam Duration
Γ	Mechatronics	15ME753	03	3-0-0	80	20	3 Hrs

Course objectives:

- 1. Understand the evolution and development of Mechatronics as a discipline.
- 2. Substantiate the need for interdisciplinary study in technology education.
- 3. Understand the applications of microprocessors in various systems and to know the functions of each element
- 4. Demonstrate the integration philosophy in view of Mechatronics technology

MODULE -1

Introduction: Definition, Multidisciplinary Scenario, Evolution of Mechatronics, Design of Mechatronics system, Objectives, advantages and disadvantages of Mechatronics.

Transducers and sensors:Definition and classification of transducers, Differencebetween transducer and sensor, Definition and classification of sensors, Principleof working and applications of light sensors, proximity switches and Hall Effectsensors.

MODULE -2

Microprocessor & Microcontrollers: Introduction, Microprocessor systems, Basic elements of control systems, Microcontrollers, Difference between Microprocessor and Microcontrollers.

Microprocessor Architecture: Microprocessor architecture and terminology-CPU,memory and address, I/O and Peripheral devices, ALU, Instruction and Program, Assembler, Data, Registers, Program Counter, Flags, Fetch cycle, writecycle, state, bus interrupts. Intel's 8085A Microprocessor.

MODULE -3

Programmable logic controller:Introduction to PLC's, basic structure, Principleof operation, Programming and concept of ladder diagram, concept of latching &selection of a PLC.

Integration: Introduction & background, Advanced actuators, Pneumaticactuators, Industrial Robot, different parts of a Robot-Controller, Drive, Arm, EndEffectors, Sensor & Functional requirements of robot.

MODULE -4

 Mechanical actuation systems: Mechanical systems, types of motion, Cams, Gear trains, Ratchet & Pawl, belt and chain

 INDUSTIRED in SAFETIVal aspects of motorselection.
 Dr. Muzzamil Ahamed S

Electrical actuation systems:Electrical systems, Mechanical switches, Solenoids, Relays, DC/AC Motors, Principle of Stepper Motors & servomotors.

10 Hours

MODULE -5

Pneumatic and hydraulic actuation systems: Actuating systems, Pneumatic andhydraulic systems, Classifications of Valves, Pressure relief valves, Pressureregulating/reducing valves, Cylinders and rotary actuators.

DCV & FCV: Principle & construction details, types of sliding spool valve,

solenoid operated, Symbols of hydraulic elements, components of hydraulicsystem, functions of various units of hydraulic system. Design of simple hydrauliccircuits for various applications.

Course outcomes:

On completion of this subject, students will be able to:

- 1. Illustrate various components of Mechatronics systems.
- 2. Assess various control systems used in automation.
- 3. Develop mechanical, hydraulic, pneumatic and electrical control systems.

TEXT BOOKS:

- 1. NitaigourPremchandMahalik , Mechatronics-Principles, Concepts and Applications, Tata McGraw Hill, 1stEdition, 2003 ISBN.No. 0071239243,9780071239240.
- W.Bolton-Pearson Education, Mechatronics Electronic Control Systems in Mechanicaland Electrical Engineering, 1stEdition, 2005 ISBN No.81-7758-284-4.

REFERENCE BOOKS:

- 1. Mechatronics by HMT Ltd. Tata McGrawHill, 1st Edition, 2000. ISBN:9780074636435.
- 2. Anthony Esposito, Fluid Power, Pearson Education, 6th Edition, 2011, ISBN No.9789332518544.

E- Learning

• VTU, E- learning

Scheme of Examination:

Two question to be set from each module. Students have to answer five full questions, choosing at least one full question from each module.

MANAGEMENT & ORGANIZATIONAL BEHAVIOUR

SubjectCode	:16MBA11	IA Marks	: 20
No. of Lecture Hours / Week: 03		Exam Hours	: 03
Number ofLectureHours	56	Exam Marks	: 80
PracticalComponent	: 02 Hours /Week		

Course Objectives:

- To make students understand fundamental concepts and principles of management, including the basic roles, skills, and functions of management
- To make students knowledgeable of historical development, theoretical aspects and practice applications of managerialprocess
- To understand the basic concepts and theories underlying individual behavior besides developing better insights into one's own self
- To make students aware of Individual behavior in groups, dynamics of groups and team building besides developing a better awareness of how they can be better facilitators for building effective teams as leadersthemselves

Course Outcomes:

At the end of the course students are able to:

- Comprehend & correlate all the management activities which are happening around them with fundamental concepts and principles of management.
- Get an overview of management, theory of management and practical applications of thesame.
- Effectively use their individual skill to work in groups to achieve organizational goals and ability to leadgroups/teams.
- Demonstrate their acumen in applying managerial and behavioral concept in realworld/situation.

Part A - Principles of Management

Unit1:

Introduction: Management: Introduction, Definition of management, Nature, Purpose and Functions, Levels and types of managers, managerial roles, skills for managers, evolution of management thought, Fayol's fourteen principles of management, Recent trends in management.

Unit2:

Planning and Organizing:

Planning: Nature of Planning, Planning Process, Objectives, MBO, Strategies, level of strategies, policies, methods and programs, Planning Premises, Decision-making, Process of decision-making, Types of decisions, Techniques in decision-making.

Organizing: Organization structure, Formal and informal organizations, Principles of organizations-chain of command, span of control, delegation, decentralization, and empowerment. Functional, divisional, geographical, customer based and matrix organizations, tram based structures, virtual organizations, boundary less organizations.

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

(8Hours)

(12 Hours)

Unit3:

(5 Hours)

Controlling: Controlling, importance of controlling, controlling process, types of control, factors influencing control effectiveness.

RECOMMENDED BOOKS

- Essentials of Management-Koontz, 8/e, McGrawHill
- Management: Text and Cases-VSP Rao, ExcelBooks
- MGMT, An Innovative approach to teaching and learning Principles of Management, Chuck Williams, Cengage Publications,2010
- Principles and practices of Management, Kiran Nerkar, Vilas Chopde, Dreamtech Press, 2011
- Management Theory & practice Chandan J. S, Vikas Publishing House.
- Management Theory & Practice Text & Cases Subba Rao P & HimaBindu, HimalayaPublication.

REFERENCE BOOKS:

• Masters of Management Thought – MahanandCharati& M MMunshi, Sapna Book House, Bangalore, 2015.

Part B - Organizational Behaviour

Unit4:

Introduction: Organizational Behaviour: Introduction, definition, historical development, fundamental principles of OB, contributing disciplines, challenges and opportunities.

Unit5:

(15Hours)

(6hours)

Foundations of Individual Behaviour: Individual behaviour: Foundations of individual behaviour. Ability: Intellectual abilities, Physical ability, the role of disabilities.

Personality: Meaning, formation, determinants, traits of personality, big five and MBTI, personality attributes influencing OB.

Attitude: Formation, components of attitudes, relation between attitude and behaviour.

Perception: Process of perception, factors influencing perception, link between perception and individual decision-making.

Unit6:

(10 Hours)

Motivation: Meaning, theories of motivation-needs theory, two factor theory, Theory X and Y, application of motivational theories.

Leadership: Meaning, styles of leadership, leadership theories, trait theory, behavioural theories, managerial grid, situational theories.

Note: Related case studies to be discussed.

Practical Components:

- Studying organizational structures of any 10 companies and classifying them into different types of organizations which are studied in Unit 2 and justifying why such structures are chosen by those organizations.
- Preparing the leadership profiles of any 5 business leaders and studying their leadership qualities and behaviours with respects to the trait, behavioural and contingency theoriesstudied.

• Identifying any five job profiles and listing the various types, abilities required for those jobs and also the personality traits/attributes required for the jobsidentified.

Note: Faculty can either identify the organizations/ leaders/jobs or students can be allowed to choose the same.

RECOMMENDED BOOKS:

- Organizational behaviour, Stephen P Robbins, Timothy A. Judge, Neharika Vohra, 14th Edition, Pearson,2012.
- Introduction to OrganisationalBehaviour Michael Butler, Jaico Publishing House,
- Organization Behaviour Ashwathappa, Himalaya Publication House
- ORGB Nelson, Quick, Khanelwal, 2/e, Cengage Learning, 2012.
- Organizational Behaviour Anada Das Gupta, Biztantra, 2011.
- Organizational Behaviour: A modern approach Arun Kumar and Meenakshi, Vikas Publishing House, 2011.
- Organizational Behaviour Rao V. S. P, Excel BOOKS,2009.

REFERENCE BOOKS:

- Organizational Behaviour Fred Luthans, 12/e, McGraw Hill International, 2011.
- Management and Organizational Behaviour Laurie J Mullins, Pearson education

ACCOUNTING FOR MANAGERS

SubjectCode	:16MBA13	IA Marks	: 20
No. of Lecture Hours / Week: 03		Exam Hours	: 03
Number ofLectureHours	56	Exam Marks	: 80
PracticalComponent	: 02 Hours /Week		

Objectives:

- To explain fundamental accounting concepts and conventions.
- To explain and use the accountingequation.
- To prepare basic journal entries for business transactions and present the data in an accuratemanner
- To present financial statements in vertical and horizontalformat.
- To analyze a company's financial statements using various ratios for decisionmaking.
- To understand emerging issues in accounting andtaxation.

Course Outcomes:

At the end of the course students are able to:

- Acquire the knowledge about the concepts and fundamental principles ofaccounting.
- Demonstrate theoretical knowledge and its application in real time accounting.
- Capable of preparing financial statement of sole trading concerns and companies.
- Independently undertake financial statement analysis and take decisions.
- Comprehend emerging trends in accounting andtaxation.

Unit1:

(6Hours)

Introduction to Accounting: Need and Types of Accounting, Users of Accounting, concepts and conventions of Accounting, Accounting Equation (problems on accounting equation).

Unit2:

(10 Hours)

Preparation of books of Accounts: Journals, three column cash book, ledgers and trial balance. Depreciation- Straight line and Written down Value Methods.

Unit3:

(14 Hours)

(12 Hours)

Preparation of Financial Statements: Preparation of final accounts of sole traders. Preparation of final accounts of companies, vertical form of financial statements. (Basic problems Final Accounts)

Unit4:

Analysis of Financial Statements: Ratio Analysis, Preparation of financial statements using ratios, Preparation of Cash flow Statement (only indirect method).

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

Unit5:

(8 Hours)

Emerging issues in Accounting: Human Resource Accounting, Forensic Accounting, Sustainability Reporting -Accounting Standards and IFRS: Nature and significance

Unit6:

(6 Hours)

Fundamentals of Taxation: Heads of Income, Deductions u/s 80C, Income Tax Rates and Returns for Individuals only (only theory)

Practical Components:

- Collecting Annual reports of the companies and analyzing the financial statements using different techniques and presenting the same in the class.
 - Analyzing the companies' cash flow statements and presenting the same in the class.=
- Exposing the students to usage of accounting software's (Preferably Tally)
- Filling up of ITRforms
- Identify the sustainability report of a company and study the contents.

Note 1: Related case studies to be discussed.

Note 2: 25 percent theory and 75 percent problems

RECOMMENDED BOOKS:

- Financial Accounting: A Managerial Perspective, Narayanaswamy R, 5/e, PHI,2014
- A Text book of Accounting For Management, Maheswari S. N,MaheswariSharadK.Maheswari,2/e,VikasPublishinghouse (P) Ltd.
- Financial Accounting, Tulsian P. C, 1/e, PearsonEducation.
- Accounting for managers, Madegowda J, Himalaya Publishing House.
- Advanced Accountancy, Gupta R. L & Radhaswamy M, Sultan Chand Publications.
- Financial Accounting, Jain S. P and Narang K L, KalyaniPublishers.
- Business Taxation, Akhileshwar Pathak and SavanGodiawala, 2/e, McGraw Hill Education (India) Pvt. Ltd,2013.

REFERENCE BOOKS:

- Financial Accounting for Management: An Analytical Perspective, Ambrish Gupta, 4/e, Pearson Education.
- Introduction to Financial Statement Analysis, Ashish K Bhattacharya, ElsevierIndia.
- Financial Accounting Raman B. S, Vol I & Vol II, 1/e, United Publishers, 2011.
- Financial Accounting (IFRS update), Gary A. Porter & Curtis L. Norton, 6/e, CengageLearning.

11

- Accounting For Management, Arora M. N, Himalaya Publishing House.
- Essentials of Financial Accounting (Based on IFRS), Bhattacharya, 3/e, Prentice HallIndia.
- Comdex (Computer and Financial Accounting with Tally 9.0 Course Kit), DreamTech.
- Comdex Tally 9, Namrata Agrawal DreamTech.
- IFRS: A Practical approach, Jasmine Kaur, McGrawHill.

MANAGERIAL COMMUNICATION

SubjectCode	:16MBA16	IA Marks	: 20
No. of Lecture Hours / Week: 03		Exam Hours	: 03
Number ofLectureHours	56	Exam Marks	: 80
PracticalComponent	: 02 Hours /Week		

Objective:

To enhance students communication skills through verbal, non-verbal, correspondence, presentations, interviews and negotiation.

Course Outcomes:

At the end of the course students are able to:

- Describe and develop written and oralcommunication.
- Independently prepare business letters and reports.
- Exhibit, develop and apply negotiationstrategies.
- Gain exposure to media management and demonstrate the skill in analyzing businesssituation.

Unit1:

(10Hours)

Introduction: Meaning & Definition, Role, Classification – Purpose of communication – Communication Process – Characteristics of successful communication – Importance of communication in management – Communication structure in organization – Communication in conflict resolution - Communication in crisis. Communication and negotiation -Communication in a cross-cultural setting

Unit 2:

(8 Hours)

Oral Communication: Meaning – Principles of successful oral communication – Barriers to communication – Conversation control – Reflection and Empathy: two sides of effective oralcommunication.

Modes of Oral Communication - Listening as a Communication Skill, Non-verbal communication

Unit3:

(8Hours)

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

- Business Communication Renuka Murthy T P and YathishChandra M S, HPH.
- Business Communication Lesikar, Flatley, Rentz&Pande, 11/e, TMH, 2010
- Advanced Business Communication Penrose, Rasberry, Myers, 5/e, Cengage Learning,2004.
- BCOM Lehman, DuFrene, Sinha, Cengage Learning, 2/e,2012

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

Written Communication: Purpose of writing – Clarity in writing – Principles of effective writing - Approaching the writing process systematically: The 3X3 writing process for business communication: Pre writing - Writing - Revising - Specific writing features -CoherenceElectronic writingprocess.

Unit4:

Business Letters and Reports: Introduction to business letters - Types of Business Letters -Writing routine and persuasive letters - Positive and Negative messages Writing Reports: Purpose, Kinds and Objectives of reports - Organization & Preparing reports, short and long reports Writing Proposals: Structure & preparation - Writingmemos

Media Management: The press release – Press conference – Media interviews

Group Communication: Meetings - Planning meetings - objectives - participants - timing venue of meetings.

Meeting Documentation: Notice, Agenda, and Resolution & Minutes

Unit5:

Presentation skills: What is a presentation – Elements of presentation – Designing & Delivering Business Presentations – Advanced Visual Support for managers.

Case Methods of learning: Understanding the case method of learning. Negotiation

What negotiation need skills: is _ Nature and for negotiation – Factors affecting negotiation – Stages of negotiation process – Negotiation strategies.

Unit6:

Employment communication: Introduction - Composing Application Messages - Writing CVs - Group discussions - Interview skills

Impact of Technological Advancement on Business Communication

Technology-enabled Communication-Communication Intranet–Internet–E-mails–SMS– teleconferencing –videoconferencing

Practical Components:

- Demonstrate the effect of noise as a barrier tocommunication ٠
- Make students enact and analyze the non-verbalcues
- Give exercises for clarity and conciseness in writtencommunication.
- Demonstrating using Communication Equipments like Fax, Telex, Intercoms, etc, •
- Demonstrating Video conferencing & teleconferencing in the class.
- Conduct a mock meeting of students in the class identifying an issue of their concern. The students should prepare notice, agenda and minutes of themeeting.
- Each student to give presentation of 5 minutes (this can be spread throughout the ٠ semester) and to be evaluated by the faculty

RECOMMENDED BOOKS:

- Business Communication : Concepts, Cases And Applications Chaturvedi P. D, &MukeshChaturvedi, 2/e, PearsonEducation, 2011
- Business Communication: Process and Product Mary Ellen Guffey, 3/e, Cengage Learning,2002.

networks-

(12 Hours)

(10 Hours)

(8Hours)

- Business Communication Madhukar R. K, 2/e, Vikas Publishing House. **REFERENCE BOOKS:**
- Effective Technical Communication Ashraf Rizvi M, TMH, 2005.
- Business Communication Sehgal M. K & Khetrapal V, Excel Books.
- Business Communication Krizan, Merrier, Jones, 8/e, Cengage Learning, 2012.
- Basic Business Communication Raj Kumar, Excel Books, 2010.

FINANCIAL MANAGEMENT

Subject Code	: 16MBA22	IA Marks : 20
No. of Lecture Hours / Week	: 03	Exam Hours : 03
Total Number of Lecture Hours	: 56	Exam Marks : 80
Practical Component	: 02 Hours / Week	

Course Objectives:

- To familiarize the students with basic concepts of financialmanagement.
- To understand time value of money and cost ofcapital.
- To analyze capital structure, capital budgeting and dividenddecision.
- To understand the short term and long term financing and working capitalmanagement.

Course Outcome:

At the end of the course students will be able to:

- Understand the basic financial concepts
- Apply time value of money
- Evaluate the investment decisions
- > Analyze the capital structure and dividend decisions.
- Estimate working capitalrequirements.

Unit 1:

(8Hours)

Financial management – Introduction to financial management, objectives of financial management – profit maximization and wealth maximization. Changing role of finance managers. Interface of Financial Management with other functionalareas. **SourcesofFinancing:** Shares, Debentures, Term loans, Lease financing, Hybrid financing, Venture Capital, Angel investing and private equity, Warrants and convertibles (Theory Only) **Emerging Issues:** Risk management, Behavioral finance and Financialengineering.

Unit 2:

(10Hours)

Time value of money –Future value of single cash flow & annuity, present value of single cash flow, annuity & perpetuity.Simple interest & Compound interest, Capital recovery & loan amortization.

Unit 3:

(10Hours)

Cost of Capital Cost of capital – basic concepts. Cost of debenture capital, cost of preferential capital, cost of term loans, cost of equity capital (Dividend discounting and CAPM model) - Cost of retained earnings - Determination of Weighted average cost of capital (WACC) and Marginal cost of capital.

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

Unit 4:

Investment decisions – Capital budgeting process, Investment evaluation techniques – Net present value, Internal rate of return, Modified internal rate of return, Profitability index, Payback period, discounted payback period, accounting rate of return.

Unit 5:

Working capital management – factors influencing working capital requirements - Current asset policy and current asset finance policy- Determination of operating cycle and cash cycle - Estimation of working capital requirements of a firm (Does not include Cash, Inventory & ReceivablesManagement)

Unit 6:

Capital structure and dividend decisions – Planning the capital structure. (No capital structure theories to be covered) Leverages – Determination of operating leverage, financial leverage and total leverage. Dividend policy – Factors affecting the dividend policy - Dividend Policies- Stable Dividend, Stable Payout (No dividend theories to becovered)

Practical Components:

- Identifying the small or medium sized companies and understanding the Investment evaluation techniques used bythem.
- Using the annual reports of selected companies, students can study the working capital management employed by them. Students can also compare the working capital management of companies in the same sector.
- Students can choose the companies that have gone for stock split and Bonus issue in the last few years and study the impact of the same on the stockprice.

RECOMMENDED BOOKS:

- Financial Management -Prasanna Chandra, 8/e, TMH,2011.
- Financial Management, Shashi K Gupta and R K Sharma, 8th Revised Edition, Kalyani Publishers, -2014
- Financial Management, Khan M. Y.& Jain P. K, 6/e, TMH, 2011.
- Financial Management, Rajiv Srivastava and Anil Misra, Second edition, Oxford UniversityPress, 2011
- Financial Management ,I M Pandey, 10th Edition, Vikas Publishing House-2014
- Financial Management & Policy-Vanhorne, James C., 12/e, Pearson, 2002
- Financial Management, PralhadRathod, Babitha&S.HarishBabu, Himalaya Publishing House,2015

REFERENCE BOOKS:

- Financial Management, V K Bhalla ,1st Edition- S.Chand2014,
- Fundamentals of Financial Management, Brigham& Houston, 10/e, CengageLearning.
- Corporate Finance, Damodaran , 2/e, Wiley India (P) Ltd., 2004
- Financial Management, Paresh P., Shah 2/e, Biztantra.
- Fundamentals of Financial Management, Sheeba Kapil, Pearson, 2013
- Financial Management, Sumit Gulati & Y P Singh, McGraw Hill, New Delhi –2013

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

(12Hours)

(8Hours)

(8Hours)

RESEARCH METHODS

SubjectCode	:16MBA23	IAMarks	20
No. of Lecture Hours/Week	:03	Exam Hours	03
Total Number of Lecture Hours	:56	Exam Marks	80
PracticalComponent	: 02 Hours /Week		

Objectives:

- To understand the basic components of researchdesign
- To Gain an insight into the applications of researchmethods
- To equip students with various research analytical tools used in businessresearch

Course outcome:

At the end of the course students are able to:

- Understand various research approaches, techniques and strategies in theappropriate in business.
- Apply a range of quantitative / qualitative research techniques tobusiness and day to day managementproblems
- Demonstrate knowledge and understanding of data analysis, interpretation and report writing
- > Develop necessary critical thinking skills in order to evaluate different researchapproaches inBusiness.

Unit 1:

(8hours)

Business Research – Meaning, types, process of research- management problem, defining the research problem, formulating the research Hypothesis, developing the research proposals, research design formulation, sampling design, planning and collecting the data for research, data analysis and interpretation. Research Application in business decisions, Features of good research study.

Unit 2:

(10hours)

Business Research Design: Meaning and significance - **Types**: Exploratory and Conclusive Research Design.

Exploratory Research: Meaning, purpose, methods- Literature search, experience survey, focus groups and comprehensive case methods.

Conclusive Research Design - Descriptive Research - Meaning, Types – Cross sectional studies and longitudinalstudies.

Experimental Research Design – Meaning and classification of experimental designsformal and informal, Pre experimental design, Quasi-experimental design, True experimental design, statistical experimentaldesign.

Unit 3:

(8hours)

Sampling: Concepts- Types of Sampling - Probability Sampling – simple random sampling, systematic sampling, stratified random sampling, cluster sampling -Non Probability Sampling –

convenience sampling- judgemental sampling, snowball sampling- quota sampling - Errors in sampling.

Unit 4:

Data Collection: Primary and Secondary data

Primary data collection methods - Observations, survey, Interview and Questionnaire, Qualitative Techniques of data collection, Questionnaire design – Meaning - process of designing questionnaire. Secondary data -Sources – advantages and disadvantages.

Measurement and Scaling Techniques: Basic measurement scales-Nominal scale, Ordinal scale, Interval scale, Ratio scale. Attitude measurement scale - Likert's Scale, Semantic Differential Scale, Thurstone scale, Multi-DimensionalScaling

Unit5:

Hypothesis - types, characteristics, source, formulation of hypotheses, errors in hypotheses. Parametric and Non-Parametric Tests- t-test, z-test, f-test, u-test, K-W Test (problems on all tests) Statistical analysis- Bivariate and Multivariate Analysis- (only theory). ANOVA-one-way and two-way classification (theoryonly)

Unit6:

(8 hours)

(10 hours)

Data Analysis and Report Writing: Editing, Coding, Classification, Tabulation, Validation Analysis and Interpretation- **Report writing and presentation of results:** Importance of report writing, types of research report, report structure, guidelines for effective documentation.

Practical Components:

- To identify research problem and collect relevant literatures for dataanalysis
- To write the research design by using Exploratory and Descriptive Researchmethods
- To prepare the questionnaire on brand awareness, effectiveness of training in public sector organization, Investors attitude towards Mutual funds in any financialinstitutions.
- To conduct Market survey and to investigate consumer perception towards anyFMCG.
- To demonstrate Report writing and Presentationmethods

RECOMMENDED BOOKS

- Business Research Methods: A South-Asian Perspective with course Mate William G.Zikmund/Barry J.Babin/Jon C.Carr/AtanuAdhikari/Mitch Griffin, Cengagelearning
- Business Research Methods: S.N.Murthy&U.Bhojanna. ExcelBooks
- Business Research Methods. Donald R. Cooper & Pamela s Schindler, 9/e, TMH/2007
- Research Methods M MMunshi& K Gayathri Reddy, Himalaya Publishing House, 2015
- Research Methods for Business, Uma Sekaran& Roger Bougie, 6th Edition, Wiley, 2013
- Business Research Methods-SL Guptah and HeteshGuptha, McGraw hill -2012
- Marketing Research- Naresh K Malhotrs- 5th Edition, Pearson Education /PHI2007

REFERENCE BOOKS

• Research Methods- William M C Trochi, - 2/e, Biztantra, 2007

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

(12hours)

- Methodology of Research in social Sciences- O R Krishnaswami, M Ranganatham, HPH, 2007
- Research Methodology C.R.Kothari, VishwaPrakashan
- Business Research Methodology J K Sachdeva 2nd Edition HPH,2011
- Research Methodology concepts and cases Deepak Chawla and NeenaSondhi Vikas Publication -2014

INDUSTRIAL RELATIONS AND

LEGISLATIONS

Subject Code	: 16MBA HR301	IA Marks :20
Number of Lecture Hours/Week	: 03	Exam Hours: 03
Number of Lecture Hours	: 56	Exam Marks: 80
Practical Component	: 02 Hours/ Week	

Course Objectives:

- To enable students to understand and apply the principles of IR and develop an awareness of the significance of industrial peace.
- To provide a conceptual basis of IndustrialRelations.
- To give an understanding of the components and meaning of sustaining Industrial peace anchored on harmonious Employee-Managementrelations.
- To discuss the various Industrialacts.

Course Outcomes:

The students should be able to

- ➢ Gain the insights of IR practices in theindustry.
- > Develop the knowledge related to employee-managementrelations
- Implementation of various industrialacts

PART A: INDUSTRIALRELATIONS

Unit 1

Introduction:

Background of Industrial Relations – Definition, scope, objectives, factors affecting IR, participants of IR, importance of IR. Approaches to Industrial relations, system of IR in India –Historical perspective & post-independence period, Code of Discipline and historical initiatives for harmonious IR, Government policies relating to labor, ILO and its influence on Legal enactments inIndia.

Unit2

Collective Bargaining & Negotiation:

Collective Bargaining: Definition, Meaning, Nature, essential conditions for the success of collective bargaining, functions of collective bargaining, importance of Collective Bargaining, collective bargaining process, prerequisites for collective bargaining, implementation and administration of agreements.

(8Hours)

(32hours)

(8hours)

- Factories Act1948,
- Industrial Employment (Standing orders) Act, 1946
- Employees' State Insurance (ESI) Act, 1948,
- Maternity Benefit Act, 1961

Unit6

- Minimum Wages Act, 1948
- Payment of Wages Act, 1936

and responsibilities of TUs, Problems of trade unions, Employee relations in ITsector

Unit5 **Grievance procedure and Discipline management:**

Grievance - Meaning and forms, sources of grievance, approaches to grievance machinery, Grievance procedures, model grievance procedure. Disciplinary procedures, approaches to manage discipline in Industry, Principles of Hot stoverule.

RECOMMENDED BOOKS:

- Employee Relations Management, P N Singh, Singh P. N., Pearson Publications, 2011.
- Dynamics of Industrial Relations, Mamoria&Mamoria, Himalaya Publications, 2012
- Human Resource Management Principles & Practice, Aquinas, VikasPublication.
- Personnel Management & Industrial Relations, Nair N G, Nair L, S. Chand Limited, 2001
- Essentials of Human Resource Management and Industrial Relations, Subba Rao, 3rd Revised edition, Himalaya Publishing House, 2010.

REFERENCE BOOKS:

Industrial Relations, Trade Unions & Labour Legislation, P R N Sinha et al, Pearson Education, 2004.

• BareActs

Unit3

Trade Union

• Industrial Relations and labor laws, ArunMonappa, RanjeetNambudiri, PatturajuSelvaraj, TMH. 1997.

• Industrial relations, trade unions and labor legislations, P R N Sinha, InduBala Sinha, Seema PriyadarshiniShekar, Pearson Education, 2013, ISBN:9788131731642

PARTB: Unit 5

INDUSTRIALLEGISLATIONS

- Contract LabourAct,
- Shops and EstablishmentsAct
- Child Labour (Prohibition & Regulation) Act, 1986
- Industrial disputes act of1947

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

(16hours)

(24Hours)

(8Hours)

39

Negotiations-Types of Negotiations-Problem solving attitude, Techniques of negotiation, negotiation process, essential skills for negotiation, Workers Participation in Management

Trade Unions: Meaning, trade union movement in India, Objective, role and functions of the Trade Unions in Modern Industrial Society of India, Procedure for registration of Trade Unions, Grounds for the withdrawal and cancellation of registration, union structure, Rights

(8Hours)

(8Hours)
- Payment of Gratuity Act1972,
- Employees' Provident Fund and Miscellaneous Provisions Act1952;
- Payment of Bonus Act, 1965.
- Employees Compensation Act in2013

NO PRACTICAL COMPONENT

RECOMMENDED BOOKS:

- Labor Laws for Managers, BD Singh, Excel Books, 2009
- Industrial Relations and Labor laws, SC Srivatava, 5th Edition, VikasPublications.
- Elements of Mercantile Law N. D Kapoor, Sultan Chand, 2004.
- Industrial Relations and Labour Legislations, Piyali Ghosh & ShefaliNandan, TMH.
- Labor Industrial Laws, Dr. V. G. Goswami, Eighth Edition, Central Law Agency, Allahabad

REFERENCE BOOKS:

- Industrial Relations, Trade Unions &Labour Legislation, P R N Sinha et al, Pearson Education, 2004.
- BareActs
- Industrial Relations and labor laws, ArunMonappa, RanjeetNambudiri, PatturajuSelvaraj, TMH,1997.
- Industrial relations, trade unions and labor legislations, P R N Sinha, InduBala Sinha, Seema PriyadarshiniShekar, Pearson Education, 2013.

RECRUITMENT & SELECTION

Subject Code	: 16MBA HR302	IAMarks 20
Number of Lecture Hours/Week	: 03	Exam Hours:03
Number of Lecture Hours	: 56	Exam Marks: 80
Practical Component	: 02 Hours/ Week	

Course Objectives:

To understand and apply the policies and procedures of recruitment

- To provide a conceptual framework of Selection Procedure in theIndustry.
- To understand the new concepts and techniques of recruitment and Selection in the Corporate.

Course Outcomes:

The students should be able to

- > Learn the various recruitment policies and procedures.
- > Equip with conceptual framework of selectionprocedures.
- > Gain insights of the latest concepts and techniques used in recruitment and selection.

Unit1:

(6 Hours)

Job Analysis: Meaning, definition and purpose. Methods of job analysis: job analysis interviews, job analysis questionnaire, task analysis inventory, position analysis questionnaire, subject expert

workshops, critical incident technique, Fleisclunann job analysis survey, functional job analysis, job element method, repertory grid, critical incident technique

Unit2:

Hiring Process & Hiring decision: Nature of hiring: regular, temporary, full time, part time, apprentice, contractual, and outsourcing, Existing post or new post to be created, Need analysis, cost analysis and job analysis.

Unit3:

Hiring internally: Meaning and definition of internal recruitment, Advantages and disadvantages in terms of cost, time, quality and suitability. Sources of internal recruitment: circulars, intranet advertisements, employee referrals, Appointment or promotion, Policy guidelines and union settlements.

Unit4:

External Hiring: Meaning and definition of external recruitment. Sources of recruitment:advertisement, in newspaper, TV/Radio, Internet, search on the internet, wanted signboards, consultants, employment exchange, campus recruitment, employee referrals and unsolicited applications. Advantages and disadvantages of the above sources in terms of cost, time, convenience, reach of the targeted population, and quality of applicant pool.

Job advertisement: drafting, size and contents. Contents of public sector recruitment: single or multiple sources and choosing the best source

Unit5: Screening the candidates: Application Forms: bio-data / resume / curriculum vitae and Weighted application blanks: meaning definition, purpose, advantages and disadvantages taking a Behavioral approach to recruitment: spotting personality patterns, making basic assumptions, Predicting the future, strategy Vs. Technique, Pinning down what is needed: targeted interviewing, focusing on behavior, assessing how person performs, assuming they have been hired. - Identifying the ingredients of success: the winning candidate's profile, challenges in the Interview, the starting point, day to day execution, dealing with people, the inner person, additional characteristics. Studying the CV.

Unit6:

Testing, Reference checking & Appointment orders: Meaning, definition, purpose,

advantages and disadvantages, Ability tests clerical ability test, mechanical ability test, mental ability test, physical ability test, personality assessment test, typing test, shorthand test,

computer proficiency test Interviewing: Planning the interview, Interview process - Interview in public sector undertaking. Statutory requirements.

Reference checking: meaning, definition and purpose. Verification of character, criminal antecedents, previous work behavior and education qualifications. Verification of community certificates in public sectorcompanies.

Appointment orders: Meaning, definition, and purpose. Contents of appointment letter, hard copy (or softcopy),

Practical Components:

Students need to identify two jobs in the college and need to do job analysis for those • positions using any of the job analysismethods.

(7Hours)

(10 Hours)

(9 Hours)

(8Hours)

(16Hours)

- In teams students can be asked to give presentations about various types of jobs (regular, temporary, full time, part time, apprentice, contractual, and outsourcing) in different industries along with its advantages and disadvantages
- In Teams, select and analyze any two of the Job postings advertisements in Newspapers to know more about job description and job specification mentioned in each advertisement for every post.
- Obtain online access to the resume data base of Naukri.com or Monsterindia.com for a week give at least four Job Descriptions and specification to each student, to search and download from the data base at least five resumes for eachpositions.
- Students can identify 4 or 5 jobs of their interest and can create Advertisements for the same imaging that they are Proprietors of the companies and hiring for these positions.
- Debate on Advantages and disadvantages of hiring external and Internal for the selected jobs like
- Police Constable, Doctor, CEO, Mechanical Engineer, Professoretc.,
- Role play: Students can do the role play for the entire process of hiring and selecting 3 or 4 selected roles in a specificindustry.

RECOMMENDED BOOKS:

- Human Resource Selection, Robert D. Gatewood and Hubert S. I, South western Cengage Learning, Mason, Ohio,2001.
- Recruitment and Selection -Theory and Practice. Dipak kumar Bhattacharya Cengage Learning.
- StaffingOrganization,HerbertG.HenemanIII,TimothyA.Judge,5thEdition,McGraw Hill International.
- Recruitment and Selection, Elearn, Revised Edition, Routledge, 2009.
- Online Recruiting and Selection: Innovations in Talent Acquisition, Douglas H. Reynolds, John A. Weiner, John Wiley & Sons,2009.
- Effective Recruitment and Selection Practices, R. L. Compton, William J. Morrissey, Alan R. Nankervis, Bill Morrissey, CCH Australia Limited, 2009.

REFERENCE BOOKS:

- Employee Selection, Lilly M Berry, 1 edition, Cengage Learning, 2002.
- Hiring & keeping the best people, HBS Press, 2013, ISBN: 1422131785,9781422131787
- Human Resource Planning, Dipak Kumar Bhattacharyya, 2nd edition, Excel Books, 2009, ISBN: 8174464980,9788174464989
- High performance hiring by Robert W. Wendover, Crisp Publication, California, 1991.

CONCRETE TECHNOLOGY (COMMON TO CV/TR/CTM)

Sub Code	:	10 CV 42	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	÷	03
Total Hrs.	:	52	Exam Marks	:	100

$\mathbf{PART} - \mathbf{A}$

Unit-1

Cement, Chemical composition, hydration of cement, Types of cement, manufacture of OPC by wet and dry, process (flow charts only) Testing of cement - Field testing, Fineness by sieve test and Blaine's air permeability test, Normal consistency, testing time, soundness, Compression strength of cement and grades of cement, Quality of mixing water. -7 Hours Unit-2

Fine aggregate - grading, analysis, Specify gravity, bulking, moisture content, deleterious materials. Coarse aggregate – Importance of size, shape and texture.Grading of aggregates - Sieve analysis, specific gravity, Flakiness and elongation index, crushing, impact and abrasion tests. - 6 Hours **Unit-3**

Workability - factors affecting workability, Measurement of workability slump, flow tests, Compaction factor and vee-bee consistometer tests, Segregation and bleeding, Process of manufactures of concrete : Batching, Mixing, Transporting, Placing, Compaction, Curing. -7 Hours **Unit-4**

Chemical admixtures - plasticizers, accelerators, retarders and air entraining agents, Mineral admixtures - Fly ash, Silica fumes and rice husk ash.

-6 Hours

Part-B

Unit-5

Factors affecting strength, w/c ratio, gel/space ratio, maturity concept, Effect of aggregate properties, relation between compressive strength, and tensile strength, bond strength, modulus of rupture, Accelerated curing, aggregate - cement bond strength, Testing of hardened concrete - compressive strength, split tensile strength, Flexural strength, factors influencing strength test results. - 6Hours

Unit-6

Elasticity - Relation between modulus of elasticity and Strength, factors affecting modulus of elasticity, Poisson , Ratio, Shrinkage - plastic shrinkage and drying shrinkage, Factors affecting shrinkage, Creep - Measurement of creep, factors affecting creep, effect of creep, -7 Hours

Unit-7

Durability - definition, significance, permeability, Sulphate attack, Chloride attack, carbonation, freezing and thawing, Factors contributing to cracks in concrete - plastic shrinkage, settlement cracks, construction joints, Thermal expansion, transition zone, structural design deficiencies, - 6 Hours **Unit-8**

Concept of Concrete Mix design, variables in proportioning, exposure conditions, Procedure of mix design as per IS 10262-1982, Numerical examples of Mix Design -7 Hours

TEXT BOOKS:

1. "Concrete Technology" - Theory and Practice, M.S.Shetty, S.Chand and Company, New Delhi, 2002.

REFERENCES :

1. "Properties of Concrete"Neville, A.M.:, ELBS, London

2. "Concrete Technology" – A.R.Santakumar. Oxford University Press (2007)'

3. "Concrete Manual" - Gambhir Dhanpat Rai & Sons, New Delhi.

4. "Concrete Mix Design" - N.Krishna Raju, Sehgal - publishers.

5. "Recommended guidelines for concrete mix design" - IS:10262,BIS Publication

STRUCTURAL ANALYSIS –I (COMMON TO CV/TR)

Sub Code	:	10 CV 43	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

STRUCTURAL SYSTEMS AND ENERGY CONCEPT

1.1 Forms of structures, 1.2 Conditions of equilibrium, 1.3 Degree of freedom, 1.4 Linear and Non linear structures, 1.5 One, two, three dimensional structural systems, 1.6 Determinate and indeterminate structures [Static and Kinematics]. 1.7 Strain energy and complimentary strain energy, 1.8 Strain energy due to axial load, bending and shear, 1.9 Theorem of minimum potential energy, 1.10 Law of conservation of energy, 1.11 Principle of virtual work,

UNIT 2: DEFLECTION OF BEAMS

2.1 Moment area method, 2.2 Conjugate beam method

UNIT 3:

DEFLECTION OF BEAMS AND FRAMES BY STRAIN ENERGY

3.1 The first and second theorem of Castigliano, problems on beams, frames and trusses, 3.2 Betti's law, 3.3 Clarke - Maxwell's theorem of reciprocal deflection.

7 Hours

UNIT 4:

ANALYSIS OF BEAMS AND PLANE TRUSSES BY STRAIN ENERGY

4.1 Analysis of beams (Propped cantilever and Fixed beams) and trusses using strain energy and unit load methods

7 Hours

7 Hours

6 Hours

PART – B

UNIT 5: ARCHES AND CABLES

5.1 Three hinged circular and parabolic arches with supports at same levels and different levels, 5.2 Determination of thrust, shear and bending moment, 5.3 Analysis of cables under point loads and UDL, length of cables (Supports at same levels and at different levels).

6 Hours

UNIT 6: ANALYSIS OF BEAMS

6.1 Consistent deformation method - Propped cantilever and fixed beams

6 Hours

UNIT 7:

7.1 Clapeyron's theorem of three moments - continuous beams and fixed beams

6 Hours

UNIT 8:

ANALYSIS OF ARCHES

8.1 Two hinged parabolic arch, 8.2 Two hinged Circular Arch

7 Hours

TEXT BOOKS:

- 1. Theory of Structures, Pandit and Guptha, Vol. I, Tata McGraw Hill, New Delhi.
- 2. Basic Structural Analysis Reddy C. S., Tata McGraw Hill, New Delhi.
- 3. Strength of Materials and theory of structures Vol I & II, B.C. Pumia , R.K., Jain Laxmi Publication New Delhi

REFERENCE BOOKS:

- 1. **Elementary Structural Analysis**, Norris and Wilbur, International Student Edition. McGraw Hill Book Co: New York
- 2. **Structural Analysis**, 4th SI Edition by Amit Prasanth & Aslam Kassimali, Thomson Learning.
- 3. Analysis of Structures, Thandava Murthy, Oxford University Press, Edition 2005.

SURVEYING – II (COMMON TO CV/TR/EV/CTM)

Sub Code	:	10 CV 44	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1: THEODOLITE SURVEY

1.1 Thedolite and types, 1.2 Fundamental axes and parts of a transit theodolite, 1.3 Uses of theodolite, 1.4 Temperary adjustments of a transit thedolite, 1.5 Measurement of horizontal angles – Method of repetitions and reiterations, 1.6 Measurements of vertical angles, 1.7 Prolonging a straight line by a theodolite in adjustment and theodolite not in adjustment

6 Hours

UNIT 2: PERMANENT ADJUSTMENT OF DUMPY LEVEL AND TRANSIT THEODOLITE

2.1 Interrelationship between fundamental axes for instrument to be in adjustment and step by step procedure of obtaining permanent adjustments

7 Hours

UNIT 3:

TRIGONOMETRIC LEVELING

3.1 Determination of elevation of objects when the base is accessible and inaccessible by single plane and double plane method, 3.2 Distance and difference in elevation between two inaccessible objects by double plane method. Salient features of Total Station, Advantages of Total Station over conventional instruments, Application of Total Station.

8 Hours

UNIT 4: TACHEOMETRY

4.1 Basic principle, 4.2 Types of tacheometric survey, 4.3 Tacheometric equation for horizontal line of sight and inclined line of sight in fixed hair method, 4.4 Anallactic lens in external focusing telescopes, 4.5 Reducing the constants in internal focusing telescope, 4.6 Moving hair method and

tangential method, 4.7 Subtance bar, 4.8 Beaman stadia arc.

7 Hours

PART – B

UNIT 5:

CURVE SETTING (Simple curves)

5.1 Curves – Necessity – Types, 5.2 Simple curves, 5.3 Elements, 5.4 Designation of curves, 5.5 Setting out simple curves by linear methods, 5.6 Setting out curves by Rankines deflection angle method.

6 Hours

UNIT 6:

CURVE SETTING (Compound and Reverse curves)

6.1 Compound curves 6.2 Elements 6.3 Design of compound curves 6.4 Setting out of compound curves 6.5 Reverse curve between two parallel straights (Equal radius and unequal radius).

6 Hours

UNIT 7:

CURVE SETTING (Transition and Vertical curves)

7.1 Transition curves 7.2 Characteristics 7.3 Length of Transition curve 7.4 Setting out cubic Parabola and Bernoulli's Lemniscates, 7.5 Vertical curves – Types – Simple numerical problems.

6 Hours

UNIT 8: AREAS AND VOLUMES

8.1 Calculation of area from cross staff surveying, 8.2 Calculation of area of a closed traverse by coordinates method. 8.3 Planimeter – principle of working and use of planimeter to measure areas, digital planimeter, 8.4 Computations of volumes by trapezoidal and prismoidal rule, 8.5 Capacity contours

6 Hours

TEXT BOOKS:

1. 'Surveying' Vol 2 and Vol 3 - B. C. Punmia, Laxmi Publications 2. 'Plane Surveying' A. M. Chandra – New age international (P) Ltd

3. 'Higher Surveying' A.M. Chandra – New age international (P) Ltd

REFERENCE BOOKS:

1. **Fundamentals of Surveying** - Milton O. Schimidt – Wong, Thomson Learning.

DESIGN OF RCC STRUCTURAL ELEMENTS

Subject Code	: 10CV52	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

GENERAL FEATURES OF REINFORCED CONCRETE: Introduction, Design Loads, Materials for Reinforced Concrete and Code requirements. Design Philosophy – Limit State Design principles. Philosophy of limit state design, Principles of limit states, Factor of Safety, Characteristic and design loads, Characteristic and design strength.

6 Hours

UNIT - 2

PRINCIPLES OF LIMIT STATE DESIGN AND ULTIMATE STRENGTH OF R.C. SECTION: General aspects of Ultimate strength, Stress block parameters for limit state of collapse, Ultimate flexural strength of singly reinforced rectangular sections, Ultimate flexural strength of doubly reinforced rectangular sections, Ultimate flexural strength of flanged sections, Ultimate shear strength of RC sections, Ultimate torsional strength of RC sections, Concepts of development length and anchorage, Analysis examples of singly reinforced, doubly reinforced, flanged sections, shear strength and development length.

7 Hours

UNIT - 3

FLEXURE AND SERVICEABILITY LIMIT STATES: General Specification for flexure design of beams-practical requirements, size of beam, cover to reinforcement-spacing of bars. General aspects of serviceability-Deflection limits in IS: 456 – 2000-Calculation of deflection (Theoretical method), Cracking in structural concrete members, Calculation of deflections and crack width.

6 Hours

DESIGN OF BEAMS: Design procedures for critical sections for moment and shears. Anchorages of bars, check for development length, Reinforcement requirements, Slenderness limits for beams to ensure lateral stability, Design examples for Simply supported and Cantilever beams for rectangular and flanged sections.

PART - B

UNIT - 5

DESIGN OF SLABS: General consideration of design of slabs, Rectangular slabs spanning one direction, Rectangular slabs spanning in two directions for various boundary conditions. Design of simply supported, cantilever and continuous slabs as per IS: 456 – 2000.

UNIT - 6

DESIGN OF COLUMNS: General aspects, effective length of column, loads on columns, slenderness ratio for columns, minimum eccentricity, design of short axially loaded columns, design of column subject to combined axial load and uniaxial moment and biaxial moment using SP - 16 charts.

5 Hours

8 Hours

UNIT - 7

DESIGN OF FOOTINGS: Introduction, load for footing, Design basis for limit state method, Design of isolated rectangular footing for axial load and uniaxial moment, design of pedestal.

6 Hours

UNIT - 8

DESIGN OF STAIR CASES: General features, types of stair case, loads on stair cases, effective span as per IS code provisions, distribution of loading on stairs, Design of stair cases. With waistslabs.

6 Hours

REFERENCE BOOKS:

- 1. Limit State Design of Reinforced concrete-by P.C. Varghese, PHI Learning Private Limited 2008-2009
- **2. Fundamentals of Reinforced concrete Design-**by M.L.Gambhir, PHI Learning Private Limited 2008-2009.
- **3. Reinforced concrete Design-**by Pallai and Menon, TMH Education Private Limited,
- **4. Reinforced concrete Design-**by S.N.Shinha, TMH Education Private Limited,

38

UNIT - 4

8 Hours

5. Reinforced concrete Design-by Karve & Shaha, Structures Publishers Pune.

- Design of RCC Structural Elements S. S. Bhavikatti, Vol-I, New Age International Publications, New Delhi.
- 7. IS-456-2000 and SP-16

GEOTECHNICAL ENGINEERING - I

Subject Code	: 10CV54	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT-1

INTRODUCTION: History of soil mechanics, Definition, origin and formation of soil. Phase Diagram, Voids ratio, Porosity, Percentage Air Voids, Air content, Degree of saturation, Water content, Specific Gravity of soil solids and soil mass, Densities and Unit weights - Bulk, Dry, Saturated & Submerged and their inter relationships.

6 Hours

UNIT - 2

INDEX PROPERTIES OF SOIL AND THEIR DETERMINATION: Index Properties of soil- Water content, Specific Gravity, Particle size distribution, Relative Density, Consistency limits and indices, in-situ density, Activity of Clay, Laboratory methods of determination of index properties of soil: Water content (Oven Drying method & Rapid Moisture method), Specific gravity of soil solids (Pycnometer and density bottle method), Particle size distribution (Sieve analysis and Hydrometer analysis only), Liquid Limit- (Casagrande and Cone penetration methods), Plastic limit and shrinkage limit.

7 Hours

UNIT - 3

CLASSIFICATION OF SOILS: Purpose of soil classification, Particle size classification – MIT classification and IS classification, Textural classification. IS classification - Plasticity chart and its importance, Field identification of soils.

CLAY MINERALOGY AND SOIL STUCTURE: Single grained, honey combed, flocculent and dispersed structures, Valence bonds, Soil-Water system, Electrical diffuse double layer, adsorbed water, base-exchange capacity, Isomorphous substitution. Common clay minerals in soil and their structures- Kaolinite, Illite and Montmorillonite.

8 Hours

UNIT - 4

FLOW OF WATER THROUGH SOILS: Darcy's law- assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified soils, Seepage

velocity, Superficial velocity and coefficient of percolation, quick sand phenomena, Capillary Phenomena.

6 Hours

PART - B

UNIT - 5

SHEAR STRENGTH OF SOIL: Concept of shear strength, Mohr-coulomb theory, conventional and modified failure envelops, Effective stress concept-total stress, effective stress and Neutral stress, Concept of pore pressure, Total and effective shear strength parameters, factors affecting shear strength of soils, Sensitivity and Thixotropy of clay.

7 Hours

UNIT - 6

COMPACTION OF SOIL: Definition, Principle of compaction, Standard and Modified proctor's compaction tests, factors affecting compaction, effect of compaction on soil properties, Field compaction control – compactive effort & method, lift thickness and number of passes, Proctor's needle, Compacting equipment.

UNIT - 7

6 Hours

CONSOLIDATION OF SOIL: Definition, Mass-spring analogy, Terzaghi's one dimensional consolidation theory-assumption and limitations (no derivation), Normally consolidated, under consolidated and over consolidated soils, pre-consolidation pressure and its determination by Casagrande's method. Consolidation characteristics of soil (C_c , a_v , m_v and C_v).

UNIT-8

DETERMINATION OF SHEAR STRENGTH AND CONSOLIDATION OF SOIL: Measurement of shear parameters- Direct shear test, unconfined compression test, Triaxial compression test and vane shear test, Test under different drainage conditions.

Laboratory one dimensional consolidation test, Determination of consolidation characteristics of soils-compression index and coefficient of consolidation (square root of time fitting method, logarithmic time fitting method).

6 Hours

TEXT BOOKS:

- 1. Soil Mechanics and Foundation Engg.- Punmia B.C. (2005), 16th Edition Laxmi Publications Co., New Delhi.
- 2. **Principles of Soil Mechanics and Foundation Engineering**-Murthy V.N.S. (1996), 4th Edition, UBS Publishers and Distributors, New Delhi.

3. Geotechnical Engineering; Braja, M. Das (2002), Fifth Edition, Thomson Business Information India (P) Ltd., India

REFERENCES BOOKS:

- 1. Foundation Analysis and Design- Bowles J.E. (1996), 5th Edition, McGraw Hill Pub. Co. New York.
- Soil Engineering in Theory and Practice- Alam Singh and 2. Chowdhary G.R. (1994), CBS Publishers and Distributors Ltd., New Delhi.
- 3. Basic and Applied Soil Mechanics- Gopal Ranjan and Rao A.S.R. (2000), New Age International (P) Ltd., Newe Delhi.
- 4. Geotechnical Engineering- Donold P Coduto Phi Learning Private Limited, New Delhi
- 5. Geotechnical Engineering- Shashi K. Gulathi & Manoj Datta. (2009), "Tata Mc Graw Hill.
- 6. Text Book of Geotechnical Engineering- Iqbal H. Khan (2005), 2nd Edition, PHI, India.
- 7. Numerical Problems, Examples and objective questions in Geotechnical Engineering- Narasimha Rao A. V. & Venkatrahmaiah C. (2000), Universities Press., Hyderabad.

Hydrology and Irrigation Engineering

Hydro	logy and Irrig	gation Engine	eering	
Sub Code	10CV55	IA Marks	<mark>: 25</mark>	
<mark>Hrs/ Week</mark>	<mark>: 04</mark>	Exam Hours	<mark>: 03</mark>	
<mark>Total Hrs.</mark>	<mark>: 52</mark>	<mark>Exam Marks</mark>	<mark>: 100</mark>	
	PAR	T-A		
	HYDRO	DLOGY		
Sub Code Hrs/ Week Total Hrs.	: 10CV55 : 04 : 52 PAR HYDRO	IA Marks Exam Hours Exam Marks T-A DLOGY	25 03 100	

PART-A HYDROLOGY

UNIT 1: INTRODUCTION & PRECIPITATION

Introduction ,Hydrologic cycle (Horton's representation). Water budget equation

Precipitation: introduction, forms of precipitation, types of precipitation, measurement of precipitation (Simon's gauge & Syphon gauge only), selection of rain gauge station. Adequacy of raingauges, methods of computing average rainfall, interpolation of missing data, adjustment of missing data by double mass curve method. Hyetograph and mass curve of 07 hrs rainfall,

UNIT 2 : LOSSES FROM PRECIPITATION

Evaporation: Definition, factors affecting, measurement (Class A pan). Estimation using empirical methods (Meyer's and Rohwer's equation), evaporation control.

Evapo-transpiration: Definition, factors affecting, measurement, estimation (Blaney criddle method)

Infiltration: Definition, factors affecting, measurement (double ring infiltrometer), infiltration indices, Horton's equation of infiltration. 07 hrs

UNIT 3: HYDROGRAPHS

Definition, components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, Prepositions of unit hydrograph- problems

06 hrs

UNIT 4: ESTIMATION OF FLOOD & FLOOD ROUTING Definition of flood, factors affecting flood, methods of estimation (envelope curves, empirical formulae, rational method).

Flood routing: Introduction to hydrological routing, relationship of out flow and storage, general storage equation, Muskingum routing method. 07 hrs

PART-B

IRRIGATION ENGINEERING

UNIT 5 : INTRODUCTION

Introduction, need for irrigation, advantages and disadvantages of irrigation, environmental impacts of irrigation, Systems of irrigation: Gravity irrigation, lift irrigation, well irrigation, tube well irrigation, infiltration galleries, sewage irrigation, supplemental irrigation.

06 hrs

UNIT 6: SOIL-WATER-CROP RELATIONSHIP

Introduction, soil profile, physical properties of soil, soil classification. Indian soils, functions of irrigation soils, maintaining soil fertility, soil-water-plant relationship, soilmoisture. Irrigation relationship, frequency of irrigation. 06 hrs

UNIT 7: WATER REQUIREMENT OF CROPS Introduction, definitions, crop seasons of India, water requirement of a crop, duty, delta, base period. Consumptive use. Irrigation efficiencies. Assessment of irrigation water.

07 hrs

Unit 8: Canals

Definition, Types of canals, Alignment of canals, Design of canals by Kenedy's and Lacey's methods- Problems 06 hrs

TEXT BOOKS:

- Engineering Hydrology Subramanya.K; Tata Mcgraw Hill NewDelhi-2008 (Ed)
- 2. Hydrology- Madan Mohan Das, Mim Mohan Das-PHI Learning private Ltd. New Delhi-2009 (Ed)
- A Text Book Of Hydrology- Jayarami Reddy, Laksmi Publications, New Delhi-2007 (Ed)
- Irrigation, water Resources and water power Engineering- P.N.Modi- standard book house, New Delhi.
- Irrigation and Water Power Engineering-Madan Mohan Das & Mimi Das Saikia; PHILearning pvy. Ltd. New Delhi 2009 (Ed).

REFERENCE BOOKS:

- Hydrology & Soil Conservation Engineering-Ghanshyam Das- PHI Learning Private Ltd., New Delhi-2009 (Ed)
- 2. Hydrology & Water Resources Engineering- Patra K.C. Narosa Book Distributors Pvt. Ltd. New Delhi-2008 (Ed)
- Hydrology & Water Resources Engineering-R.K.Sharma & Sharma, Oxford and Ibh, New Delhi
- 4. Irrigation Engineering and Hydraulic structures- S. K. garg- Khanna Publication, New Delhi.

TRANSPORTATION ENGINEERING I

Subject Code		:10CV56
I A Marks	:25	
No. of lecture Hours/week		:04
Exam Hours	:03	
Total No. of Lecture Hours		:52
Exam Marks	:100	

<u>PART – A</u>

UNIT - 1

PRINCIPLES OF TRANSPORTATION ENGINEERING: Importance of transportation, Different modes of transportation and comparison, Characteristics of road transport Jayakar committee recommendations, and implementation – Central Road Fund, Indian Roads Congress, Central Road Research Institute

04 Hrs

UNIT - 2

HIGHWAY DEVELOPMENT AND PLANNING: Road types and classification, road patterns, planning surveys, master plan – saturation system of road planning, phasing road development in India, problems on best alignment among alternate proposals Salient Features of 3rd and 4th twenty year

road development plans and Policies, Present scenario of road development in India (NHDP & PMGSY) and in Karnataka (KSHIP & KRDCL) Road development plan - vision 2021.

06 Hrs

UNIT - 3

HIGHWAY ALIGNMENT AND **SURVEYS:** Ideal Alignment, Factors affecting the alignment, Engineering surveys-Map study, Reconnaissance, Preliminary and Final location & detailed survey, Reports and drawings for new and re-aligned projects 04 Hrs HIGHWAY GEOMETRIC DESIGN - I: Importance, Terrain classification, Design speed, Factors affecting geometric design, Cross sectional elements-Camber- width of pavement-Shoulders-, Width of formation- Right of way, Typical cross sections 05 Hrs

UNIT - 4

HIGHWAY GEOMETRIC DESIGN – II: Sight Distance-Restrictions to sight distance- Stopping sight distance-Overtaking sight distance- overtaking zones- Examples on SSD and OSD- Sight distance at intersections, Horizontal alignment-Radius of Curve- Superelevation – Extra widening-Transition curve and its length, setback distance – Examples, Vertical alignment-Gradient-summit and valley curves with examples. 07 Hrs

<u> PART - B</u>

UNIT - 5

PAVEMENT MATERIALS: Subgrade soil - desirable properties-HRB soil classification-determination of CBR and modulus of subgrade reaction-Examples on CBR and Modulus of subgrade reaction, **Aggregates-** Desirable properties and list of tests, **Bituminous materials**-Explanation on Tar, bitumen,cutback and emulsion-List of tests on bituminous materials **06 Hrs**

UNIT - 6

PAVEMENT DESIGN: Pavement types, component parts of flexible and rigid pavements and their functions, design factors, ESWL and its determination-Examples, **Flexible pavement**-Design of flexible pavements as per IRC;37-2001-Examples, **Rigid pavement**- Westergaard's equations for load and temperature stresses- Examples- Design of slab thickness only as per IRC:58-2002

06 Hrs

UNIT – 7

PAVEMENT CONSTRUCTION: Earthwork –cutting-Filling, Preparation of subgrade, Specification and construction of i) Granular Subbase, ii) WBM Base, iii) WMM base, iv) Bituminous Macadam, v) Dense Bituminous Macadam vi) Bituminous Concrete, vii) Dry Lean Concrete sub base and PQC viii) concrete roads 05

Hrs

HIGHWAY DRAINAGE: Significance and requirements, Surface drainage system and design-Examples, sub surface drainage system, design of filter materials

03 Hrs

UNIT – 8

HIGHWAY ECONOMICS: Highway user benefits, VOC using charts only-Examples, Economic analysis - annual cost method-Benefit Cost Ratio method-NPV-IRR methods-Examples, Highway financing-BOT-BOOT concepts

06 Hrs

TEXT BOOKS:

1. Highway Engineering – S K Khanna and C E G Justo, Nem Chand Bros, Roorkee

2. Highway Engineering - L R Kadiyali, Khanna Publishers, New Delhi

- **3. Transportation Engineering** K P Subramanium, Scitech Publications, Chennai
- 4. Transportation Engineering James H Banks, Mc. Graw. Hill Pub. New Delhi
- Highway Engineeering –R. Sreenivasa Kumar, University Press. Pvt.Ltd. Hyderabad

REFERENCE BOOKS:

- 1. Relevant IRC Codes
- 2. Specifications for Roads and Bridges-MoRT&H, IRC, New Delhi.
- 3. Transportation Engineering C. Jotin Khisty, B. Kent lal, PHI Learning Pvt. Ltd. New Delhi.

VI SEMESTER

ENVIRONMENTAL ENGINEERING-I

Subject Code	: 10CV61	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

Part - A

Unit - 1

INTRODUCTION: Human activities and environmental pollution. Water for various beneficial uses and quality requirement. Need for protected water supply.

2 Hours

DEMAND OF WATER: Types of water demands- domestic demand in detail, institutional and commercial, public uses, fire demand. Per capita consumption –factors affecting per capita demand, population forecasting, different methods with merits &demerits- variations in demand of water. Fire demand – estimation by Kuichling's formula, Freeman formula & national board of fire underwriters formula, peak factors, design periods & factors governing the design periods

6 Hours

Unit - 2

SOURCES: Surface and subsurface sources – suitability with regard to quality and quantity.

3 Hours

COLLECTION AND CONVEYANCE OF WATER: Intake structures – different types of intakes; factor of selection and location of intakes. Pumps- Necessity, types – power of pumps; factors for the selection of a pump. Pipes – Design of the economical diameter for the rising main; Nomograms – use; Pipe appurtenances.

6 Hours

Unit - 3

QUALITY OF WATER: Objectives of water quality management. wholesomeness & palatability, water borne diseases. Water quality parameters – Physical, chemical and Microbiological. Sampling of water for examination. Water quality analysis (IS: 3025 and IS: 1622) using analytical and instrumental techniques. Drinking water

standards BIS & WHO guidelines. Health significance of Fluoride, Nitrates and heavy metals like Mercury, Cadmium, Arsenic etc. and toxic / trace organics.

6 Hours

Unit - 4 WATER TREATMENT: Objectives – Treatment flow-chart. Aeration-Principles, types of Aerators.

Hours

SEDIMENTATION: Theory, settling tanks, types, design. Coagulant aided sedimentation, jar test, chemical feeding, flash mixing, and clariflocculator.

Hours

Part - B

Unit - 5

FILTRATION: Mechanism – theory of filtration, types of filters, slow sand, rapid sand and pressure filters including construction, operation, cleaning and their design – excluding under drainage system – back washing of filters. Operational problems in filters.

6 Hours

4

2

4

Unit - 6

DISINFECTION: Theory of disinfection, types of disinfection, Chlorination, chlorine demand, residual chlorine, use of bleaching powder. UV irradiation treatment – treatment of swimming pool water

Hours

SOFTENING – definition, methods of removal of hardness by lime soda process and zeolite process RO & Membrane technique.

3 Hours

Unit - 7

MISCELLANEOUS TREATMENT: Removal of color, odor, taste, use of copper sulfate, adsorption technique, fluoridation and defluoridation.

4 Hours

DISTRIBUTION SYSTEMS: System of supply, service reservoirs and their capacity determination, methods of layout of distribution systems.

4

Hours

Unit - 8

MISCELLANEOUS: Pipe appurtenances, various valves, type of fire hydrants, pipefitting, Layout of water supply pipes in buildings.

2

Hours

TEXT BOOKS:

- 1. Water supply Engineering –S.K.Garg, Khanna Publishers
- 2. Environmental Engineering I B C Punima and Ashok Jain
- 3. Manual on Water supply and treatment –CPHEEO, Minstry of Urban Development, New Delhi

REFERENCES

1. Hammer, M.J., (1986), Water and Wastewater Technology –SI Version, 2nd

Edition, John Wiley and Sons.

2. Karia, G.L., and Christian, R.A., (2006), **Wastewater Treatment – Concepts** and **Design Approach**, Prentice Hall of India Pvt. Ltd., New Delhi.

3. Metcalf and Eddy, (2003), **Wastewater Engineering, Treatment and Reuse**, 4th Edition, Tata McGraw Hill Edition, Tata McGraw Hill Publishing Co. Ltd.

4. Peavy, H.S., Rowe, D.R., and Tchobanoglous, G., (1986), **Environmental Engineering**–Mc Graw Hill Book Co.

5. Raju, B.S.N., (1995), **Water Supply and Wastewater Engineering, T**ata McGraw Hill Pvt. Ltd., New Delhi.

6. Sincero, A.P., and Sincero, G.A., (1999), **Environmental Engineering – A Design Approach**–Prentice Hall of India Pvt. Ltd., New Delhi.

GEOTECHNICAL ENGINEERING - II

Subject Code	: 10CV64	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

SUBSURFACE EXPLORATION: Importance of exploration program, Methods of exploration: Boring, Seismic refraction method of grophysical exploration, Types of samples undisturbed, disturbed and representative samples, Samplers, sample disturbance, area ratio, Recovery ratio, clearance, Stabilisation of boreholes - Typical bore log. Number and depth of borings for various civil engineering structures, soil exploration report.

DRAINAGE AND DEWATERING: Determination of ground water level by Hvorselev's method, Control of ground water during excavation: Dewatering - Ditches and sumps, well point system, Vacuum method, Electro- Osmosis method.

8 Hours

UNIT - 2

UNIT - 3

UNIT - 4

STRESSES IN SOILS: Boussinesq's and Westergaard's theories for concentrated, circular and rectangular loads. Comparison of Boussinesq's and westergaard's analysis. Pressure distribution diagrams, Contact pressure, Newmark's chart.

Hours

6

FLOWNETS: Laplace equation (no derivation) assumptions and limitations only, characteristics and uses of flownets, Methods of drawing flownets for Dams and sheet piles. Estimating quantity of seepage and Exit gradient. Determination of phreatic line in earth dams with and without filter. Piping and protective filter.

5 Hours

LATERAL EARTH PRESSURE: Active and Passive earth pressures, Earth pressure at rest. Rankine's and Coulomb's Earth pressure theories--assumptions and limitations, Graphical solutions for active earth pressure (cohesionless soil only) – Culmann's and Rebhann's methods, Lateral earth pressure in cohesive and cohesionless soils, Earth pressure distribution.

7 Hours PART - B

UNIT - 5

STABILITY OF EARTH SLOPES: Types of slopes, causes and type of failure of slopes. Definition of factor of safety, Stability of infinite slopes, Stability of finite slopes by Method of slices and Friction Circle method, Taylor's stability number, Fellineous method,.

7 Hours

UNIT - 6

BEARING CAPACITY: Definitions of ultimate, net and safe bearing capacities, Allowable bearing pressure. Terzaghi's and Brinch Hansen's bearing capacity equations assumptions and limitations, Bearing capacity of footing subjected to eccentric loading. Effect of ground water table on bearing capacity. Field methods of evaluation of bearing capacity - Plate load test, Standard penetration test and cone penetration test.

8 Hours

UNIT - 7

FOUNDATION SETTLEMENT: Importance and Concept of Settlement Analysis, Immediate, Consolidation and Secondary settlements (no derivations, but, computation using relevant formula for Normally Consolidated soils), Tolerance. BIS specifications for total and differential settlements of footings and rafts.

5 Hours

UNIT – 8

PROPORTIONING SHALLOW AND PILE FOUNDATIONS

Allowable Bearing Pressure, Factors influencing the selection of depth of foundation, Factors influencing Allowable Bearing Pressure, Factors influencing the choice of foundation, Proportioning isolated, combined, strip and mat foundations, Classification of pile foundation, Pile load capacity, Proportioning pile foundation.

6 Hours

TEXT BOOKS:

- 1. Soil Engineering in Theory and Practice- Alam Singh and Chowdhary G.R. (1994), CBS Publishers and Distributors Ltd., New Delhi.
- Soil Mechanics and Foundation Engg.- Punmia B.C. (2005), 16th Edition Laxmi Publications Co., New Delhi. REFERENCES BOOKS:
- 1. Foundation Analysis and Design- Bowles J.E. (1996), 5th Edition, McGraw Hill Pub. Co. New York.

- Soil Mechanics and Foundation Engineering- Murthy V.N.S. (1996), 4th Edition, UBS Publishers and Distributors, New Delhi.
- 3. Basic and Applied Soil Mechanics- Gopal Ranjan and Rao A.S.R. (2000), New Age International (P) Ltd., Newe Delhi.
- Geotechnical Engineering- Venkatrahmaiah C. (2006), 3rd Edition New Age International (P) Ltd., Newe Delhi.
- Soil Mechanics- Craig R.F. (1987), Van Nostrand Reinhold Co. Ltd.
- Principles of Geotechnical Engineering- Braja M. Das (2002), 5th Edition, Thomson Business Information India (P) Ltd., India.
- Text Book of Geotechnical Engineering- Iqbal H. Khan (2005), 2nd Edition, PHI, India.

ALTERNATIVE BUILDING MATERIALS AND TECHNOLOGIES

Subject Code	: 10CV662	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

- **INTRODUCTION:** 1. Energy in building materials
- 2. Environmental issues concerned to building materials
- 3. Global warming and construction industry
- 4. Environmental friendly and cost effective building technologies.
- 5. Requirements for building of different climatic regions.
 - 6. Traditional building methods and vernacular architecture.

6 Hours

UNIT - 2

ALTERNATIVE BUILDING MATERIALS:

- 1. Characteristics of building blocks for walls
- 2. Stones and Laterite blocks
- 3. Bricks and hollow clay blocks
- 4. Concrete blocks
- 5. Stabilized blocks: Mud Blocks, Steam Cured Blocks, Fal-G Blocks and Stone Masonry Block

6 Hours

UNIT - 3 LIME-POZZOLANA CEMENTS

- 1. Raw materials
- 2. Manufacturing process
- 3. Properties and uses
- 4. Fibre reinforced concretes
- 5. Matrix materials
- 6. Fibers : metal and synthetic
- 7. Properties and applications
- 8. Fibre reinforced plastics
- 9. Matrix materials
- 10. Fibers : organic and synthetic
- 11. Properties and applications
- 12. Building materials from agro and industrial wastes
- 13. Types of agro wastes

14. Types of industrial and mine wastes

- 15. Properties and applications
 - 16. Field quality control test methods

6 Hours

UNIT - 4 ALTERNATIVE BUILDING TECHNOLOGIES

- 1. Alternative for wall construction
- 2. Types
- 3. Construction method
- 4. Masonry mortars
- 5. Types
- 6. Preparation
- 7. Properties
- 8. Ferrocement and ferroconcrete building components
- 9. Materials and specifications
- 10. Properties
- 11. Construction methods
- 12. Applications
- 13. Alternative roofing systems
- 14. Concepts
- 15. Filler slabs
- 16. Composite beam panel roofs

17. Masonry vaults and domes

8 ours

PART - B

STRUCTURAL MASONRY

- 1. Compressive strength of masonry elements
- 2. Factors affecting compressive strength
- 3. Strength of units, prisms / wallettes and walls
- 4. Effect of brick work bond on strength
- 5. Bond strength of masonry : Flexure and shear
- 6. Elastic properties of masonry materials and masonry

6 Hours

UNIT - 6

UNIT - 5

- 1. IS Code provisions
- 2. Design of masonry compression elements
- 3. Concepts in lateral load resistance

Hours

8

UNIT - 7 COST EFFECTIVE BUILDING DESIGN

1. Cost concepts in buildings

- 2. Cost saving techniques in planning, design and construction
 - 3. Cost Analysis : Case studies using alternatives.

UNIT - 8 EQUIPMENT FOR PRODUCTION OF ALTERNATIVE MATERIALS

- 1. Machines for manufacture of concrete
- 2. Equipments for production of stabilized blocks
 - 3. Moulds and methods of production of precast elements.

6 Hours

6 Hours

TEXT BOOKS:

- 1. Alternative building methodologies for engineers and architects, lecture notes edited: K.S. Jagadish and B.V. Venkatarama Reddy, Indian Institute of cience, Bangalore.
- 2. Structural Masonry by Arnold W. Hendry.

REFERENCE BOOKS:

- 1. Relevant IS Codes.
- 2. Alternative building materials and technologies.
- 3. Proceedings of workshop on Alternative building material and technology, 19th to 20th December 2003 @ BVB College of Engineering. & Tech., Hubli.

67

www.universityupdates.in || www.android.universityupdates.in

GROUND WATER HYDROLOGY

Subject Code	: 10CV665	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION: Importance. Vertical distribution of sub-surface water. Occurrence in different types of rocks and soils. Definition of aquifer, Aquifuge, Aquitard and Aquiclude. Confined and unconfined aquifers.

6 Hours

UNIT - 2

AQUIFER PROPERTIES: Aquifer parameters – Specific yield, Specific retention, Porosity, Storage coefficient, derivation of the expression. Determination of specific yield. Land subsidence due to ground water withdrawals.

6 Hours

UNIT - 3

DARCY'S LAW AND HYDRAULIC CONDUCTIVITY: Introduction. Darcy's law. Hydraulic conductivity. Coefficient of permeability and Intrinsic permeability, Transmissibility, Permeability in Isotropic, Unisotropic layered soils. Steady one dimensional flow, different cases with recharge.

7 Hours

UNIT - 4

WELL HYDRAULICS – STEADY FLOW: Introduction. Steady radial flow in confined and unconfined aquifers. Pumping tests.

7 Hours

PART - B

UNIT - 5

WELL HYDRAULICS – UNSTEADY FLOW: Introduction. General equation derivation; Theis method, Cooper and JaCob method, Chow's method. Solution of unsteady flow equations.

7 Hours

UNIT - 6

GROUND WATER DEVELOPMENT: Types of wells. Methods of constructions. Tube well design. Dug wells. Pumps for lifting water: Working principles, Power requirements.

UNIT - 7

7 Hours

GROUND WATER EXPLORATION: Seismic method, Electrical resistivity method, Bore hole geo-physical techniques; Electrical logging, Radio active logging, Induction logging, Sonic logging and Fluid logging.

6 Hours

UNIT - 8

GROUND WATER RECHARGE AND RUNOFF: Recharge by vertical leakage. Artificial recharge. Ground water runoff. Ground water budget.

6 Hours

TEXT BOOKS:

- 1. Ground Water- H.M. Raghunath, Wiley Eastern Limited, New Delhi.
- 2. Ground Water Hydrology- K. Todd, Wiley and Sons, New Delhi.
- 3. Numerical Ground Water Hydrology- A.K. Rastogi, Penram, International Publishing (India), Pvt. Ltd., Mumbai.

REFERENCE BOOKS:

- 1. Ground Water Hydrology- Bower H.- McGraw Hill, New Delhi.
- 2. Ground Water and Tube Wells- Garg Satya Prakash, Oxford and IBH, New Delhi.
- 3. Ground Water Resource Evaluation- W.C. Walton, McGraw Hill Kogakusha Ltd., New Delhi.
- 4. Water wells and Pumps Michel D.M., Khepar. S.D., Sondhi. S.K., McGraw Hill Education 2nd Edition.

TRAFFIC ENGINEERING

Subject Code	: 10CV667	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION: Definition, objectives of Traffic Engineering and scope of Traffic Engineering.

2

Hours

UNIT - 2

TRAFFIC CHARACTERISTICS: Road user characteristics, vehicular characteristics – static and dynamic characteristics, power

performance of vehicles, Resistance to the motion of vehicles – Reaction time of driver – Problems on above.

6

Hours

UNIT - 3

TRAFFIC STUDIES: Various types of traffic engineering studies, data collection, analysis objectives and method of study – Definition of study area – Sample size and analysis.

6 Hours

UNIT - 4

INTERPRETATION OF TRAFFIC STUDIES: Classified traffic Volume at mid block and intersections, PCU, origin and destination, spot speed, speed and delay, parking – on street parking, off street parking, Accident – causes, analysis measures to reduce accident – problems on above.

6 Hours

PART - B

UNIT - 5

TRAFFIC FLOW THEORIES: Traffic flow theory, Green shield theory – Goodness of fit, - correlation and regression analysis (linear only) – Queuing theory, Car following theory and relevant problems on above.

8 Hours

UNIT - 6

STATISTICAL ANALYSIS: Poisson's distribution and application to traffic engineering. Normal Distribution – Significance tests for observed traffic data, Chi Square test – problems on above. Traffic forecast – simulation technique.

12 Hours UNIT - 7

TRAFFIC REGULATION AND CONTROL: Driver, vehicle and road controls – Traffic regulations – one way – Traffic markings, Traffic signals – Vehicle actuated and synchronized signals – Signals co-ordination. Webster's method of signal design, IRC method, traffic rotary elements and designs, traffic operation – Street lighting, Road side furniture, Relevant problems on above.

Hours

10
www.universityupdates.in || www.android.universityupdates.in

UNIT - 8

INTELLIGENT TRANSPORT SYSTEM: Definition, Necessities, Application in the present traffic scenario

2

Hours

TEXT BOOKS:

- Traffic Engineering & Transport Planning L.R. Kadiyali-Khanna Publishers.
- 2. Highway Engineering Nemchand & Bros- Khanna & Justo-Roorkee (UA).
- 3. Traffic Engg. Matson & Smith:-Mc.Graw Hill and Co.
- 4. Traffic flow theory Drew- Mc. Graw Hill and Co.

- 1. Traffic Engineering. Pignataro- Prentice Hall.
- 2. Highway Capacity Manual 2000.
- An introduction to traffic engineering- Jotin Khistey and Kentlal- PHI.
- 4. Traffic Engineering- Mc Shane & Roess- PHI.

ESTIMATION & VALUATION

Subject Code	: 10CV73	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

ESTIMATION: Study of various drawings with estimates, important terms, units of measurement, abstract Methods of taking out quantities and cost – center line method, long and short wall method or crossing method. Preparation of detailed and abstract estimates for the following Civil Engineering works – Buildings – RCC framed structures with flat, sloped RCC roofs with all Building components.

16 Hours

PART - B

ESTIMATE: Different type of estimates, approximate methods of estimating buildings, cost of materials. Estimation of wooden joineries such as doors, windows & ventilators.

5 Hours

ESTIMATES: Steel truss (Fink and Howe truss), manhole and septic tanks, RCC Culverts.

6 Hours

SPECIFICATIONS: Definition of specifications, objective of writing specifications, essentials in specifications, general and detail specifications of common item of works in buildings.

5 Hours

PART - C

RATE ANALYSIS: Definition and purpose. Working out quantities and rates for the following standard items of works – earth work in different types of soils, cement concrete of different mixes, bricks and stone masonry, flooring, plastering, RCC works, centering and form work for different RCC items, wood and steel works for doors, windows and ventilators.

6 Hours

www.universityupdates.in || www.android.universityupdates.in

MEASUREMENT OF EARTHWORK FOR ROADS: Methods for computation of earthwork - cross sections - mid section formula or average end area or mean sectional area, trapezoidal & prismoidal formula with and without cross slopes.

6 Hours

CONTRACTS: Types of contract – essentials of contract agreement – legal aspects, penal provisions on breach of contract. Definition of the terms -Tender, earnest money deposit, security deposit, tender forms, documents and types. Acceptance of contract documents. Termination of contract, completion certificate, quality control, right of contractor, refund of deposit. Administrative approval – Technical sanction. Nominal muster roll, measurement books - procedure for recording and checking measurements preparation of bills.

Valuation- Definitions of various terms, method of valuation, Freehold & Leasehold properties, Sinking fund, depreciation and method of estimating depreciation, Outgoings.

8 Hours

REFERENCE BOOKS:

- 1. Estimating & Costing, B. N. Dutta, Chand Publisher
- 2.
- Quantity Surveying- P.L. Basin S. Chand : New Delhi. Estimating & Specification S.C. Rangwala :: Charotar publishing 3. house, Anand.
- 4. Text book of Estimating & Costing- G.S. Birde, Dhanpath Rai and sons : New Delhi.
- A text book on Estimating, Costing and Accounts- D.D. Kohli 5. and R.C. Kohli S. Chand : New Delhi.
- 6. Contracts and Estimates, B. S. Patil, University Press, 2006.

DESIGN OF PRE-STRESSED CONCRETE STRUCTURES

Subject Code	: 10CV74	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

MATERIALS: High strength concrete and steel, Stress-Strain characteristics and properties.

2 Hours BASIC PRINCIPLES OF PRESTRESSING: Fundamentals, Load balancing concept, Stress concept, centre of Thrust. Pre-tensioning and posttensioning systems, tensioning methods and end anchorages.

4 Hours

www.universityupdates.in // www.android.universityupdates.in

UNIT - 2

ANALYSIS OF SECTIONS FOR FLEXURE: Stresses in concrete due to pre-stress and loads, stresses in steel due to loads, Cable profiles.

8 Hours

UNIT - 3

LOSSES OF PRE-STRESS: Various losses encountered in pre-tensioning and post tensioning methods, determination of jacking force.

6 Hours

UNIT - 4

DEFLECTIONS: Deflection of a pre-stressed member – Short term and long term deflections, Elastic deflections under transfer loads and due to different cable profiles. Deflection limits as per IS 1343. Effect of creep on deflection, load verses deflection curve, methods of reducing deflection **6 Hours**

PART - B

UNIT - 5

LIMIT STATE OF COLLAPSE: Flexure -IS Code recommendations – Ultimate flexural strength of sections.

5 Hours

UNIT - 6 LIMIT

LIMIT STATE OF COLLAPSE (cont...): Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking.

7 Hours

UNIT - 7

DESIGN OF END BLOCKS: Transmission of prestress in pretensioned members, transmission length, Anchorage stress in post-tensioned members. Bearing stress and bursting tensile force-stresses in end blocks-Methods, I.S. Code, provision for the design of end block reinforcement.

6 Hours

8 Hours

UNIT - 8

DESIGN OF BEAMS: Design of pre-tensioned and post-tensioned symmetrical and asymmetrical sections. Permissible stress, design of prestressing force and eccentricity, limiting zone of pre-stressing force cable profile.

REFERENCE BOOKS:

- 1. **Pre-stressed Concrete-** N. Krishna Raju Tata Mc. Graw Publishers.
- 2. **Pre-stressed Concrete-** P. Dayarathnam : Oxford and IBH Publishing Co.

www.universityupdates.in || www.android.universityupdates.in

- Design of pre-stressed concrete structures- T.Y. Lin and Ned H. Burns - John Wiley & Sons, New York.
- 4. Fundamental of pre-stressed concrete- N.C. Sinha & S.K. Roy
- 5. IS: 1343: 1980
- 6. Pre-stressed Concrete- N. Rajgopalan

PAVEMENT MATERIALS AND CONSTRUCTION

Subject Code	: 10CV763	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A PAVEMENT MATERIALS

UNIT - 1

AGGREGATES: Origin, classification, requirements, properties and tests on road aggregates, concepts of size and gradation – design gradation, maximum aggregate size, aggregate blending by different methods to meet specification.

6 Hours

UNIT - 2

BITUMEN AND TAR: Origin, preparation, properties and chemical constitution of bituminous road binders; requirements.

4 Hours

UNIT - 3

BITUMINOUS EMULSIONS AND CUTBACKS: Preparation, characteristics, uses and tests. Adhesion of Bituminous Binders to Road Aggregates: Adhesion failure, mechanism of stripping, tests and methods of improving adhesion.

8 Hours

UNIT - 4

BITUMINOUS MIXES: Mechanical properties, dense and open textured mixes, flexibility and brittleness, (no Hveem Stabilometer & Hubbar – Field Tests) bituminous mix, design methods using Rothfuch's Method only and

www.universityupdates.in || www.android.universityupdates.in

specification, Marshal mixed design criteria- voids in mineral aggregates, voids in total mix, density, flow, stability, percentage voids filled with bitumen.

6 Hours

PART - B

PAVEMENT CONSTRUCTION

UNIT - 5

EQUIPMENT IN HIGHWAY CONSTRUCTION: Various types of equipment for excavation, grading and compaction – their working principle, advantages and limitations. Special equipment for bituminous and cement concrete pavement and stabilized soil road construction.

6 Hours

UNIT - 6

SUBGRADE: Earthwork grading and construction of embankments and cuts for roads. Preparation of subgrade, quality control tests.

6 Hours

UNIT - 7

FLEXIBLE PAVEMENTS: Specifications of materials, construction method and field control checks for various types of flexible pavement layers.

8 Hours

UNIT - 8

CEMENT CONCRETE PAVEMENTS: Specifications and method of cement concrete pavement construction (PQC Importance of providing DLC as sub-base and polythene thin layer between PQC and sub-base); Quality control tests; Construction of various types of joints.

8 Hours

TEXT BOOKS:

- 1. **Highway Engineering** Khanna, S.K., and Justo, C.E.G., : Nem Chand and Bros. Roorkee
- 2. Construction Equipment and its Management- Sharma, S.C. : Khanna Publishers.
- 3. Hot Mix Asphalt Materials, Mixture Design and Construction-Freddy L. Roberts, Kandhal, P.S. : University of Texas Austin, Texas. NAPA Education Foundation Lanham, Maryland.

REFERENCES BOOKS:

- 1. RRL, DSIR, 'Bituminous Materials in Road Construction', HMSO Publication.
- 2. RRL, DSIR, 'Soil Mechanics for Road Engineers', HMSO Publication.
- 3. Relevant IRC codes and MoRT & H specifications.

CONCRETE AND HIGHWAY MATERIALS LABORATORY

Subject Code	: 10CVL78	IA Marks	: 25
No. of Practical Hours/Week	: 03	Exam Hours	: 03
Total No. of Practical Hours	: 42	Exam Marks	: 50

PART - A

CEMENT: Normal Consistency, Setting time, Soundness by Autoclave method, Compression strength test and Air permeability test for fineness, Specific gravity of cement.

FRESH CONCRETE: Workability – slump, Compaction factor and Vee Bee tests.

HARDENED CONCRETE: Compression strength and Split tensile tests. Test on flexural strength of RCC beams, Permeability of concrete.

PART - B

SOIL: Density of Soil by Sand replacement method, CBR Text.

AGGREGATES: Crushing, abrasion, impact and Shape tests (Flaky, Elongation, Angularity number) Specific gravity and water absorption.

BITUMINOUS MATERIALS AND MIXES: Specific Gravity, Penetration, Ductility, Softening point, Flash and fire point, Viscosity, proportioning of aggregate mixes by Rothfutch Method, Marshall Stability tests.

REFERENCE BOOK:

1. Relevant IS Codes and IRC Codes.

www.universityupdates.in || www.android.universityupdates.in

- 2. **Highway Material Testing Laboratory Manual** by Khanna S K and Justo, CEG Nemi Chand & Bros.
- 3. M. L. Gambhir : Concrete Manual : Dhanpat Rai & sons New Delhi.

www.universityupdates.in || www.android.universityupdates.in

www.universityupdates.in || www.android.universityupdates.in

VIII -SEMESTER

ADVANCED CONCRETE TECHNOLOGY

Subject Code	: 10CV81	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

UNIT - 1

Importance of Bogue's compounds, Structure of a Hydrated Cement Paste, Volume of hydrated product, porosity of paste and concrete, transition Zone, Elastic Modulus, factors affecting strength and elasticity of concrete, Rheology of concrete in terms of Bingham's parameter.

7 Hour

UNIT - 2

CHEMICAL ADMIXTURES- Mechanism of chemical admixture, Plasticizers and super Plasticizers and their effect on concrete property in fresh and hardened state, Marsh cone test for optimum dosage of super plasticizer, retarder, accelerator, Air-entraining admixtures, new generation superplasticiser.

MINERAL ADMIXTURE-Fly ash, Silica fume, GCBS, and their effect on concrete property in fresh state and hardened state.

6 Hours

UNIT - 3

MIX DESIGN - Factors affecting mix design, design of concrete mix by BIS method using IS10262 and current American (ACI)/ British (BS) methods. Provisions in revised IS10262-2004.

6 Hours

UNIT - 4

DURABILITY OF CONCRETE - Introduction, Permeability of concrete, chemical attack, acid attack, efflorescence, Corrosion in concrete. Thermal conductivity, thermal diffusivity, specific heat. Alkali Aggregate Reaction, IS456-2000 requirement for durability.

7 Hours

PART - B

UNIT - 5

RMC concrete - manufacture, transporting, placing, precautions, Methods of concreting- Pumping, under water concreting, shotcrete, High volume fly ash concrete concept, properties, typical mix

www.universityupdates.in // www.android.universityupdates.in

Self compacting concrete concept, materials, tests, properties, application and Typical mix.

6 Hours

UNIT - 6

Fiber reinforced concrete - Fibers types and properties, Behavior of FRC in compression, tension including pre-cracking stage and post-cracking stages, behavior in flexure and shear, Ferro cement - materials, techniques of manufacture, properties and application

7 Hours

UNIT - 7

Light weight concrete-materials properties and types. Typical light weight concrete mix High density concrete and high performance concrete-materials, properties and applications, typical mix.

6 Hours

UNIT - 8

Test on Hardened concrete-Effect of end condition of specimen, capping, H/D ratio, rate of loading, moisture condition. Compression, tension and flexure tests. Tests on composition of hardened concrete-cement content, original w/c ratio. NDT tests concepts-Rebound hammer, pulse velocity methods.

7 Hours

TEXT / REFERENCE BOOKS:

- 1. **Properties of Concrete** Neville, A.M. ELBS Edition, Longman Ltd., London
- 2. Concrete Technology- M.S. Shetty
- 3. **Concrete Technology-** A.R. Santhakumar,-Oxford University Press.
- 4. **Concrete** P.K. Mehta, P J M Monteiro,- Prentice Hall, New Jersey (Special Student Edition by Indian Concrete Institute Chennai)
- 5. ACI Code for Mix Design
- 6. IS 10262-2004
- 7. Concrete Mix Design- N. Krishna Raju Sehgal Publishers
- 8. Concrete Manual- Gambhir M.L.- Dhanpat Rai & Sons, New Delhi
- 9. Advanced Concrete Technology Processes- John Newman, Ban Seng Choo, London.
- 10. Advanced Concrete Technology Constituent materials- John Newman, Ban Seng Choo- London
- 11. Non-Destructive Test and Evaluation of Materials- J.Prasad, C G K Nair,-Mc Graw Hill.
- 12. High Performance Concrete- Prof Aitcin P C- E and FN, London.
- 13. Properties of Fresh Concrete- Power T.C.- E and FN, London

ENVIRONMENTAL IMPACT ASSESSMENT

Subject Code	: 10CV847	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Development Activity and Ecological Factors EIA, Rapid and Comprehensive EIA, EIS, FONSI. Need for EIA Studies, Baseline Information,

6 Hours

UNIT - 2

Step-by-step procedures for conducting EIA, Limitations of EIA.

6 Hours

UNIT - 3

Frame work of Impact Assessment. Development Projects-Environmental Setting, Objectives and Scope, Contents of EIA, Methodologies, Techniques of EIA.

8 Hours

UNIT - 4

Assessment and Prediction of Impacts on Attributes Air, Water, Noise, Land Ecology, Soil, Cultural and Socio-economic Environment. EIA guidelines for Development Projects, Rapid and Comprehensive EIA.

6 Hours

PART - B

UNIT - 5

EIA guidelines for Development Projects, Rapid and Comprehensive EIA.

UNIT - 6

Public Participation in Environmental Decision making. Practical Considerations in preparing Environmental Impact Assessment and Statements.

6 Hours

6 Hours

UNIT - 7

Salient Features of the Project Activity-Environmental Parameter Activity Relationships- Matrices.

4 Hours

UNIT - 8

EIA for Water resource developmental projects, Highway projects: Nuclear-Power plant projects, Mining project (Coal, Iron ore), Thermal Power Plant, Infrastructure Construction Activities.

10 Hours

REFERENCES

- 1. Environmental Impact Analysis-Jain R.K.-Van Nostrand Reinhold Co.
- 2. Environment Impact Assessment.- Anjaneyalu. Y.
- 3. Guidelines for EIA of developmental Projects Ministry of Environment and Forests, GOI.
- 4. **Environment Impact Assessment** Larry W. Canter McGraw Hill Publication.

ADVANCED DESIGN OF RCC STRUCTURES

Subject Code	: 14CSE12	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

Objectives:

The objectives of this course is to make students to learn principles of Structural Design, To design different types of structures and to detail the structures. To evaluate performance of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Structural Design
- Design and develop analytical skills.
- Summarize the principles of Structural Design and detailing
- Understands the structural performance.
- 1. Yield line method of design of slabs. Design of flat slabs.
- 2. Design of grid floors.
- 3. Design of continuous beams with redistribution of moments
- 4. Design of Chimneys, Design of silos and bunkers.
- 5. Art of detailing earthquake resistant structures. Expansion and contraction joints

- 1. A Park and Paulay, "Reinforced Reinforced and Prestressed Concrete"
- 2. Lin TY and Burns N H, "Reinforced Concrete Design".
- 3. Kong KF and Evans T H "Design of Prestressed Concrete Structures
- 4. P.C.Varghese, "Advanced Reinforced Concrete Design", Prentice-Hall of India, New Delhi, 2005.
- 5. Dr.B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Comprehensive RCC Design"

STRUCTURAL DYNAMICS

Subject Code	: 14CSE14	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

Objectives:

The objectives of this course is to make students to learn principles of Structural Dynamics, To implement these principles through different methods and to apply the same for free and forced vibration of structures. To evaluate the dynamic characteristics of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Structural Dynamics
- Design and develop analytical skills.
- Summarize the Solution techniques for dynamics of Multi-degree freedom systems
- Understand the concepts of damping in structures.
- 1. Introduction: Introduction to Dynamic problems in Civil Engineering, Concept of degrees of freedom, D'Alembert's principle, principle of virtual displacement and energy principles Dynamics of Single-degree-of-freedom systems: Mathematical models of Single-degree-of-freedom systems system, Free vibration response of damped and undamped systems. Methods of evaluation of damping.
- 2. Response of Single-degree-of-freedom systems to harmonic loading (rotation unbalance, reciprocating unbalance) including support motion, vibration isolation, transmissibility, Numerical methods applied to Single-degree-of-freedom systems Duhamel integral, principle of vibration-measuring instruments seismometer and accelerometer.
- **3.** Dynamics of Multi-degree freedom systems: Mathematical models of multi-degree-of-freedom systems, Shear building concept, free vibration of undamped multi-degree-of-freedom systems Natural frequencies and mode shapes orthogonality property of modes.
- 4. Response of Shear buildings for harmonic loading without damping using normal mode approach. Response of Shear buildings for forced vibration for harmonic loading with damping using normal mode approach, condition of damping uncoupling.
- 5. Approximate methods: Rayleigh's method Dunkarley's method, Stodola's method. Dynamics of Continuous systems: Free longitudinal vibration of bars, flexural vibration of beams with different end conditions,- Stiffness matrix, mass matrix (lumped and consistent); equations of motion for the discretised beam in matrix form.

Books for Reference:

- 1. Dynamics of Structures Theory and Application to Earthquake Engineering"- 2nd ed., Anil K. Chopra, Pearson Education.
- 2. Earthquake Resistant Design of Building Structures, Vinod Hosur, WILEY (india)
- 3. Vibrations, structural dynamics- M. Mukhopadhaya : Oxford IBH
- 4. Structural Dynamics- Mario Paz: CBS publishers.
- 5. Structural Dynamics- Clough & Penzien : TMH
- 6. Vibration Problems in Engineering Timoshenko, S, Van-Nostrand Co.

ELECTIVE - I

SPECIAL CONCRETE

Subject Code	: 14CSE152	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of Concrete mix design, To differentiate between different types of concrrete. To characterize the high Performance concrete.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Concrete mix design
- Design and develop analytical skills.
- Summerize the Light Weight concrete, Fibre reinforced concrete and High Performance concrete:
- Understand the concepts of high Performance concrete.
- 1. Components of modern concrete and developments in the process and constituent materials : Role of constituents, Development in cements and cement replacement materials, pozzolona, fly ash, silica fume, rice husk ash, recycled aggregates, chemical admixtures. Mix proportioning of Concrete: Principles and methods.
- 2. Light Weight concrete: Introduction, classification, properties, strength and durability, mix proportioning and problems. High density concrete: Radiation shielding ability of concrete, materials for high density concrete, mix proportioning, properties in fresh and hardened state, placement methods.
- **3.** Ferro cement: Ferrocement materials, mechanical properties, cracking of ferrocement, strength and behaviour in tension, compression and flexure, Design of ferrocement in tension, ferrocement constructions, durability, and applications.
- 4. *Fibre reinforced concrete:* Fibre materials, mix proportioning, distribution and orientation, interfacial bond, properties in fresh state, strength and behavior in tension, compression and flexure of steel fibre reinforced concrete, mechanical properties, crack arrest and toughening mechanism, applications.
- **5.** High Performance concrete: constituents, mix proportioning, properties in fresh and hardened states, applications and limitations. Ready Mixed Concrete, Self Compacting Concrete, Reactive powder concrete, bacterial concrete.

- 1. Neville A.M, "Properties of Concrete" Pearson Education Asis, 2000
- 2. P. Kumar Mehta, Paul J.N.Monterio, CONCRETE, "Microstructure, Properties and Materials"- Tata McGraw Hill
- 3. A.R.Santhakumar, (2007) "Concrete Technology"-Oxford University Press, New Delhi, 2007
- 4. Gambhir "Concrete Technology" TMH.
- 5. Short A and Kinniburgh.W, "Light Weight Concrete"- Asia Publishing House, 1963
- 6. Aitcin P.C. "High performance concrete"-E and FN, Spon London 1998
- 7. Rixom.R. and Mailvaganam.N., "Chemical admixtures in concrete"- E and FN, Spon London 1999
- 8. Rudnai.G., "Light Wiehgt concrete"- Akademiaikiado, Budapest, 1963.

STRUCTURAL ENGINEERING LAB-1

Subject Code	: 14CSE16	IA Marks	: 25
No. of Lab Hrs./ Week	: 03	Exam Hrs	: 03
Total No. of Lab Hrs.	: 48	Exam Marks	:50

The objectives of this course is to make students to learn principles of design of experiments, To investigate the performance of structural elements . To evaluate the different testing methods and equipments. .

Course Outcomes: On completion of this course, students are able to

Achieve Knowledge of design and development of experimenting skills. •

- Understand the principles of design of experiments
- Design and develop analytical skills.
- Summerize the testing methods and equipments. •
- 1. Testing of beams for deflection, flexure and shear 12 Hrs 12 Hrs
- 2. Experiments on Concrete, including Mix design
- 3. Experiments on vibration of multi storey frame models for Natural frequency and modes. 12Hrs

4. Use of Non destructive testing (NDT) equipments - Rebound hammer, Ultra sonic pulse velocity meter and Profometer

12 Hrs

EARTHQUAKE RESISTANT STRUCTURES

Subject Code	: 14CSE22	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of engineering seismology, To design the reinforced concrete buildings for earthquake resistance. To evaluate the seismic response of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of engineering seismology
- Design and develop analytical skills.
- Summarize the Seismic evaluation and retrofitting of structures.
- Understand the concepts of earthquake resistance of reinforced concrete buildings.
- 1. Introduction to engineering seismology, Geological and tectonic features of India, Origin and propagation of seismic waves, characteristics of earthquake and its quantification Magnitude and Intensity scales, seismic instruments. Earthquake Hazards in India, Earthquake Risk Evaluation and Mitigation. Structural behavior under gravity and seismic loads, Lateral load resisting structural systems, Requirements of efficient earthquake resistant structural system, damping devises, base isolation systems.
- 2. The Response history and strong motion characteristics. Response Spectrum elastic and inelastic response spectra, tripartite (D-V-A) response spectrum, use of response spectrum in earthquake resistant design.Computation of seismic forces in multi-storeyed buildings using procedures (Equivalent lateral force and dynamic analysis) as per IS-1893.
- 3. Structural Configuration for earthquake resistant design, Concept of plan irregularities and vertical irregularities, Soft storey, Torsion in buildings. Design provisions for these in IS-1893. Effect of infill masonry walls on frames, modeling concepts of infill masonry walls. Behaviour of masonry buildings during earthquakes, failure patterns, strength of masonry in shear and flexure, Slenderness concept of masonry walls, concepts for earthquake resistant masonry buildings codal provisions.
- 4. Design of Reinforced concrete buildings for earthquake resistance-Load combinations, Ductility and energy absorption in buildings. confinement of concrete for ductility, design of columns and beams for ductility, ductile detailing provisions as per IS-1893. Structural behavior, design and ductile detailing of shear walls.
- 5. Seismic response control concepts Seismic demand, seismic capacity, Overview of linear and nonlinear procedures of seismic analysis. Performance Based Seismic Engineering methodology, Seismic evaluation and retrofitting of structures.

Books for Reference:

- 1. Dynamics of Structures Theory and Application to Earthquake Engineering- 2nd ed. Anil K. Chopra, Pearson Education.
- 2. Earthquake Resistant Design of Building Structures, Vinod Hosur, WILEY (india)
- 3. Earthquake Resistant Design of Structures, Duggal, Oxford University Press
- 4. Earthquake resistant design of structures Pankaj Agarwal, Manish Shrikande PHI India
- 5. IS 1893 (Part I): 2002, IS 13920: 1993, IS 4326: 1993, IS-13828: 1993
- 6. Design of Earthquake Resistant Buildings, Minoru Wakabayashi, McGraw Hill Pub.
- 7. Seismic Design of Reinforced Concrete and Masonry Buildings, T Paulay and M J N Priestley, John Wiley and Sons

FINITE ELEMENT METHOD OF ANALYSIS

Subject Code	: 14CSE23	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of Analysis of Stress and Strain, To apply the Finite Element Method for the analysis of one and two dimensional problems. To evaluate the stress and strain parameters and their inter relations of the continuum.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of stress-strain behaviour of continuum
- Design and develop analytical skills.
- Describe the state of stress in a continuum
- Understand the concepts of elasticity and plasticity.
- Basic concepts of elasticity Kinematic and Static variables for various types of structural problems approximate method of structural analysis – Rayleigh – Ritz method – Finite difference method – Finite element method. Variation method and minimization of Energy approach of element formulation.Principles of finite element method – advantages & disadvantages – Finite element procedure. Finite elements used for one, two & three dimensional problems – Element aspect ratio – mesh refinement vs. higher order elements – Numbering of nodes to minimize band width.
- 2. Nodal displacement parameters Convergence criterion Compatibility requirements Geometric invariance Shape function Polynomial form of displacement function. Generalized and Natural coordinates Lagrangian interpolation function shape functions for one, two & three dimensional elements.
- **3.** Isoparametric elements Internal nodes and higher order elements Serendipity and Lagrangian family of Finite Elements Sub parametric and Super parametric elements Condensation of internal nodes Jacobian transformation Matrix. Development of strain displacement matrix and stiffness matrix, consistent load vector, numerical integration.
- 4. Application of Finite Element Method for the analysis of one & two dimensional problems Analysis of simple beams and plane trusses Application to plane stress / strain / axisymmetric problems using CST & Quadrilateral Elements.
- **5.** Application to Plates & Shells- Choice of displacement function (C, C and C type) Techniques for Non linear Analysis.

- 1. Krishnamoorthy C S, "Finite Element Analysis"- Tata McGraw Hill
- 2. Desai C and Abel J F, "Introduction to the Finite Element Method"- East West Press Pvt. Ltd., 1972
- 3. Bathe K J, "Finite Element Procedures in Engineering Analysis" Prentice Hall
- 4. Rajasekaran. S, "Finite Element Analysis in Engineering Design"-Wheeler Publishing
- Cook R D, Malkan D S & Plesta M.E, "Concepts and Application of Finite Element Analysis" 3rd Edition, John Wiley and Sons Inc., 1989
- 6. Shames I H and Dym C J, "**Energy and Finite Element Methods in Structural Mechanics**"- McGraw Hill, New York, 1985

DESIGN CONCEPTS OF SUBSTRUCTURES

Subject Code	: 14CSE24	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of subsoil exploration, To design the sub structures. To evaluate the soil shear strength parameters.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of subsoil exploration
- Design and develop analytical skills.
- Identify and evaluate the soil shear strength parameters .
- Understand the concepts of Settlement analysis.
- 1. Introduction, Site investigation, In-situ testing of soils, Subsoil exploration, Classification of foundations systems. General requirement of foundations, Selection of foundations, Computations of Loads, Design concepts.
- 2. Concept of soil shear strength parameters, Settlement analysis of footings, Shallow foundations in clay, Shallow foundation in sand & C- Φ soils, Footings on layered soils and sloping ground, Design for Eccentric or Moment Loads.
- 3. Types of rafts, bearing capacity & settlements of raft foundation, Rigid methods, Flexible methods, soil-structure interaction, different methods of modeling the soil. Combined footings (rectangular & trapezoidal), strap footings & wall footings, Raft super structure interaction effects & general concepts of structural design, Basement slabs.
- 4. Deep Foundations: Load Transfer in Deep Foundations, Types of Deep Foundations, Ultimate bearing capacity of different types of piles in different soil conditions, Laterally loaded piles, tension piles & batter piles, Pile groups: Bearing capacity, settlement, uplift capacity, load distribution between piles, Proportioning and design concepts of piles.
- 5. Types of caissons, Analysis of well foundations, Design principles, Well construction and sinking. Foundations for tower structures: Introduction, Forces on tower foundations, Selection of foundation type, Stability and design considerations, Ring foundations general concepts.

IMPORTANT NOTE:

Only design principles of all type footings as per relevant BIS codes are to be covered, design of RC elements need not be covered

- 1. Swami Saran "Analysis & Design of Substructures"- Oxford & IBH Pub. Co. Pvt. Ltd., 1998.
- 2. Nainan P Kurian "Design of Foundation Systems" Narosa Publishing House, 1992.
- 3. R.B. Peck, W.E. Hanson & T.H. Thornburn "Foundation Engineering"- Wiley Eastern Ltd., Second Edition, 1984.
- 4. J.E. Bowles "Foundation Analysis and Design"- McGraw-Hill Int. Editions, Fifth Ed., 1996.
- 5. W.C. Teng "Foundation Design"- Prentice Hall of India Pvt. Ltd., 1983.
- 6. Bureau of Indian Standards:IS-1498, IS-1892, IS-1904, IS-6403, IS-8009, IS-2950, IS-11089, IS-11233, IS-2911 and all other relevant codes.

DESIGN OF TALL STRUCTURES

Subject Code	: 14CSE252	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of stability of tall buildings, To design the tall buildings for earthquake and wind resistance. To evaluate the performance of tall structures for strength and stability.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of strength and stability
- Design and develop analytical skills.
- Summarize the behavior of various structural systems.
- Understand the concepts of P-Delta analysis.
- 1. Design Criteria: Design philosophy, loading, sequential loading, and materials high performance concrete, fiber reinforced concrete, lightweight concrete, design mixes. Loading and Movement: Gravity loading: Dead and live load, methods of live load reduction, Impact, Gravity loading, Construction loads
- **2.** Wind loading: static and dynamic approach, Analytical and wind tunnel experimentation method. Earthquake loading: Equivalent lateral force, modal analysis, combinations of loading, working stress design, Limit state design, Plastic design.
- **3.** Behavior of Various Structural Systems: Factors affecting growth, Height and structural form; High rise behavior, Rigid frames, braced frames, in-filled frames, shear walls, coupled shear walls, wall-frames, tubular, cores, Futigger braced and hybrid mega system.
- **4. Analysis and Design:** Modeling for approximate analysis, accurate analysis and reduction techniques, analysis of building as total structural system considering overall integrity and major subsystem interaction, analysis for member forces; drift and twist, computerized general three dimensional analyses.
- **5. Stability of Tall Buildings:** Overall buckling analysis of frames, wall frames, approximate methods, second order effects of gravity of loading, P-Delta analysis, simultaneous first order and P-Delta analysis, Transnational, Torsional instability, out of plum effects, stiffness of member in stability, effect of foundation rotation. Structural elements: sectional shapes, properties and resisting capacities, design, deflection, cracking, pre-stressing, shear flow. Design for differential movement, creep and shrinkage effects, temperature effects and fire

- 1. Taranath B.S, "Structural Analysis and Design of Tall Buildings"- McGraw Hill
- 2. Wilf gang Schuller, "High rise building structures" John Wiley
- 3. Bryan Stafford Smith & Alexcoull, "Tall building structures Analysis and Design"- John Wiley
- 4. T.Y Lin & D.Stotes Burry, "Structural concepts and system for Architects and Engineers"- John Wiley
- 5. Lynn S.Beedle, "Advances in Tall Buildings"- CBS Publishers and Distributors.
- 6. Dr. Y.P. Gupta Editor, "Proceedings National Seminar on High Rise Structures- Design and Construction practices for middle level cities"- New Age International Limited.
- 7.

STRUCTURAL ENGINEERING LAB-2

Subject Code	: 14CSE26	IA Marks	: 25
No. of Lab Hrs./ Week	: 03	Exam Hrs	: 03
Total No. of Lab Hrs.	: 48	Exam Marks	:50

The objectives of this course is to make students to learn the soft wares for structural analysis and design, To investigate the performance of structures for static and dynamic forces.

Course Outcomes: On completion of this course, students are able to

• Achieve Knowledge of design and development of programming skills.

- Understand the principles of structural analysis and design
- Design and develop analytical skills.
- Summerize the performance of structures for static and dynamic forces..

1. Static and Dynamic analysis of Building structure using software (ETABS / STAADPRO)	12 Hrs
2. Design of RCC and Steel structure using software (ETABS / STAADPRO)	12 Hrs
3. Analysis of folded plates and shells using software.	12 Hrs
4. Preparation of EXCEL sheets for structural design.	12 Hrs

8

Year: 2014-2015

Course Title: Cloud Computing	Course Code: 14SCS12
Credits(L:T:P):3:0:1	Core/Elective: Core
Type of Course: Lecture & Practical	Total Contact Hours: 50 Hrs

COURSE OBJECTIVES

-To learn how to use Cloud Services.

-To implement Virtualization

- To implement Task Scheduling algorithms.

-Apply Map-Reduce concept to applications.

-To build Private Cloud.

Topics:

Semester: I

Module I

Introduction. Cloud Infrastructure

Cloud computing, Cloud computing delivery models and services, Ethical issues, Cloud vulnerabilities, Cloud computing at Amazon, Cloud computing the Google perspective, Microsoft Windows Azure and online services, Open-source software platforms for private clouds, Cloud storage diversity and vendor lock-in, Energy use and ecological impact, Service level agreements, User experience and software licensing. Exercises and problems.

10 Hours

Module II

Cloud Computing: Application Paradigms.

Challenges of cloud computing, Architectural styles of cloud computing, Workflows: Coordination of multiple activities, Coordination based on a state machine model: The Zookeeper, The Map Reduce programming model, A case study: The GrepTheWeb application, Cloud for science and engineering, High-performance computing on a cloud, Cloud computing for Biology research, Social computing, digital content and cloud computing.

10 Hours

10 Hours

Module III

Cloud Resource Virtualization.

Virtualization, Layering and virtualization, Virtual machine monitors, Virtual Machines, Performance and Security Isolation, Full virtualization and paravirtualization, Hardware support for virtualization, Case Study: Xen a VMM based paravirtualization, Optimization of network virtualization, vBlades, Performance comparison of virtual machines, The dark side of virtualization, Exercises and problems.

Module IV

Cloud Resource Management and Scheduling.

Policies and mechanisms for resource management, Application of control theory to task scheduling on a cloud, Stability of a two-level resource allocation architecture, Feedback control based on dynamic thresholds, Coordination of specialized autonomic performance managers, A utility-based model for cloud-based Web services, Resourcing bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems.

Module V **Cloud Security, Cloud Application Development.**

10 Hours

Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, Amazon web services: EC2 instances, Connecting clients to cloud instances through firewalls, Security rules for application and transport layer protocols in EC2, How to launch an EC2 Linux instance and connect to it, How to use S3 in java, Cloud-based simulation of a distributed trust algorithm, A trust management service, A cloud service for adaptive data streaming, Cloud based optimal FPGA synthesis .Exercises and problems.

10 Hours

LAB EXPERIMENTS

NOTE: Simulate using object oriented programming, any available cloud environment (Eg; Amazon cloud) and VM ware for resource virtualization.

1. Create a Collaborative learning environment for a particular learning topic using Google Apps. Google Drive, Google Docs and Google Slides must be used for hosting e-books, important articles and presentations respectively. The instructor must use the Google Sheets to convey the timetable for different events and for analyzing the scores for individual assignment submission.

2. Modeling and simulation Cloud computing environments, including Data Centers, Hosts and Cloudlets and perform VM provisioning using CloudSim: Design a host with two CPU cores, which receives request for hosting two VMs, such that each one requires two cores and plans to host four tasks units. More specifically, tasks t1, t2, t3 and t4 to be hosted in VM1, while t5, t6, t7, and t8 to be hosted in VM2. Implement space-shared allocation policy and time-shared allocation policy. Compare the results.

3. Model a Cloud computing environment having Data center that had 100 hosts. The hosts are to be modeled to have a CPU core (1000 MIPS), 2 GB of RAM and 1 TB of storage. Consider the workload model for this evaluation included provisioning requests for 400 VMs, with each request demanding 1 CPU core (250 MIPS), 256 MB of RAM and 1 GB of storage. Each VM hosts a *web-hosting application service*, whose CPU utilization distribution was generated according to the uniform distribution. Each instance of a webhosting service required 150,000 MIPS or about 10 minutes to complete execution assuming 100% utilization. Simulate Energy-conscious model for power consumption and power management techniques such as Dynamic Voltage and Frequency Scaling (DVFS). Initially, VMs are to be allocated according to requested parameters (4 VMs on each host). The Cloud computing architecture that is to be considered for studying energy conscious resource management techniques/policies included a data center, CloudCoordinator, and Sensor component. The CloudCoordinator and Sensor perform their usual roles. Via the attached Sensors (which are connected with every host), CloudCoordinator must periodically monitor the performance status of active VMs such as load conditions, and processing share. This real time information is to be passed to VMM, which can use it for performing appropriate resizing of VMs and application of DVFS and soft scaling. CloudCoordinator continuously1 has to adapt allocation of VMs by issuing VM migration commands and changing power states of nodes according to its policy and current utilization of resources.

4. Model and simulate the environment consisting of a data center with 10,000 hosts where each host was modeled to have a single CPU core (1200MIPS), 4GB of RAM memory and 2TB of storage. Consider the provisioning policy for VMs as space-shared, which allows one VM to be active in a host at a given instance of time. Make a request from the end-user (through the Datacenter Broker) for creation and instantiation of 50 VMs that had following constraints: 1024MB of physical memory, 1 CPU core and 1GB of storage. The application granularity was modeled to be composed of 300 task units, with each task unit requiring 1,440,000 million instructions (20 minutes in the simulated hosts) to be executed on a host. Minimal data transfer (300 KB) overhead can be considered for the task units (to and from the data center). After the creation of VMs, task units were submitted in small groups of 50 (one for each VM) at inter-arrival delay of 10 minutes.

- 5. Implement Map Reduce concept for
- a. Strassen's Matrix Multiplication for a huge matrix.

b. Computing the average number of citation index a researcher has according to age among some 1 billion journal articles. Consider a network of entities and relationships between them. It is required to calculate a state of each entity on

the basis of properties of the other entities in its neighborhood. This state can represent a distance to other nodes, indication that there is a neighbor

with the certain properties, characteristic of neighborhood density and so on. A network is stored as a set of nodes and each node contains a list of adjacent node IDs. Mapper emits messages for each node using ID of the adjacent node as a key. Reducer must re compute state and rewrite node with the new state. Implement this scenario.

Course Outcomes:

The students should be able to:

-Demonstrate and experiment simple Cloud Applications

- -Apply resource allocation, scheduling algorithms.
- Implement Map-Reduce concept.
- Create virtual machines from available physical resources.
- Setup a private cloud.
- Familiarize with Open Stack.

Text Book:

1. Dan C Marinescu: Cloud Computing Theory and Practice. Elsevier(MK) 2013.

REFERENCES:

- 1. Rajkumar Buyya, James Broberg, Andrzej Goscinski: Cloud Computing Principles and Paradigms, Willey 2014.
- 2. John W Rittinghouse, James F Ransome: Cloud Computing Implementation, Management and Security, CRC Press 2013.

Semester: I

Year: 2014-2015

Course Title: Embedded Computing Systems	Course Code: 14SCS153	
Credits(L:T:P):4:0:0	Core/Elective: Elective	
Type of Course: Lecture	Total Contact Hours: 50 Hrs	COUR

OBJECTIVES

- Provide a general overview of Embedded Systems
- Show current statistics of Embedded Systems
- Design a complete microprocessor-based hardware system
- Design, code, compile, and test real-time software
- Integrate a fully functional system including hardware and software
- Gain the ability to make intelligent choices between hardware/software tradeoffs.

Topics:

MODULE I

Introduction to embedded systems: Embedded systems, Processor embedded into a system, Embedded hardware units and device in a system, Embedded software in a system, Examples of embedded systems, Design process in embedded system, Formalization of system design, Design process and design examples, Classification of embedded systems, skills required for an embedded system designer.

MODULE II

Devices and communication buses for devices network :IO types and example, Serial communication devices, Parallel device ports, Sophisticated interfacing features in device ports, Wireless devices, Timer and counting devices, Watchdog timer, Real time clock, Networked embedded systems, Serial bus communication protocols, Parallel bus device protocolsparallel communication internet using ISA, PCI, PCI-X and advanced buses, Internet enabled systems- network protocols, Wireless and mobile system protocols.

13 Hours

MODULE III

Device drivers and interrupts and service mechanism: Programming-I/O busy-wait approach without interrupt service mechanism, ISR concept, Interrupt sources, Interrupt servicing (Handling) Mechanism, Multiple interrupts, Context and the periods for context switching, interrupt latency and deadline, Classification of processors interrupt service mechanism from Context-saving angle, Direct memory access, Device driver programming.

MODULE IV

Interprocesses communication and synchronization of processes, Threads and tasks: Multiple process in an application, Multiple threads in an application, Tasks, Task states, Task and Data, Clear-cut distinction between functions. ISRS and tasks by their characteristics, concept and semaphores, Shared data, Inter-process communication, Signal function, Semaphore functions, Message Queue functions, Mailbox functions, Pipe functions, Socket functions, RPC functions. 10 Hours

MODULE V

Real-time operating systems: OS Services, Process management, Timer functions, Event functions, Memory management, Device, file and IO subsystems management, Interrupt routines in RTOS environment and handling of interrupt source calls, Real-time operating systems, Basic design using an RTOS, RTOS task scheduling models, interrupt latency and response of the tasks as performance metrics, OS security issues. Introduction to embedded

7 Hours

10 Hours

SE

software development process and tools, Host and target machines, Linking and location software.

10 Hours

Course Outcomes:

The students should be able to:

- Knowledge to distinguish the characteristics of embedded computer systems.
- Ability examines the various vulnerabilities of embedded computer systems.
- Ability to design embedded systems.
- Awareness of the changing landscape in embedded systems

Text Books:

1. Raj Kamal, "Embedded Systems: Architecture, Programming, and Design" 2nd edition, Tata McGraw hill-2013

Chapters: Chapter 1.1 to 1.5, 1.8 to 1.12, Chapter 3, 4, 7, 8 and 13.1 to 13.3.

References:

2. Marilyn Wolf ,"Computer as Components, Principles of Embedded Computing System Design" 3rd edition , Elsevier-2014 .

Semester: II

Year: 2014-2015

Course Title: Managing Big Data	Course Code: 14SCS21
Credits(L:T:P):3:0:1	Core/Elective: Core
Type of Course: Lecture & Practical	Total Contact Hours: 50 Hrs

Course Objectives:

- To Understand big data for business intelligence
- To Learn business case studies for big data analytics
- To Understand Nosql big data management
- To manage Big data without SQL
- To understanding map-reduce analytics using Hadoop and related tools

TOPICS:

MODULE I

UNDERSTANDING BIG DATA What is big data – why big data –.Data!, Data Storage and Analysis, Comparison with Other Systems, Rational Database

Management System, Grid Computing, Volunteer Computing, convergence of key trends - unstructured data - industry examples of big data - web analytics - big data and marketing - fraud and big data - risk and big data - credit risk management - big data and algorithmic trading - big data and healthcare - big data in medicine - advertising and big data - big data technologies - introduction to Hadoop - open source technologies - cloud and big data - mobile business intelligence - Crowd sourcing analytics - inter and trans firewall analytics

MODULE II NOSOL DATA MANAGEMENT

10 Hours Introduction to NoSQL - aggregate data models - aggregates - key-value and document data models - relationships graph databases - schema less databases - materialized views - distribution models - sharding - version - Map reduce partitioning and combining - composing map-reduce calculations

MODULE III BASICS OF HADOOP

Data format – analyzing data with Hadoop – scaling out – Hadoop streaming – Hadoop pipes – design of Hadoop distributed file system (HDFS) - HDFS concepts - Java interface - data flow - Hadoop I/O - data integrity - compression - serialization - Avro - file-based data structures

MODULE IV

MAPREDUCE APPLICATIONS

MapReduce workflows - unit tests with MRUnit - test data and local tests - anatomy of MapReduce job run - classic Mapreduce - YARN - failures in classic Map-reduce and YARN - job scheduling - shuffle and sort - task execution -MapReduce types - input formats - output formats

MODULE V

HADOOP RELATED TOOLS

Hbase - data model and implementations - Hbase clients - Hbase examples - praxis. Cassandra - Cassandra data model cassandra examples - cassandra clients -Hadoop integration. Pig - Grunt - pig data model - Pig Latin - developing and testing Pig Latin scripts. Hive – data types and file formats – HiveQL data definition – HiveQL data manipulation – HiveQL queries.

LAB Experiments

Exercise 1 --- HDFS

10 Hours

10 Hours

10 Hours

10 Hours

Start by reviewing HDFS. You will find that its composition is similar to your local Linux file system. You will use the hadoop fs command when interacting with HDFS.

- 1. Review the commands available for the Hadoop Distributed File System:
- 2. Copy file foo.txt from local disk to the user's directory in HDFS
- 3. Get a directory listing of the user's home directory in HDFS
- 4. Get a directory listing of the HDFS root directory
- 5. Display the contents of the HDFS file user/fred/bar.txt
- 6. Move that file to the local disk, named as baz.txt
- 7. Create a directory called input under the user's home directory
- 8. Delete the directory input old and all its contents
- 9. Verify the copy by listing the directory contents in HDFS:

Exercise 2 --- MapReduce

- 1. Create a JOB and submit to cluster
- 2. Track the job information
- 3. Terminate the job
- 4. Counters in MR Jobs with example
- 5. Map only Jobs and generic map examples
- 6. Distributed cache example
- 7. Combiners, Secondary sorting and Job chain examples

Exercise 3 --- MapReduce (Programs)

Using movie lens data

- 1. List all the movies and the number of ratings
 - 2. List all the users and the number of ratings they have done for a movie
 - 3. List all the Movie IDs which have been rated (Movie Id with at least one user rating it)
 - 4. List all the Users who have rated the movies (Users who have rated at least one movie)
 - 5. List of all the User with the max, min, average ratings they have given against any movie
 - 6. List all the Movies with the max, min, average ratings given by any user

Exercise4 – Extract facts using Hive

Hive allows for the manipulation of data in HDFS using a variant of SQL. This makes it excellent for transforming and consolidating data for load into a relational database. In this exercise you will use HiveQL to filter and aggregate click data to build facts about user's movie preferences. The query results will be saved in a staging table used to populate the Oracle Database.

The moveapp_log_json table contains an activity column. Activity states are as follows:

RATE_MOVIE
 COMPLETED_MOVIE
 PAUSE_MOVIE
 START_MOVIE
 BROWSE_MOVIE
 LIST_MOVIE
 LOGIN
 LOGOUT
 INCOMPLETE_MOVIE

hive> SELECT * FROM movieapp_log_json LIMIT 5; hive> drop table movieapp_log_json; hive> CREATE EXTERNAL TABLE movieapp_log_json (custId INT, movieId INT, genreId INT, time STRING, recommended STRING, activity INT, rating INT, price FLOAT) ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.JsonSerde' LOCATION '/user/oracle/moviework/applog/';

hive> SELECT * FROM movieapp_log_json LIMIT 20;

hive> SELECT MIN(time), MAX(time) FROM movieapp_log_json

1. PURCHASE_MOVIE

Hive maps queries into Map Reduce jobs, simplifying the process of querying large datasets in HDFS. HiveQL statements can be mapped to phases of the Map Reduce framework. As illustrated in the following figure, selection and transformation operations occur in map tasks, while aggregation is handled by reducers. Join operations are flexible: they can be performed in the reducer or mappers depending on the size of the leftmost table.

1. Write a query to select only those clicks which correspond to starting, browsing, completing, or purchasing movies. Use a CASE statement to transform the RECOMMENDED column into integers where 'Y' is 1 and 'N' is 0. Also, ensure GENREID is not null. Only include the first 25 rows.

2. Write a query to select the customer ID, movie ID, recommended state and most recent rating for each movie.

3. Load the results of the previous two queries into a staging table. First, create the staging table:

4. Next, load the results of the queries into the staging table.

Exercise 5 Extract sessions using Pig

While the SQL semantics of HiveQL are useful for aggregation and projection, some analysis is better described as the flow of data through a series of sequential operations. For these situations, Pig Latin provides a convenient way of implementing data flows over data stored in HDFS. Pig Latin statements are translated into a sequence of Map Reduce jobs on the execution of any STORE or DUMP command. Job construction is optimized to exploit as much parallelism as possible, and much like Hive, temporary storage is used to hold intermediate results. As with Hive, aggregation occurs largely in the reduce

tasks. Map tasks handle Pig's FOREACH and LOAD, and GENERATE statements. The EXPLAIN command will show the execution plan for any Pig Latin script. As of Pig 0.10, the ILLUSTRATE command will provide sample results for each stage of the execution plan.

In this exercise you will learn basic Pig Latin semantics and about the fundamental types in Pig Latin, Data Bags and Tuples.

- 1. Start the Grunt shell and execute the following statements to set up a dataflow with the click stream data. Note: Pig Latin statements are assembled into Map Reduce jobs which are launched at execution of a DUMP or STORE statement.
- 2. Group the log sample by movie and dump the resulting bag.

3. Add a GROUP BY statement to the sessionize.pig script to process the click stream data into user sessions.

Course Outcomes:

The students should be able to:

- Describe big data and use cases from selected business domains
- Explain NoSQL big data management
- Install, configure, and run Hadoop and HDFS
- Perform map-reduce analytics using Hadoop
- Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data Analytics

TEXT BOOKS:

- 1. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 2. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.

REFERENCES:

- 1. Vignesh Prajapati, Big data analytics with R and Hadoop, SPD 2013.
- 2. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 3. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 4. Alan Gates, "Programming Pig", O'Reilley, 2011.

Semester: II

Course Title: Advances in Computer Networks	Course Code: 14SCS22
Credits(L:T:P):3:0:1	Core/Elective: Core
Type of Course: Lecture & Practical	Total Contact Hours: 50 Hrs

Course Objectives:

- To become familiar with the basics of Computer Networks
- To understand various Network architectures
- Concepts of fundamental protocols
- To understand the network traffic, congestion, controlling and resource allocation.

Topics:

MODULE I

Foundation

Building a Network, Requirements, Perspectives, Scalable Connectivity, Cost-Effective Resource sharing, Support for Common Services, Manageability, Protocol layering, Performance, Bandwidth and Latency, Delay X Bandwidth Product, Perspectives on Connecting, Classes of Links, Reliable Transmission, Stop-and-Wait, Sliding Window, Concurrent Logical Channels.

T1: Chapter 1.1, 1.2, 1.5.1, 1.5.2., 2.1, 2.5 T2: Chapter 4

MODULE II

Internetworking- I

Switching and Bridging, Datagram's, Virtual Circuit Switching, Source Routing, Bridges and LAN Switches, Basic Internetworking (IP), What is an Internetwork ?, Service Model, Global Addresses, Datagram Forwarding in IP, sub netting and classless addressing, Address Translation(ARP), Host Configuration(DHCP), Error Reporting(ICMP), Virtual Networks and Tunnels.

T1: Chapter 3.1, 3.2,

MODULE III

Internetworking- II

Network as a Graph, Distance Vector(RIP), Link State(OSPF), Metrics, The Global Internet, Routing Areas, Routing among Autonomous systems(BGP), IP Version 6(IPv6), Mobility and Mobile IP T2:Chapter 13.1 to 13.18, Ch 18. **10 Hours T1:** Chapter 3.3, 4.1.1,4.1.3

MODULE IV

End-to-End Protocols

Simple Demultiplexer (UDP), Reliable Byte Stream(TCP), End-to-End Issues, Segment Format, Connecting Establishment and Termination, Sliding Window Revisited, Triggering Transmission, Adaptive Retransmission, Record Boundaries, TCP Extensions, Queuing Disciplines, FIFO, Fair Queuing, TCP Congestion Control, Additive Increase/ Multiplicative Decrease, Slow Start, Fast Retransmit and Fast Recovery. **T1:** Chapter 5.1, 5.2.1 to 5.2.8, 6.2, 6.3 **10 Hours**

MODULE V

Congestion Control and Resource Allocation

Congestion-Avoidance Mechanisms, DEC bit, Random Early Detection (RED), Source-Based Congestion Avoidance. The Domain Name System(DNS), Electronic Mail(SMTP, POP, IMAP, MIME), World Wide Web(HTTP), Network Management(SNMP).

T1: Chapter 6.4 T2: Chapter 23.1 to 23.16, Chapter 24, Chapter 25, Chapter 27.1 to 27.8

10 Hours

10 Hours

10 Hours

Laboratory Work:

PART A: Implement the following using C/C++:

1. Write a program to transfer the contents of a requested file from server to the client using TCP/IP Sockets (using TCP/IP Socket programming).

2. Write a program to archive Traffic management at Flow level by implementing Closed Loop Control technique. (Leaky Bucket Algorithm)

3. Write a program to implement dynamic routing strategy in finding optimal path for data transmission. (Bellman ford algorithm).

4. Write a program to implement Link State Routing (Dijkstra Algorithm).

5. Write a program for implementing the error detection technique while data transfer in unreliable network code using CRC (16-bits) Technique.

6. Write a program for providing security for transfer of data in the network. (RSA Algorithm)

7. Write a program for encrypting 64 bit playing text using DES algorithm.

PART B: Simulation Programs using OPNET /NS2 or any other equivalent software

1. Simulate a 3 node point to point network with duplex links between them. Set the Queue size and vary the bandwidth and find the number of packets dropped.

2. Simulate a four-node point-to-point network, and connect the links as follows: n0->n2, n1->n2 and n2->n3. Apply TCP agent changing the parameters and determine the number of packets sent/received by TCP/UDP

3. Simulate the different types of internet traffic such as FTP and TELNET over network and analyze the throughput.

Course Outcomes:

The students should be able to:

- List and classify network services, protocols and architectures, explain why they are layered.
- Choose key Internet applications and their protocols, and apply to develop their own applications (e.g. Client Server applications, Web Services) using the sockets API.
- Explain develop effective communication mechanisms using techniques like connection establishment, queuing theory, recovery Etc.
- Explain various congestion control techniques.

Text books:

- 1. T1: Larry Peterson and Bruce S Davis "Computer Networks : A System Approach" 5th Edition, Elsevier -2014
- 2. T2: Douglas E Comer, "Internetworking with TCP/IP, Principles, Protocols and Architecture" 6th Edition, PHI 2014

References:

- 1. Uyless Black "Computer Networks, Protocols, Standards and Interfaces" 2nd Edition PHI
- 2. Behrouz A Forouzan "TCP/IP Protocol Suite" 4th Edition Tata McGraw-Hill

Semester: II

10 Hours

10 Hours

10 Hours

Course Title: Advanced Algorithms	Course Code: 14SCS23
Credits(L:T:P):4:0:0	Core/Elective: Core
Type of Course: Lecture	Total Contact Hours: 50 Hrs

COURSE OBJECTIVES

- To learn the graph search algorithms.
- To study network flow and linear programming problems.
- To learn the hill climbing and dynamic programming design techniques.
- To develop recursive backtracking algorithms.
- To get an awareness of NP completeness and randomized algorithms.

Topics:

MODULE I

Review of Analysis Techniques: Growth of Functions: Asymptotic notations; Standard notations and common functions; Recurrences and Solution of Recurrence equations- The substitution method, The recurrence – tree method, The master method; Amortized Analysis: Aggregate, Accounting and Potential Methods.

MODULE II

Graph Algorithms: Bellman - Ford Algorithm; Single source shortest paths in a DAG; Johnson's Algorithm for sparse graphs; Flow networks and Ford-Fulkerson method; Maximum bipartite matching. **Polynomials and the FFT:** Representation of polynomials; The DFT and FFT; Efficient implementation of FFT.

10 Hours MODULE III Number - Theoretic Algorithms: Elementary notions; GCD; Modular Arithmetic; Solving modular linear equations; The Chinese remainder theorem; Powers of an element; RSA cryptosystem; Primality testing; Integer factorization. 10 Hours

MODULE IV

String-Matching Algorithms: Naïve string Matching; Rabin - Karp algorithm; String matching with finite automata; Knuth-Morris-Pratt algorithm; Boyer – Moore algorithms.

MODULE V

Probabilistic and Randomized Algorithms: Probabilistic algorithms; Randomizing deterministic algorithms, Monte Carlo and Las Vegas algorithms; Probabilistic numeric algorithms.

Course Outcomes:

Upon completion of the course, the students will be able to

- Design and apply iterative and recursive algorithms.
- Design and implement optimization algorithms in specific applications.
- Design appropriate shared objects and concurrent objects for applications.

TEXT BOOKS:

1. T. H Cormen, C E Leiserson, R L Rivest and C Stein: Introduction to Algorithms, 3rd Edition, Prentice-Hall of India, 2010.

2. Kenneth A. Berman, Jerome L. Paul: Algorithms, Cengage Learning, 2002.

REFERENCE BOOKS:

1. Ellis Horowitz, Sartaj Sahni, S.Rajasekharan: Fundamentals of Computer Algorithms, 2nd Edition, Universities press, 2007.

Semester: II

Year: 2014-2015

Course Title: Web Services	Course Code: 14SCS251
Credits(L:T:P):4:0:0	Core/Elective: Elective
Type of Course: Lecture	Total Contact Hours: 50 Hrs

Course objectives:

- To provide an in-depth knowledge of Web Services.
- To understand the fundamental concepts of Web services.
- To understand the fundamental concepts of WSDL Web Services.
- To design Web service Architecture.
- To Study Building Blocks of Web services.

TOPICS:

MODULE I

Middleware: Understanding the middle ware, RPC and Related Middle ware, TP Monitors, Object Brokers, Message-Oriented Middleware. 10 Hours

MODULE II

Web Services: Web Services Technologies, Web Services Architecture.

MODULE III

Basic Web Services Technology: WSDL Web Services Description Language, UDDI Universal Description Discovery and Integration, Web Services at work interactions between the Specifications, Related Standards.

10 Hours

10 Hours

10 Hours

MODULE IV

Service Coordination Protocols: Infrastructure for Coordination Protocols, WS- Coordination, WS-Transaction, Rosetta Net and Other Standards Related to Coordination Protocols. 10 Hours

MODULE V

Service Composition: Basic of Service Composition, A New Chance of Success for Composition, Services Composition Models, Dependencies between Coordination and Composition, BPEL: Business Process Execution Language for Web Services, Outlook, Applicability of the Web Services, Web services as a Problem and a Solution : AN Example.

Course Outcomes:

The students should be able to:

- Bind and unbind services in UDDI.
- Develop WSDL document
- Implement web service client to call public service.
- Implement a service and exposing it as public service.

Text Books:

1. Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju: Web Services(Concepts, Architectures and Applications), Springer International Edition 2009.

Semester: II	Year: 2014-2015

Course Title: Information And Network Security	Course Code: 14SCS252
Credits(L:T:P):4:0:0	Core/Elective: Elective
Type of Course: Lecture	Total Contact Hours: 50 Hrs

Course Objectives:

- To understand the fundamentals of Cryptography
- To acquire knowledge on standard algorithms used to provide confidentiality, integrity and authenticity.
- To understand the various key distribution and management schemes.
- To understand how to deploy encryption techniques to secure data in transit across data networks
- To design security applications in the field of Information technology

TOPICS:

MODULE I

Classical Encryption Techniques

Symmetric Cipher Model, Cryptography, Cryptanalysis and Brute-Force Attack, Substitution Techniques, Caesar Cipher, Monoalphabetic Cipher, Playfair Cipher, Hill Cipher, Polyalphabetic Cipher, One Time Pad. **Block Ciphers and the data encryption standard:** Traditional block Cipher structure, stream Ciphers and block Ciphers, Motivation for the feistel Cipher structure, the feistel Cipher, The data encryption standard, DES encryption, DES decryption, A DES example, results, the avalanche effect, the strength of DES, the use of 56-Bit Keys, the nature of the DES algorithm, timing attacks, Block cipher design principles, number of rounds, design of function F, key schedule algorithm.

10 Hours

MODULE II

Public-Key Cryptography and RSA: Principles of public-key cryptosystems. Public-key cryptosystems. Applications for public-key cryptosystems, requirements for public-key cryptosystems. public-key cryptanalysis. The RSA algorithm, description of the algorithm, computational aspects, the security of RSA. Other Public-Key Cryptosystems: Diffiehellman key exchange, The algorithm, key exchange protocols, man in the middle attack, Elgamal Cryptographic systems, Elliptic curve arithmetic, abelian groups, elliptic curves over real numbers, elliptic curves over Zp, elliptic curves overGF(2m), Elliptic curve cryptography, Analog of Diffie-hellman key exchange, Elliptic curve encryption/ decryption, security of Elliptic curve cryptography, Pseudorandom number generation based on an asymmetric cipher, PRNG based on RSA.

MODULE III

Key Management and Distribution: Symmetric key distribution using Symmetric encryption, A key distribution scenario, Hierarchical key control, session key lifetime, a transparent key control scheme, Decentralized key control, controlling key usage, Symmetric key distribution using asymmetric encryption, simple secret key distribution, secret key distribution with confidentiality and authentication, A hybrid scheme, distribution of public keys, public announcement of public keys, publicly available directory, public key authority, public keys certificates, X-509 certificates. Certificates, X-509 version 3, public key infrastructure .**User Authentication:** Remote user Authentication principles, Mutual Authentication, one way Authentication, remote user Authentication using Symmetric encryption, Mutual Authentication using Asymmetric encryption, Mutual Authentication, one way Authentication, personal identity verification.

MODULE IV

Wireless network security: Wireless security, Wireless network threats, Wireless network measures, mobile device security, security threats, mobile device security strategy, IEEE 802.11 Wireless LAN overview, the Wi-Fi alliance, IEEE 802 protocol architecture. Security, IEEE 802.11 is services, IEEE 802.11 iphases of operation, discovery phase, Authentication phase, key management phase, protected data transfer phase, the IEEE 802.11 ipseudorandom function, .
Web Security Considerations: Web Security Threats, Web Traffic Security Approaches. Secure Sockets Layer: SSL Architecture, SSL Record Protocol, Change Cipher Spec Protocol, Alert Protocol, and shake Protocol, Cryptographic

10 Hours
Computations. **Transport Layer Security:** Version Number, Message Authentication Code, Pseudorandom Functions, Alert Codes, Cipher Suites, Client Certificate Types, Certificate Verify And Finished Messages, Cryptographic Computations, Padding. **HTTPS** Connection Initiation, Connection Closure. **Secure Shell** (SSH) Transport Layer Protocol, User Authentication Protocol, Connection Protocol.

10 Hours

MODULE V

Electronic Mail Security: Pretty good privacy, notation, operational; description, S/MIME, RFC5322, Multipurpose internet mail extensions, S/MIME functionality, S/MIME messages, S/MIME certificate processing, enhanced security services, Domain keys identified mail, internet mail architecture, E-Mail threats, DKIM strategy, DKIM functional flow. **IP Security:** IP Security overview, applications of IPsec, benefits of IPsec, Routing applications, IPsec documents, IPsec services, transport and tunnel modes, IP Security policy, Security associations, Security associations database, Security policy database, IP traffic processing, Encapsulating Security payload, ESP format, encryption and authentication algorithms, Padding, Anti replay service, transport and tunnel modes, combining security associations, authentication plus confidentiality, basic combinations of security associations, internet key exchange, key determinations protocol, header and payload formats, cryptographic suits. **10 Hours**

Course Outcomes:

- The students be able to
- Analyze the vulnerabilities in any computing system and hence be able to design a
- security solution.
- Identify the security issues in the network and resolve it.
- Evaluate security mechanisms using rigorous approaches, including theoretical.
 - **Text Books:**
- 1. William Stallings: Cryptography and Network Security, Pearson 6th edition. 2013

References

1. V k Pachghare: Cryptography and Information Security, PHE ,2013.

Semester: II

Year: 2014-2015

Course Title : Pattern Recognition	Course Code: 14SCS253
Credits(L:T:P):4:0:0	Core/Elective: Elective
Type of Course: Lecture	Total Contact Hours: 50 Hrs

Course Objectives:

- To study the mathematical morphology necessary for Pattern recognition.
- To introduce the student to various Pattern recognition techniques.
- To study the Representation and description and feature extraction.
- To study the principles of decision trees and clustering in pattern recognition.

TOPICS:

MODULE I

Introduction: Definition of PR, Applications, Datasets for PR, Different paradigms for PR, Introduction to probability, events, random variables, Joint distributions and densities, moments. Estimation minimum risk estimators, problems.

10 Hours

MODULE II

Representation: Data structures for PR, Representation of clusters, proximity measures, size of patterns, Abstraction of Data set, Feature extraction, Feature selection, Evaluation. 10 Hours

MODULE III

Nearest Neighbor based classifiers & Bayes classifier: Nearest neighbor algorithm, variants of NN algorithms, use of NN for transaction databases, efficient algorithms, Data reduction, prototype selection, Bayes theorem, minimum error rate classifier, estimation of probabilities, estimation of probabilities, comparison with NNC, Naive Bayes classifier, Basyessian belief network. 10 Hours

MODULE IV

Decision Trees: Introduction, DT for PR, Construction of DT, Splitting at the nodes, Over-fitting & Pruning, Examples.

10 Hours

MODULE V

Clustering: Hierarchical (Agglomerative, single/complete/average linkage, wards, Partitional (Forgy's, k-means, Isodata), clustering large data sets, examples. 10 Hours

COURSE OUTCOMES:

Upon Completion of the course, the students will be able to

- Develop and analyze decision tress.
- Design the nearest neighbor classifier.
- Develop algorithms for Pattern Recognition.

Text Books:

- Pattern Recognition (An Introduction), V Susheela Devi, M Narsimha Murthy, Universities Press, ISBN 978-81-7371-725-3,2011.
- Pattern Recognition & Image Analysis, Earl Gose, Richard Johnsonbaugh, Steve Jost. PHI ISBN-81-203-1484-0, 1996.

References

1. Duda R. O., P.E. Hart, D.G. Stork., Pattern Classification, John Wiley and sons, 2000.

05.

To understand the basic concepts of learning and decision trees.To understand the neural networks and genetic algorithms

• To understand the Bayesian techniques

Course Title: Mach Credits(L:T:P):3:0:1

COURSE OBJECTIVES:

Semester: IV

- To understand the instant based learning
- To understand the analytical learning and reinforced learning

Type of Course: Lecture & Practical

TOPICS:

MODULE I

INTRODUCTION, CONCEPT LEARNING AND DECISION TREES

Machine Learning Techniques

Learning Problems – Designing Learning systems, Perspectives and Issues – Concept Learning – Version Spaces and Candidate Elimination Algorithm – Inductive bias – Decision Tree learning – Representation – Algorithm – Heuristic Space Search. **10 Hrs**

MODULE II

NEURAL NETWORKS AND GENETIC ALGORITHMS

Neural Network Representation – Problems – Perceptrons – Multilayer Networks and Back Propagation Algorithms – Advanced Topics – Genetic Algorithms – Hypothesis Space Search – Genetic Programming – Models of Evolution and Learning.

MODULE III

BAYESIAN AND COMPUTATIONAL LEARNING

Bayes Theorem – Concept Learning – Maximum Likelihood – Minimum Description	
Length Principle – Bayes Optimal Classifier – Gibbs Algorithm – Naïve Bayes Classifier	
– Bayesian Belief Network – EM Algorithm – Probably Learning – Sample Complexity for	
Finite and Infinite Hypothesis Spaces – Mistake Bound Model.	10 Hrs

MODULE IV

INSTANT BASED LEARNING AND LEARNING SET OF RULES

K- Nearest Neighbor Learning – Locally Weighted Regression – Radial Basis Functions – Case-Based Reasoning – Sequential Covering Algorithms – Learning Rule Sets – Learning First Order Rules – Learning Sets of First Order Rules – Induction as Inverted Deduction – Inverting Resolution 10 Hrs

MODULE V

ANALYTICAL LEARNING AND REINFORCED LEARNING

Perfect Domain Theories – Explanation Based Learning – Inductive-Analytical Approaches - FOCL Algorithm – Reinforcement Learning – Task – Q-Learning – Temporal Difference Learning

LABORATORY WORK

(The following tasks can be implemented in a language of your choice or any tools available)

- 1) Implement the CANDIDATE ELIMINATION algorithm. Show how it is used to learn from training examples and hypothesize new instances in Version Space.
- 2) Implement the FIND–S algorithm. Show how it can be used to classify new instances of target concepts. Run the experiments to deduce instances and hypothesis consistently.

Year: 2014-2015

Course Code: 14SCS41

Total Contact Hours: 50 Hrs

Core/Elective: Core

10 Hrs

10 Hrs

- 3) Implement the ID3 algorithm for learning Boolean–valued functions for classifying the training examples by searching through the space of a Decision Tree.
- 4) Design and implement the Back-propagation algorithm by applying it to a learning task involving an application like FACE RECOGNITION.
- 5) Design and implement Naïve Bayes Algorithm for learning and classifying TEXT DOCUMENTS.

COURSE OUTCOMES:

On Completion of the course, the students will be able to

- Choose the learning techniques with this basic knowledge.
- Apply effectively neural networks and genetic algorithms for appropriate applications.
- Apply bayesian techniques and derive effectively learning rules.
- Choose and differentiate reinforcement and analytical learning techniques

TEXT BOOK:

1. Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (INDIAN EDITION), 2013.

REFERENCES:

- 2. Ethem Alpaydin, "Introduction to Machine Learning", 2nd Ed., PHI Learning Pvt. Ltd., 2013.
- 3. T. Hastie, R. Tibshirani, J. H. Friedman, "The Elements of Statistical Learning", Springer; 1st edition, 2001.

ANALOG ELECTRONIC CIRCUITS (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES32	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

$\mathbf{PART} - \mathbf{A}$

UNIT 1:

Diode Circuits: Diode Resistance, Diode equivalent circuits, Transition and diffusion capacitance, Reverse recovery time, Load line analysis, Rectifiers, Clippers and clampers. **6 Hours**

UNIT 2:

Transistor Biasing: Operating point, Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased, DC bias with voltage feedback, Miscellaneous bias configurations, Design operations, Transistor switching networks, PNP transistors, Bias stabilization. **6 Hours**

UNIT 3:

Transistor at Low Frequencies: BJT transistor modeling, CE Fixed biasconfiguration, Voltage divider bias, Emitter follower, CB configuration,Collector feedback configuration, Analysis of circuits r_e model; analysis ofCE configuration using h- parameter model; Relationship between h-parameter model of CE,CC and CE configuration.7 Hours

UNIT 4:

Transistor Frequency Response: General frequency considerations, low frequency response, Miller effect capacitance, High frequency response, multistage frequency effects. 7 Hours

PART – B

UNIT 5:

(a) General Amplifiers: Cascade connections, Cascode connections, Darlington connections. 3 Hours

(b) Feedback Amplifier: Feedback concept, Feedback connections type, Practical feedback circuits. Design procedures for the feedback amplifiers. 4 Hours

UNIT 6:

Power Amplifiers: Definitions and amplifier types, series fed class Aamplifier, Transformer coupled Class A amplifiers, Class B amplifieroperations, Class B amplifier circuits, Amplifier distortions. Designing ofPower amplifiers.7 Hours

UNIT 7:

Oscillators: Oscillator operation, Phase shift Oscillator, Wienbridge Oscillator, Tuned Oscillator circuits, Crystal Oscillator. (BJT Version Only) Simple design methods of Oscillators. **6 Hours**

UNIT 8:

FET Amplifiers: FET small signal model, Biasing of FET, Common drain common gate configurations, MOSFETs, FET amplifier networks.

6 Hours

TEXT BOOK:

1. **"Electronic Devices and Circuit Theory"**, Robert L. Boylestad and Louis Nashelsky, PHI/Pearson Eduication. 9TH Edition.

REFERENCE BOOKS:

- 'Integrated Electronics', Jacob Millman & Christos C. Halkias, Tata - McGraw Hill, 2nd Edition, 2010
- 2. **"Electronic Devices and Circuits",** David A. Bell, PHI, 4th Edition, 2004
- 3. "Analog Electronics Circuits: A Simplified Approach", U.B. Mahadevaswamy, Pearson/Saguine, 2007.

LOGIC DESIGN (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES33	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Principles of combinational logic-1: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables,

PART – A

UNIT 6:

Power Amplifiers: Definitions and amplifier types, series fed class Aamplifier, Transformer coupled Class A amplifiers, Class B amplifieroperations, Class B amplifier circuits, Amplifier distortions. Designing ofPower amplifiers.7 Hours

UNIT 7:

Oscillators: Oscillator operation, Phase shift Oscillator, Wienbridge Oscillator, Tuned Oscillator circuits, Crystal Oscillator. (BJT Version Only) Simple design methods of Oscillators. **6 Hours**

UNIT 8:

FET Amplifiers: FET small signal model, Biasing of FET, Common drain common gate configurations, MOSFETs, FET amplifier networks.

6 Hours

TEXT BOOK:

1. **"Electronic Devices and Circuit Theory"**, Robert L. Boylestad and Louis Nashelsky, PHI/Pearson Eduication. 9TH Edition.

REFERENCE BOOKS:

- 'Integrated Electronics', Jacob Millman & Christos C. Halkias, Tata - McGraw Hill, 2nd Edition, 2010
- 2. **"Electronic Devices and Circuits",** David A. Bell, PHI, 4th Edition, 2004
- 3. "Analog Electronics Circuits: A Simplified Approach", U.B. Mahadevaswamy, Pearson/Saguine, 2007.

LOGIC DESIGN (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES33	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Principles of combinational logic-1: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables,

PART – A

Karnaugh maps-3, 4 and 5 variables, Incompletely specified functions (Don't Care terms), Simplifying Max term equations. **6 Hours**

UNIT 2:

Principles of combinational Logic-2: Quine-McCluskey minimization technique- Quine-McCluskey using don't care terms, Reduced Prime Implicant Tables, Map entered variables. 7 Hours

UNIT 3:

Analysis and design of combinational logic - I: General approach,Decoders-BCD decoders, Encoders.6 Hours

UNIT 4:

Analysis and design of combinational logic - II: Digital multiplexers-Using multiplexers as Boolean function generators. Adders and subtractors-Cascading full adders, Look ahead carry, Binary comparators. Design methods of building blocks of combinational logics.

7 Hours

PART – B

UNIT 5:

Sequential Circuits – 1: Basic Bistable Element, Latches, SR Latch,Application of SR Latch, A Switch Debouncer, The $\overline{S^{\Box}} \ \overline{R^{\Box}}$ Latch, The gated D Latch, The Master-Slave Flip-Flops (Pulse-TriggeredFlip-Flops): The Master-Slave SR Flip-Flops, The Master-Slave JK Flip-Flop, Edge Triggered Flip-Flop: The Positive Edge-Triggered D Flip-Flop,Negative-Edge Triggered D Flip-Flop.7 Hours

UNIT 6:

Sequential Circuits – **2:** Characteristic Equations, Registers, Counters -Binary Ripple Counters, Synchronous Binary counters, Counters based on Shift Registers, Design of a Synchronous counters, Design of a Synchronous Mod-6 Counter using clocked JK Flip-Flops Design of a Synchronous Mod-6 Counter using clocked D, T, or SR Flip-Flops **7 Hours**

UNIT 7:

Sequential Design - I: Introduction, Mealy and Moore Models, State Machine Notation, Synchronous Sequential Circuit Analysis and Design. 6 Hours

UNIT 8:

Sequential Design - II: Construction of state Diagrams, Counter Design.

6 Hours

TEXT BOOKS:

- 1. **"Digital Logic Applications and Design"**, John M Yarbrough, Thomson Learning, 2001.
- 2. **"Digital Principles and Design ",** Donald D Givone, Tata McGraw Hill Edition, 2002.

REFERENCE BOOKS:

- 1. **"Fundamentals of logic design",** Charles H Roth, Jr; Thomson Learning, 2004.
- 2. "Logic and computer design Fundamentals", Mono and Kim, Pearson, Second edition, 2001.
- 3. "Logic Design", Sudhakar Samuel, Pearson/Saguine, 2007

NETWORK ANALYSIS (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES34	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Basic Concepts: Practical sources, Source transformations, Network reduction using Star – Delta transformation, Loop and node analysis With linearly dependent and independent sources for DC and AC networks, Concepts of super node and super mesh. 7 Hours UNIT 2:

Network Topology: Graph of a network, Concept of tree and co-tree, incidence matrix, tie-set, tie-set and cut-set schedules, Formulation of equilibrium equations in matrix form, Solution of resistive networks, Principle of duality. **7 Hours**

UNIT 3:

Network Theorems – 1: Superposition, Reciprocity and Millman's theorems. 6 Hours

transform representation of discrete time signals. Sampling theorm and Nyquist rate. **7 Hours**

UNIT 7:

Z-Transforms – 1: Introduction, Z – transform, properties of ROC, properties of Z – transforms, inversion of Z – transforms.

UNIT 8:

6 Hours

Z-transforms – **2:** Transform analysis of LTI Systems, unilateral Z-Transform and its application to solve difference equations. **6 Hours**

TEXT BOOK

- 1. Simon Haykin, "Signals and Systems", John Wiley India Pvt. Ltd., 2nd Edn, 2008.
- 2. Michael Roberts, "Fundamentals of Signals & Systems", 2nd ed, Tata McGraw-Hill, 2010.

REFERENCE BOOKS:

- 1. Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson Education Asia / PHI, 2nd edition, 1997. Indian Reprint 2002.
- 2. H. P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006.
- 3. **B. P. Lathi**, "Linear Systems and Signals", Oxford University Press, 2005.
- 4. Ganesh Rao and Satish Tunga, "Signals and Systems", Pearson/Sanguine Technical Publishers, 2004.

FUNDAMENTALS OF HDL (Common to EC/TC/IT/BM/ML)

Sub Code	:	10EC45	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Introduction: Why HDL?, A Brief History of HDL, Structure of HDL Module, Operators, Data types, Types of Descriptions, simulation and synthesis, Brief comparison of VHDL and Verilog

7 Hours

UNIT 2:

Data –Flow Descriptions: Highlights of Data-Flow Descriptions, Structureof Data-Flow Description, Data Type – Vectors.6 Hours

UNIT 3:

Behavioral Descriptions: Behavioral Description highlights, structure of HDL behavioral Description, The VHDL variable –Assignment Statement, sequential statements. **6 Hours**

UNIT 4:

Structural Descriptions: Highlights of structural Description, Organization of the structural Descriptions, Binding, state Machines, Generate, Generic, and Parameter statements.

7 Hours

PART – B

UNIT 5:

Procedures, Tasks, and Functions: Highlights of Procedures, tasks, and Functions, Procedures and tasks, Functions.

Advanced HDL Descriptions: File Processing, Examples of File Processing 7 Hours

UNIT 6:

Mixed –Type Descriptions: Why Mixed-Type Description? VHDL User-Defined Types, VHDL Packages, Mixed-Type Description examples

UNIT 7:

Mixed –Language Descriptions: Highlights of Mixed-Language Description, How to invoke One language from the Other, Mixed-language Description Examples, Limitations of Mixed-Language Description.

UNIT 8:

7 Hours

6 Hours

Synthesis Basics: Highlights of Synthesis, Synthesis information from Entity and Module, Mapping Process and Always in the Hardware Domain.

6 Hours

TEXT BOOKS:

1. HDL Programming (VHDL and Verilog)- Nazeih M.Botros- John Weily India Pvt. Ltd. 2008.

REFERENCE BOOKS:

- 1. Fundamentals of HDL Cyril P.R. Pearson/Sanguin 2010.
- 2. VHDL -Douglas perry-Tata McGraw-Hill.
- 3. A Verilog HDL Primer- J.Bhaskar BS Publications
- 4. Circuit Design with VHDL-Volnei A.Pedroni-PHI.

MICROCONTROLLERS LAB (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ESL47	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

I. PROGRAMMING

- 1. Data Transfer Block move, Exchange, Sorting, Finding largest element in an array.
- 2. Arithmetic Instructions Addition/subtraction, multiplication and division, square, Cube (16 bits Arithmetic operations bit addressable).
- 3. Counters.
- 4. Boolean & Logical Instructions (Bit manipulations).
- 5. Conditional CALL & RETURN.
- 6. Code conversion: BCD ASCII; ASCII Decimal; Decimal ASCII; HEX Decimal and Decimal HEX .
- 7. Programs to generate delay, Programs using serial port and on-Chip timer / counter.

Note: Programming exercise is to be done on both 8051 & MSP430.

II. INTERFACING:

Write C programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

- 8. Simple Calculator using 6 digit seven segment displays and Hex Keyboard interface to 8051.
- 9. Alphanumeric LCD panel and Hex keypad input interface to 8051.
- 10. External ADC and Temperature control interface to 8051.
- 11. Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC interface to 8051; change the frequency and amplitude.

- 12. Stepper and DC motor control interface to 8051.
- 13. Elevator interface to 8051.

HDL LAB (Common to EC/TC/IT/BM/ML)

Sub Code	:	10ECL48	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

Note: Programming can be done using any compiler. Download the programs on a FPGA/CPLD boards such as Apex/Acex/Max/Spartan/Sinfi/TK Base or equivalent and performance testing may be done using 32 channel pattern generator and logic analyzer apart from verification by simulation with tools such as Altera/Modelsim or equivalent.

PROGRAMMING (using VHDL /Verilog)

- 1. Write HDL code to realize all the logic gates
- 2. Write a HDL program for the following combinational designs
 - a. 2 to 4 decoder
 - b. 8 to 3 (encoder without priority & with priority)
 - c. 8 to 1 multiplexer
 - d. 4 bit binary to gray converter
 - e. Multiplexer, de-multiplexer, comparator.
- 2. Write a HDL code to describe the functions of a Full Adder Using three modeling styles.

3. Write a model for 32 bit ALU using the schematic diagram shown below A (31:0) B (31:0)

- ALU should use combinational logic to calculate an output based on the four bit op-code input.
- ALU should pass the result to the out bus when enable line in high, and tri-state the out bus when the enable line is low.
- ALU should decode the 4 bit op-code according to the given in example below.

OPCODE	ALU OPERATION
1.	A + B
2.	A - B
3.	A Complement
4.	A * B
5.	A AND B
6.	A OR B
7.	A NAND B
8.	A XOR B

- 4. Develop the HDL code for the following flip-flops, SR, D, JK, T.
- 5. Design 4 bit binary, BCD counters (Synchronous reset and Asynchronous reset) and "any sequence" counters

<u>INTERFACING</u> (at least four of the following must be covered using VHDL/Verilog)

- 1. Write HDL code to display messages on the given seven segment display and LCD and accepting Hex key pad input data.
- 2. Write HDL code to control speed, direction of DC and Stepper motor.
- 3. Write HDL code to accept 8 channel Analog signal, Temperature sensors and display the data on LCD panel or Seven segment display.
- 4. Write HDL code to generate different waveforms (Sine, Square, Triangle, Ramp etc.,) using DAC change the frequency and amplitude.
- 5. Write HDL code to simulate Elevator operations
- 6. Write HDL code to control external lights using relays.

DIGITAL SIGNAL PROCESSING

Subject Code	: 10EC52	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Discrete Fourier Transforms (DFT): Frequency domain sampling and reconstruction of discrete time signals. DFT as a linear transformation, its relationship with other transforms. **6** Hours

UNIT - 2

Properties of DFT, multiplication of two DFTs- the circular convolution, additional DFT properties. **6** Hours

UNIT - 3

Use of DFT in linear filtering, overlap-save and overlap-add method. Direct computation of DFT, need for efficient computation of the DFT (FFT algorithms). 7 Hours

UNIT - 4

Radix-2 FFT algorithm for the computation of DFT and IDFT-decimationin-time and decimation-in-frequency algorithms. Goertzel algorithm, and chirp-z transform. 7 Hours

PART – B

UNIT - 5

IIR filter design: Characteristics of commonly used analog filters -Butterworth and Chebysheve filters, analog to analog frequency transformations. **6** Hours

UNIT - 6

Implementation of discrete-time systems: Structures for IIR and FIR systemsdirect form I and direct form II systems, cascade, lattice and parallel 7 Hours realization.

UNIT - 7

FIR filter design: Introduction to FIR filters, design of FIR filters using -Rectangular, Hamming, Bartlet and Kaiser windows, FIR filter design using frequency sampling technique. **6** Hours

Design of IIR filters from analog filters (Butterworth and Chebyshev) impulse invariance method. Mapping of transfer functions: Approximation of derivative (backward difference and bilinear transformation) method, Matched z transforms, Verification for stability and linearity during mapping **7 Hours**

TEXT BOOK:

 Digital signal processing – Principles Algorithms & Applications, Proakis & Monalakis, Pearson education, 4th Edition, New Delhi, 2007.

REFERENCE BOOKS:

- 1. Discrete Time Signal Processing, Oppenheim & Schaffer, PHI, 2003.
- 2. **Digital Signal Processing**, S. K. Mitra, Tata Mc-Graw Hill, 3rd Edition, 2010.
- 3. Digital Signal Processing, Lee Tan: Elsivier publications, 2007

ANALOG COMMUNICATION

Subject Code	: 10EC53	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

RANDOM PROCESS: Random variables: Several random variables. Statistical averages: Function of Random variables, moments, Mean, Correlation and Covariance function: Principles of autocorrelation function, cross – correlation functions. Central limit theorem, Properties of Gaussian process. **7 Hours**

UNIT - 2

AMPLITUDE MODULATION: Introduction, AM: Time-Domain description, Frequency – Domain description. Generation of AM wave: square law modulator, switching modulator. Detection of AM waves: square law detector, envelop detector. Double side band suppressed carrier modulation (DSBSC): Time-Domain description, Frequency-Domain representation, Generation of DSBSC waves: balanced modulator, ring modulator. Coherent detection of DSBSC modulated waves. Costas loop.

7 Hours

TEXT BOOKS:

- 1. **Communication Systems**, Simon Haykins, 5th Edition, John Willey, India Pvt. Ltd, 2009.
- 2. An Introduction to Analog and Digital Communication, Simon Haykins, John Wiley India Pvt. Ltd., 2008

REFERENCE BOOKS:

- Modern digital and analog Communication systems B. P. Lathi, Oxford University Press., 4th ed, 2010,
- 2. **Communication Systems**, Harold P.E, Stern Samy and A Mahmond, Pearson Edn, 2004.
- 3. **Communication Systems**: Singh and Sapre: Analog and digital TMH 2nd, Ed 2007.

MICROWAVES AND RADAR

Subject Code	: 10EC54	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

MICROWAVE TRANSMISSION LINES: Introduction, transmission lines equations and solutions, reflection and transmission coefficients, standing waves and SWR, line impedance and line admittance. Smith chart, impedance matching using single stubs, Microwave coaxial connectors.

7 Hours

UNIT - 2

MICROWAVE WAVEGUIDES AND COMPONENTS: Introduction, rectangular waveguides, circular waveguides, microwave cavities, microwave hybrid circuits, directional couplers, circulators and isolators.

6 Hours

UNIT - 3

MICROWAVE DIODES,

Transfer electron devices: Introduction, GUNN effect diodes – GaAs diode, RWH theory, Modes of operation, Avalanche transit time devices: READ diode, IMPATT diode, BARITT diode, Parametric amplifiers Other diodes: PIN diodes, Schottky barrier diodes. **7 Hours**

Microwave network theory and passive devices. Symmetrical Z and Y parameters, for reciprocal Networks, S matrix representation of multi port networks. 6 Hours

PART – B

UNIT - 5

Microwave passive devices, Coaxial connectors and adapters, Phase shifters, Attenuators, Waveguide Tees, Magic tees. **6 Hours**

UNIT - 6

STRIP LINES: Introduction, Microstrip lines, Parallèle strip lines, Coplanar strip lines, Shielded strip Lines. **6 Hours**

UNIT - 7

AN INTRODUCTION TO RADAR: Basic Radar, The simple form of the Radar equation, Radar block diagram, Radar frequencies, application of Radar, the origins of Radar. 7 Hours

UNIT - 8

MTI AND PULSE DOPPLER RADAR: Introduction to Doppler and MTI Radar, delay line Cancellers, digital MTI processing, Moving target detector, pulse Doppler Radar. 7 Hours

TEXT BOOKS:

- 1. Microwave Devices and circuits- Liao / Pearson Education.
- 2. Introduction to Radar systems-Merrill I Skolnik, 3rd Ed, TMH, 2001.
- 3. **Microwave Engineering** Annapurna Das, Sisir K Das TMH Publication, 2nd, 2010.

REFERENCE BOOK:

1. **Microwave Engineering** – David M Pozar, John Wiley India Pvt. Ltd., 3rd Edn, 2008.

INFORMATION THEORY AND CODING

Subject Code	: 10EC55	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

INFORMATION THEORY: Introduction, Measure of information, Average information content of symbols in long independent sequences, Average information content of symbols in long dependent sequences. Markoff statistical model for information source, Entropy and information rate of mark-off source. **7 Hours**

UNIT - 2

SOURCE CODING: Encoding of the source output, Shannon's encoding algorithm. Communication Channels, Discrete communication channels, Continuous channels. 6 Hours

UNIT - 3

FUNDAMENTALLIMITSONPERFORMANCE:Sourcecodingtheorem,Huffmancoding,DiscretememorylessChannels,Mutualinformation,Channel Capacity.7Hours

UNIT - 4

Channel coding theorem, Differential entropy and mutual information for continuous ensembles, Channel capacity Theorem. **6 Hours**

PART – B

UNIT - 5

INTRODUCTION TO ERROR CONTROL CODING: Introduction, Types of errors, examples, Types of codes Linear Block Codes: Matrix description, Error detection and correction, Standard arrays and table look up for decoding. 7 Hours

UNIT - 6

Binary Cycle Codes, Algebraic structures of cyclic codes, Encoding using an (n-k) bit shift register, Syndrome calculation. BCH codes. **6 Hours**

RS codes, Golay codes, Shortened cyclic codes, Burst error correcting codes. Burst and Random Error correcting codes. **7 Hours**

UNIT - 8

Convolution Codes, Time domain approach. Transform domain approach. 6 Hours

TEXT BOOKS:

- 1. **Digital and analog communication systems**, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 1996.
- 2. **Digital communication**, Simon Haykin, John Wiley India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **ITC and Cryptography**, Ranjan Bose, TMH, II edition, 2007
- 2. **Digital Communications** Glover and Grant; Pearson Ed. 2nd Ed 2008.

FUNDAMENTALS OF CMOS VLSI

Subject Code	: 10EC56	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	:100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

BASIC MOS TECHNOLOGY: Integrated circuit's era. Enhancement and depletion mode MOS transistors. nMOS fabrication. CMOS fabrication. Thermal aspects of processing. BiCMOS technology. Production of E-beam masks. **3 Hours**

MOS TRANSISTOR THEORY: Introduction, MOS Device Design Equations, The Complementary CMOS Inverter – DC Characteristics, Static Load MOS Inverters, The Differential Inverter, The Transmission Gate, Tristate Inverter. 4 Hours

TESTABILITY: Performance parameters. Layout issues. I/O pads. Real estate. System delays. Ground rules for design. Test and testability.

7 Hours

TEXT BOOKS:

- CMOS VLSI Design A Circuits and Systems Perspective. 3rd Edition. N.H. Weste and David Harris. Addison-Wesley, 2005. (Refer to http://www.cmosvlsi.com).
- Principles of CMOS VLSI Design: A Systems Perspective, Neil H. E. Weste, K. Eshragian, and ??? 3rd edition, Pearson Education (Asia) Pvt. Ltd., 200?. (Shift to the latest edition.).
- Basic VLSI Design Douglas A. Pucknell & Kamran Eshraghian, PHI 3rd Edition (original Edition – 1994), 2005.

REFERENCE BOOKS:

- 1. R. Jacob Baker. CMOS Circuit Design, Layout and Simulation. John Wiley India Pvt. Ltd, 2008.
- 2. Fundamentals of Semiconductor Devices, M. K. Achuthan and K. N. Bhat, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2007.
- CMOS Digital Integrated Circuits: Analysis and Design, Sung-Mo Kang & Yusuf Leblebici, 3rd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007.
- 4. **Analysis and Design of Digital Integrated Circuits** D.A Hodges, H.G Jackson and R.A Saleh. 3rd Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2007.

DIGITAL SIGNAL PROCESSING LABORATORY

Subject Code	: 10ECL57	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

A LIST OF EXPERIMENTS USING MATLAB / SCILAB / OCTAVE / WAB

- 3. Verification of Sampling theorem.
- 4. Impulse response of a given system
- 5. Linear convolution of two given sequences.
- 6. Circular convolution of two given sequences

- 7. Autocorrelation of a given sequence and verification of its properties.
- 8. Cross correlation of given sequences and verification of its properties.
- 9. Solving a given difference equation.
- 10. Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum.
- 11. Linear convolution of two sequences using DFT and IDFT.
- 12. Circular convolution of two given sequences using DFT and IDFT
- 13. Design and implementation of FIR filter to meet given specifications.
- 14. Design and implementation of IIR filter to meet given specifications.

B. LIST OF EXPERIMENTS USING DSP PROCESSOR

1.Linear convolution of two given sequences.

2. Circular convolution of two given sequences.

3.Computation of N- Point DFT of a given sequence

4.Realization of an FIR filter (any type) to meet given specifications .The input can be a signal from function generator / speech signal.

5.Audio applications such as to plot time and frequency (Spectrum) display of Microphone output plus a cosine using DSP. Read a wav file and match with their respective spectrograms

6.Noise: Add noise above 3kHz and then remove; Interference suppression using 400 Hz tone.

7.Impulse response of first order and second order system

REFERENCE BOOKS:

- 1. Digital signal processing using MATLAB Sanjeet Mitra, TMH, 2001
- 2. Digital signal processing using MATLAB J. G. Proakis & Ingale, MGH, 2000
- 3. Digital Signal Processors, B. Venkataramani and Bhaskar, TMH,2002

ANALOG COMMUNICATION LAB + LIC LAB

Subject Code	: 10ECL58	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

EXPERIMENTS USING DESCERTE COMPONENTS and LABVIEW - 2009 CAN BE USED FOR VERIFICATION AND TESTING.

- 1. Second order active LPF and HPF
- 2. Second order active BPF and BE
- 3. Schmitt Trigger Design and test a Schmitt trigger circuit for the given values of UTP and LTP

VI SEMESTER

DIGITAL COMMUNICATION

Subject Code	: 10EC61	IA Marks	: 25
No. of Lecture Hrs/Wee	k : 04	Exam Hours	: 03
Total no. of Lecture Hrs	. : 52	Exam Marks	: 100

PART – A

UNIT - 1

Basic signal processing operations in digital communication. Sampling Principles: Sampling Theorem, Quadrature sampling of Band pass signal, Practical aspects of sampling and signal recovery. **7 Hours**

UNIT - 2

PAM, TDM. Waveform Coding Techniques, PCM, Quantization noise and SNR, robust quantization. **6 Hours**

UNIT - 3

DPCM, DM, applications. Base-Band Shaping for Data Transmission, Discrete PAM signals, power spectra of discrete PAM signals. **7 Hours**

UNIT - 4

ISI, Nyquist's criterion for distortion less base-band binary transmission, correlative coding, eye pattern, base-band M-ary PAM systems, adaptive equalization for data transmission. **6 Hours**

PART - B

UNIT - 5

DIGITAL MODULATION TECHNIQUES: Digital Modulation formats, Coherent binary modulation techniques, Coherent quadrature modulation techniques. Non-coherent binary modulation techniques. **6 Hours**

UNIT - 6

Detection and estimation, Model of DCS, Gram-Schmidt Orthogonalization procedure, geometric interpretation of signals, response of bank of correlators to noisy input. **6 Hours**

UNIT - 7

Detection of known signals in noise, correlation receiver, matched filter receiver, detection of signals with unknown phase in noise. **7 Hours**

Spread Spectrum Modulation: Pseudo noise sequences, notion of spread spectrum, direct sequence spread spectrum, coherent binary PSK, frequency hop spread spectrum, applications. **7 Hours**

TEXT BOOK:

1. **Digital communications**, Simon Haykin, John Wiley India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **Digital and Analog communication systems,** Simon Haykin, John Wildy India Lts, 2008
- 2. An introduction to Analog and Digital Communication, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 2008.
- 3. Digital communications Bernard Sklar: Pearson education 2007

MICROPROCESSOR

Subject Code	: 10EC62	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	:100

PART – A

UNIT - 1

8086 PROCESSORS: Historical background, The microprocessor-based personal computer system, 8086 CPU Architecture, Machine language instructions, Instruction execution timing. **6 Hours**

UNIT - 2

INSTRUCTION SET OF 8086: Assembler instruction format, data transfer and arithmetic, branch type, loop, NOP & HALT, flag manipulation, logical and shift and rotate instructions. Illustration of these instructions with example programs, Directives and operators. **6 Hours**

UNIT - 3

BYTE AND STRING MANIPULATION: String instructions, REP Prefix, Table translation, Number format conversions, Procedures, Macros, Programming using keyboard and video display. **7 Hours**

UNIT - 4

8086 INTERRUPTS: 8086 Interrupts and interrupt responses, Hardware interrupt applications, Software interrupt applications, Interrupt examples.

7 Hours

Stability problem. Effect of feedback an amplifier poles. Stability study using Bode plots. Frequency compensation. SPICE examples. **7 Hours**

UNIT - 6

Operational Amplifiers: The two stage CMOS Op-amp, folded cascade CMOS op-amp, 741 op-amp circuit, DC analysis of the 741, small signal analysis of 741, gain, frequency response and slew rate of 741. Data Converters. A-D and D-A converters. **6 Hours**

UNIT – 7 & 8

Digital CMOS circuits. Overview. Design and performance analysis of CMOS inverter. Logic Gate Circuits. Pass-transistor logic. Dynamic Logic Circuits. SPICE examples. 12 Hours

TEXT BOOK:

1. **"Microelectronic Circuits"**, Adel Sedra and K.C. Smith, 5th Edition, Oxford University Press, Interantional Version, 2009.

REFERENCE BOOK:

- 1. "Fundamentals of Microelectronics", Behzad Razavi, John Wiley India Pvt. Ltd, 2008.
- 2. "Microelectronics Analysis and Design", Sundaram Natarajan,
- 3. Tata McGraw-Hill, 2007

ANTENNAS AND PROPAGATION

Subject Code	: 10EC64	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

ANTENNA BASICS: Introduction, basic Antenna parameters, patterns, beam area, radiation intensity, beam efficiency, diversity and gain, antenna apertures, effective height, bandwidth, radiation, efficiency, antenna temperature and antenna filed zones.

7 Hours

POINT SOURCES AND ARRAYS: Introduction, point sources, power patterns, power theorem, radiation intensity, filed patterns, phase patterns. Array of two isotropic point sources. Endfire array and Broadside array.

6 Hours

UNIT - 3

ELECTRIC DIPOLES AND THIN LINEAR ANTENNAS: Introduction, short electric dipole, fields of a short dipole(no derivation of field components), radiation resistance of short dipole, radiation resistances of lambda/2 Antenna, thin linear antenna, micro strip arrays, low side lobe arrays, long wire antenna, folded dipole antennas. **7 Hours**

UNIT - 4

LOOP, SLOT, PATCH AND HORN ANTENNA: Introduction, small loop, comparison of far fields of small loop and short dipole, loop antenna general case, far field patterns of circular loop, radiation resistance, directivity, slot antenna, Babinet's principle and complementary antennas, impedance of complementary and slot antennas, patch antennas.

8 Hours

PART – B

UNIT – 5 & 6

ANTENNA TYPES: Horn antennas, rectangular horn antennas, Helical Antenna, Yagi-Uda array, corner reflectors, parabolic reflectors, log periodic antenna, lens antenna, antenna for special applications – sleeve antenna, turnstile antenna, omni directional antennas, antennas for satellite antennas for ground penetrating radars, embedded antennas, ultra wide band antennas, plasma antenna, high-resolution data, intelligent antennas, antenna for remote sensing.

12 Hours

UNIT - 7 & 8

RADIO WAVE PROPAGATION: Introduction, Ground wave propagation, free space propagation, ground reflection, surface wave, diffraction.

TROPOSPHERE WAVE PROPAGATION:Troposcopic scatter,Ionosphere propagation, electrical properties of the ionosphere, effects of
earth's magnetic field.10 Hours

TEXT BOOKS:

- 1. Antennas and Wave Propagation, John D. Krauss, 4th Edn,McGraw-Hill International edition, 2010.
- 2. Antennas and Wave Propagation Harish and Sachidananda: Oxford Press 2007.

REFERENCE BOOKS:

- 1. Antenna Theory Analysis and Design C A Balanis, 3rd Edn, John Wiley India Pvt. Ltd, 2008.
- 2. Antennas and Propagation for Wireless Communication Systems Sineon R Saunders, John Wiley, 2003.
- 3. Antennas and wave propagation G S N Raju: Pearson Education 2005.

OPERATING SYSTEMS

Subject Code	: 10EC65	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION AND OVERVIEW OF OPERATING SYSTEMS: Operating system, Goals of an O.S, Operation of an O.S, Resource allocation and related functions, User interface related functions, Classes of operating systems, O.S and the computer system, Batch processing system, Multi programming systems, Time sharing systems, Real time operating systems, distributed operating systems. **6 Hours**

UNIT - 2

STRUCTURE OF THE OPERATING SYSTEMS: Operation of an O.S, Structure of the supervisor, Configuring and installing of the supervisor, Operating system with monolithic structure, layered design, Virtual machine operating systems, Kernel based operating systems, and Microkernel based operating systems. **7 Hours**

TEXT BOOKS:

- 1. Antennas and Wave Propagation, John D. Krauss, 4th Edn,McGraw-Hill International edition, 2010.
- 2. Antennas and Wave Propagation Harish and Sachidananda: Oxford Press 2007.

REFERENCE BOOKS:

- 1. Antenna Theory Analysis and Design C A Balanis, 3rd Edn, John Wiley India Pvt. Ltd, 2008.
- 2. Antennas and Propagation for Wireless Communication Systems Sineon R Saunders, John Wiley, 2003.
- 3. Antennas and wave propagation G S N Raju: Pearson Education 2005.

OPERATING SYSTEMS

Subject Code	: 10EC65	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION AND OVERVIEW OF OPERATING SYSTEMS: Operating system, Goals of an O.S, Operation of an O.S, Resource allocation and related functions, User interface related functions, Classes of operating systems, O.S and the computer system, Batch processing system, Multi programming systems, Time sharing systems, Real time operating systems, distributed operating systems. **6 Hours**

UNIT - 2

STRUCTURE OF THE OPERATING SYSTEMS: Operation of an O.S, Structure of the supervisor, Configuring and installing of the supervisor, Operating system with monolithic structure, layered design, Virtual machine operating systems, Kernel based operating systems, and Microkernel based operating systems. **7 Hours**

PROCESS MANAGEMENT: Process concept, Programmer view of
processes, OS view of processes, Interacting processes, Threads, Processes in
UNIX, Threads in Solaris.**6 Hours**

UNIT - 4

MEMORY MANAGEMENT: Memory allocation to programs, Memory allocation preliminaries, Contiguous and noncontiguous allocation to programs, Memory allocation for program controlled data, kernel memory allocation. 7 Hours

PART – B

UNIT - 5

VIRTUAL MEMORY: Virtual memory basics, Virtual memory using paging, Demand paging, Page replacement, Page replacement policies, Memory allocation to programs, Page sharing, UNIX virtual memory.

6 Hours

UNIT - 6

FILE SYSTEMS: File system and IOCS, Files and directories, Overview of I/O organization, Fundamental file organizations, Interface between file system and IOCS, Allocation of disk space, Implementing file access, UNIX file system. 7 Hours

UNIT - 7

SCHEDULING: Fundamentals of scheduling, Long-term scheduling, Medium and short term scheduling, Real time scheduling, Process scheduling in UNIX. 6 Hours

UNIT - 8

MESSAGE PASSING: Implementing message passing, Mailboxes, Inter process communication in UNIX. 7 Hours

TEXT BOOK:

1. "Operating Systems - A Concept based Approach", D. M. Dhamdhare, TMH, 3rd Ed, 2010.

REFERENCE BOOK:

- 1. **Operating Systems Concepts**, Silberschatz and Galvin, John Wiley India Pvt. Ltd, 5th Edition, 2001.
- 2. **Operating System Internals and Design Systems**, Willaim Stalling, Pearson Education, 4th Ed, 2006.
- 3. Design of Operating Systems, Tennambhaum, TMH, 2001.

POWER ELECTRONICS

Subject Code	: 10EC73	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction, Applications of power electronics, Power semiconductor devices, Control characteristics, Types of power electronics circuits, Peripheral effects. 6 Hours

UNIT - 2

POWER TRANSISTOR: Power BJT's, Switching characteristics, Switching limits, Base derive control, Power MOSFET's, Switching characteristics, Gate drive, IGBT's, Isolation of gate and base drives.

6 Hours

7 Hours

UNIT - 3

INTRODUCTION TO THYRISTORS: Principle of operation states anode-cathode characteristics, Two transistor model. Turn-on Methods, Dynamic Turn-on and turn-off characteristics, Gate characteristics, Gate trigger circuits, di / dt and dv / dt protection, Thyristor firing circuits.

UNIT - 4

CONTROLLED RECTIFIERS: Introduction, Principles of phase controlled converter operation, 1\u03c6 fully controlled converters, Duel

7 Hours

PART – B

converters, 1 ϕ semi converters (all converters with R & RL load).

UNIT - 5

Thyristor turn off methods, natural and forced commutation, self commutation, class A and class B types, Complementary commutation, auxiliary commutation, external pulse commutation, AC line commutation, numerical problems. 7 Hours

UNIT - 6

AC VOLTAGE CONTROLLERS: Introduction, Principles of on and off control, Principles of phase control, Single phase controllers with restive loads and Inductive loads, numerical problems.

6 Hours

DC CHOPPERS: Introduction, Principles of step down and step up choppers, Step down chopper with RL loads, Chopper classification, Switch mode regulators – buck, boost and buck – boost regulators. **6 Hours**

UNIT - 8

INVERTORS: Introduction, Principles of operation, Performance parameters, 1ϕ bridge inverter, voltage control of 1ϕ invertors, current source invertors, Variable DC link inverter.

7 Hours

TEXT BOOKS:

- 1. **"Power Electronics" -** M. H. Rashid 3rd edition, PHI / Pearson publisher 2004.
- 2. **"Power Electronics" -** M. D. Singh and Kanchandani K.B. TMH publisher, 2nd Ed. 2007.

REFERENCE BOOKS:

- 1. **"Power Electronics, Essentials and Applications", L Umanand, John** Wiley India Pvt. Ltd, 2009.
- 2. "Power Electronics", Daniel W. Hart, McGraw Hill, 2010.
- 3. "Power Electronics", V Nattarasu and R.S. Anandamurhty, Pearson/Sanguine Pub. 2006.

EMBEDED SYSTEM DESIGN

Subject Code	: 10EC74	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT 1:

Introduction to Embedded System: Introducing Embedded Systems, Philosophy, Embedded Systems, Embedded Design and Development Process. 5 Hours

UNIT 2:

The Hardware Side: An Introduction, The Core Level, Representing Information, Understanding Numbers, Addresses, Instructions, Registers-A

DC CHOPPERS: Introduction, Principles of step down and step up choppers, Step down chopper with RL loads, Chopper classification, Switch mode regulators – buck, boost and buck – boost regulators. **6 Hours**

UNIT - 8

INVERTORS: Introduction, Principles of operation, Performance parameters, 1ϕ bridge inverter, voltage control of 1ϕ invertors, current source invertors, Variable DC link inverter.

7 Hours

TEXT BOOKS:

- 1. **"Power Electronics" -** M. H. Rashid 3rd edition, PHI / Pearson publisher 2004.
- 2. **"Power Electronics" -** M. D. Singh and Kanchandani K.B. TMH publisher, 2nd Ed. 2007.

REFERENCE BOOKS:

- 1. **"Power Electronics, Essentials and Applications", L Umanand, John** Wiley India Pvt. Ltd, 2009.
- 2. "Power Electronics", Daniel W. Hart, McGraw Hill, 2010.
- 3. "Power Electronics", V Nattarasu and R.S. Anandamurhty, Pearson/Sanguine Pub. 2006.

EMBEDED SYSTEM DESIGN

Subject Code	: 10EC74	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT 1:

Introduction to Embedded System: Introducing Embedded Systems, Philosophy, Embedded Systems, Embedded Design and Development Process. 5 Hours

UNIT 2:

The Hardware Side: An Introduction, The Core Level, Representing Information, Understanding Numbers, Addresses, Instructions, Registers-A

First Look, Embedded Systems-An Instruction Set View, Embedded Systems-A Register View, Register View of a Microprocessor The Hardware Side: Storage Elements and Finite-State Machines (2 hour) The concepts of State and Time, The State Diagram, Finite State Machines-A Theoretical Model.

8 Hours

UNIT 3:

Memories and the Memory Subsystem: Classifying Memory, A General Memory Interface, ROM Overview, Static RAM Overview, Dynamic RAM Overview, Chip Organization, Terminology, A Memory Interface in Detail, SRAM Design, DRAM Design, DRAM Memory Interface, The Memory Map, Memory Subsystem Architecture, Basic Concepts of Caching, Designing a Cache System, Dynamic Memory Allocation.

7 Hours

UNIT 4:

Embedded Systems Design and Development : System Design and Development, Life-cycle Models, Problem Solving-Five Steps to Design, The Design Process, Identifying the Requirements, Formulating the Requirements Specification, The System Design Specification, System Specifications versus System Requirements, Partitioning and Decomposing a System, Functional Design, Architectural Design, Functional Model versus Architectural Model, Prototyping, Other Considerations, Archiving the Project. **6 Hours**

PART – B

UNIT 5 & 6:

Real-Time Kernels and Operating Systems: Tasks and Things, Programs and Processes, The CPU is a resource, Threads – Lightweight and heavyweight, Sharing Resources, Foreground/Background Systems, The operating System, The real time operating system (RTOS), OS architecture, Tasks and Task control blocks, memory management revisited.

UNIT 7 & 8:

Performance Analysis and Optimization: Performance or Efficiency Measures, Complexity Analysis, The methodology, Analyzing code, Instructions in Detail, Time, etc. – A more detailed look, Response Time, Time Loading, Memory Loading, Evaluating Performance, Thoughts on Performance Optimization, Performance Optimization, Tricks of the Trade, Hardware Accelerators, Caches and Performance.

12 Hours

12 Hours

TEXT BOOK:

1. Embedded Systems – A contemporary Design Tool, James K. Peckol, John Weily India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **Embedded Systems: Architecture and Programming,** Raj Kamal, TMH. 2008.
- Embedded Systems Architecture A Comprehensive Guide for Engineers and Programmers, Tammy Noergaard, Elsevier Publication, 2005.
- 3. **Programming for Embedded Systems**, Dreamtech Software Team, John Wiley India Pvt. Ltd, 2008.

VLSI LAB

Subject Code	: 10ECL77	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

(Wherever necessary Cadence/Synopsis/Menta Graphics tools <u>must be</u> used)

PART - A DIGITAL DESIGN

ASIC-DIGITAL DESIGN FLOW

1. Write Verilog Code for the following circuits and their Test Bench for **verification**, observe the waveform and **synthesize** the code with technological library with given Constraints*. Do the initial timing verification with gate level simulation.

- 1. An inverter
- 2. A Buffer
- 3. Transmission Gate
- 4. Basic/universal gates
- 5. Flip flop -RS, D, JK, MS, T
- 6. Serial & Parallel adder
- 7. 4-bit counter [Synchronous and Asynchronous counter]
- 8. Successive approximation register [SAR]

* An appropriate constraint should be given

VIII SEMESTER WIRELESS COMMUNICATION

Subject Code	: 10EC81	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Introduction to wireless telecommunication systems and Networks, History and Evolution Different generations of wireless cellular networks 1G, 2g,3G and 4G networks. **6 Hours**

UNIT - 2

Common Cellular System components, Common cellular network components, Hardware and software, views of cellular networks, 3G cellular systems components, Cellular component identification Call establishment.

7 Hours

UNIT - 3

Wireless network architecture and operation, Cellular concept Cell fundamentals, Capacity expansion techniques, Cellular backbone networks, Mobility management, Radio resources and power management Wireless network security. **7 Hours**

UNIT - 4

GSM and TDMA techniques, GSM system overview, GSM Network and system Architecture, GSM channel concepts, GSM identifiers

6 Hours

PART – B

UNIT - 5

GSM system operation, Traffic cases, Cal handoff, Roaming, GSM protocol architecture. TDMA systems. **6 Hours**

UNIT - 6

CDMA technology, CDMA overview, CDMA channel concept CDMA operations. **6 Hours**

UNIT - 7

Wireless Modulation techniques and Hardware, Characteristics of air interface, Path loss models, wireless coding techniques, Digital modulation

techniques, OFDM, UWB radio techniques, Diversity techniques, Typical GSM Hardware. **7 Hours**

UNIT - 8

Introduction to wireless LAN 802.11X technologies, Evolution of Wireless LAN Introduction to 802.15X technologies in PAN Application and architecture Bluetooth Introduction to Broadband wireless MAN, 802.16X technologies. **7 Hours**

TEXT BOOK:

1. Wireless Telecom Systems and networks, Mullet: Thomson Learning 2006.

REFERENCE BOOKS:

- 1. **Mobile Cellular Telecommunication**, Lee W.C.Y, MGH, 2nd, 2009.
- 2. Wireless communication D P Agrawal: 2nd Edition Thomson learning 2007.
- 3. **Fundamentals of Wireless Communication**, David Tse, Pramod Viswanath, Cambridge 2005.
- S. S. Manvi, M. S. Kakkasageri, "Wireles and Mobile Network concepts and protocols", John Wiley India Pvt. Ltd, 1st edition, 2010.
- 5. "Wireless Communication Principles & Practice", T.S. Rappaport, PHI 2001.

DIGITAL SWITCHING SYSTEMS

Subject Code	: 10EC82	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Developments of telecommunications, Network structure, Network services, terminology, Regulation, Standards. Introduction to telecommunications transmission, Power levels, Four wire circuits, Digital transmission, FDM, TDM, PDH and SDH, Transmission performance.

7 Hours
DESIGN OF RTSS – GENERAL INTRODUCTION: Introduction, Specification documentation, Preliminary design, Single-program approach, Foreground/background, Multi-tasking approach, Mutual exclusion, Monitors. 6 Hours

UNIT - 8

RTS DEVELOPMENT METHODOLOGIES: Introduction, Yourdon Methodology, Requirement definition for Drying Oven, Ward and Mellor Method, Hately and Pirbhai Method. **6 Hours**

TEXT BOOKS:

 Real - Time Computer Control- An Introduction, Stuart Bennet, 2nd Edn. Pearson Education. 2005.

REFERENCE BOOKS:

- 1. **Real-Time Systems Design and Analysis**, Phillip. A. Laplante, second edition, PHI, 2005.
- 2. Real-Time Systems Development, Rob Williams, Elsevier. 2006.
- 3. Embedded Systems, Raj Kamal, Tata Mc Graw Hill, India, 2005.

IMAGE PROCESSING

Subject Code	: 10EC763	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	:100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

DIGITAL IMAGE FUNDAMENTALS: What is Digital Image Processing. fundamental Steps in Digital Image Processing, Components of an Image processing system, elements of Visual Perception. **6 Hours**

UNIT - 2

Image Sensing and Acquisition, Image Sampling and Quantization, Some Basic Relationships between Pixels, Linear and Nonlinear Operations.

6 Hours

IMAGE TRANSFORMS: Two-dimensional orthogonal & unitary transforms, properties of unitary transforms, two dimensional discrete Fourier transform. 7 Hours

UNIT - 4

Discrete cosine transform, sine transform, Hadamard transform, Haar transform, Slant transform, KL transform. **7 Hours**

PART - B

UNIT - 5

IMAGE ENHANCEMENT: Image Enhancement in Spatial domain, SomeBasic Gray Level Trans -formations, Histogram Processing, EnhancementUsing Arithmetic/Logic Operations.7 Hours

UNIT - 6

Basics of Spatial Filtering Image enhancement in the Frequency Domain filters, Smoothing Frequency Domain filters, Sharpening Frequency Domain filters, homomorphic filtering. **6 Hours**

UNIT - 7

Model of image degradation/restoration process, noise models, Restoration in the Presence of Noise, Only-Spatial Filtering Periodic Noise Reduction by Frequency Domain Filtering, Linear Position-Invariant Degradations, inverse filtering, minimum mean square error (Weiner) Filtering,

7 Hours

UNIT - 8

Color Fundamentals. Color Models, Pseudo color Image Processing., processing basics of full color image processing

6 Hours

TEXT BOOK:

1. **"Digital Image Processing"**, Rafael C.Gonzalez, Richard E. Woods, etl, TMH, 2nd Edition 2010.

REFERENCE BOOKS:

- 1. **"Fundamentals of Digital Image Processing"**, Anil K. Jain, Pearson Education, 2001.
- 2. **"Digital Image Processing and Analysis"**, B. Chanda and D. Dutta Majumdar, PHI, 2003.

PROTOCOL PERFORMANCE TESTING: SDL based performance testing of TCP, OSPF, Interoperability testing, SDL based interoperability testing of CSMA/CD and CSMA/CA protocol using bridge, Scalability testing.

7 Hours

UNIT - 8

PROTOCOL SYNTHESIS:Synthesis methods, interactive synthesisalgorithms, automatic synthesis algorithm, automatic synthesis of SDL fromMSC protocol re synthesis.6 Hours

TEXT BOOK:

1. **Communication Protocol Engineering**, P. Venkatarm and S. S. Manvi, PHI, 2004.

REFERENCES BOOKS:

- 1. The Internet and its Protocols, Adrian Farrel, Elsevier, 2006.
- 2. **TCP/IP Protocol Stack**, B A Forouzan, TMH, 2006.

ELECTIVE –V (GROUP E) MULTIMEDIA COMMUNICATIONS

Subject Code	: 10EC841	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

MULTIMEDIA COMMUNICATIONS: Introduction, multimedia information representation, multimedia networks, multimedia applications, media types, communication modes, network types, multipoint conferencing, network QoS application QoS. 6 Hours

UNIT - 2

MULTIMEDIA INFORMATION REPRESENTATION:Introduction,digital principles, text, images, audio, video.7 Hours

UNIT - 3

TEXT AND IMAGE COMPRESSION: Introduction, compression principles, text compression, image compression.

6 Hours

AUDIO AND VIDEO COMPRESSION: Introduction, audio compression, DPCM, ADPCM, APC, LPC, video compression, video compression principles, H.261, H.263, MPEG, MPEG-1, MPEG-2, and MPEG-4.

7 Hours

PART – B

UNIT - 5

MULTIMEDIA INFORMATION NETWORKS: Introduction, LANs, Ethernet, Token ring, Bridges, FDDI High-speed LANs, LAN protocol.

6 Hours

UNIT - 6

THE INTERNET: Introduction, IP Datagrams, Fragmentation, IP Address,ARP and RARP, QoS Support, IPv8.7 Hours

UNIT - 7

BROADBAND ATM NETWORKS: Introduction, Cell format, Swith and Protocol Architecture ATM LANs. 6 Hours

UNIT - 8

TRANSPORT PROTOCOL: Introduction, TCP/IP, TCP, UDP, RTP and
RTCP.**7 Hours**

TEXT BOOK:

1. Multimedia Communications: Applications, Networks, Protocols and Standards, Fred Halsall, Pearson Education, Asia, Second Indian reprint 2002.

REFERENCE BOOKS:

- 1. **Multimedia Information Networking**, Nalin K. Sharda, PHI, 2003.
- 2. "Multimedia Fundamentals: Vol 1 Media Coding and Content Processing", Ralf Steinmetz, Klara Narstedt, Pearson Education, 2004.
- 3. **"Multimedia Systems Design"**, Prabhat K. Andleigh, Kiran Thakrar, PHI, 2004.

UNIT 6

Embedded System Components:

Firmware components, RTOS system software mechanisms, Software application components.

Debugging Components:

Execptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self test and diagnostics, External test equipment, Application-level debugging.

7 Hours

UNIT 7

Performance Tuning:

Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. **6 Hours**

UNIT 8

High availability and Reliability Design:

Reliability and Availability, Similarities and differences, Reliability, Reliable software, Available software, Design trade offs, Hierarchical applications for Fail-safe design.

Design of RTOS – PIC microcontroller. (Chap 13 of book Myke Predko) 7 Hours

REFERENCE BOOKS:

- 1. "**Real-Time Embedded Systems and Components**" Sam Siewert, Cengage Learning India Edition, 2007.
- 2. "**Programming and Customizing the PIC microcontroller**", Myke Predko, 3rd Ed, TMH, 2008

GSM

Subject Code	: 10EC843	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

GSM ARCHITECTURE AND INTERFACES: Introduction, GSM frequency bands, GSM PLMN, Objectives of a GSM PLMN, GSM PLMN Services, GSM Subsystems, GSM Subsystems entities, GSM interfaces, The radio interface (MS to BSC), A_{bits} interface (BTS to BSC), A interface (BSC

to MSC), Interfaces between other GSM entities, Mapping of GSM layers onto OSI layers. **6 Hours**

UNIT - 2

RADIO LINK FEATURES IN GSM SYSTEMS: Introduction, Radio link measurements, Radio link features of GSM, Dynamic power control, Discontinuous transmission (DTX), SFH, Future techniques to reduce interface in GSM, Channel borrowing, Smart antenna. **7 Hours**

UNIT - 3

GSM LOGICAL CHANNELS AND FRAME STRUCTURE: Introduction, GSM logical channels, Allowed logical channel combinations, TCH multi frame for TCH/H, CCH multi frame, GSM frame structure, GSM bursts, Normal burst, Synchronization burst, Frequency correction channel burst, Access burst, Data encryption in GSM, Mobility management, Location registration, Mobile identification. **7 Hours**

UNIT - 4

SPEECH CODING IN GSM: Introduction, Speech coding methods, Speech code attributes, Transmission bit rate, Delay, Complexity, Quality, LPAS, ITU-T standards, Bit rate, Waveform coding, Time domain waveform coding, Frequency domain waveform coding, Vocoders, Full-rate vocoder, Half-rate vocoder. MESSAGES, SERVICES, AND CALL FLOWS IN GSM: Introduction, GSM PLMN services.

7 Hours

PART – B

UNIT - 5

GSM messages, MS-BS interface, BS to MSC messages on the A interface, MSC to VLR and HLR, GSM call setup by an MS, Mobile-Terminated call, Call release, Handover. Data services, Introduction, Data interworking, GSM data services, Interconnection for switched data, Group 3 fax, Packet data on the signaling channel, User-to-user signaling, SMS, GSM GPRS.

6 Hours

UNIT - 6

PRIVACY AND SECURITY IN GSM: Introduction, Wireless security requirements, Privacy of communications, Authentication requirements, System lifetime requirements, Physical requirements, SIM cards, Security algorithms for GSM, Token-based authentication, Token-based registration, Token-based challenge.

UNIT - 7

6 Hours

PLANNING AND DESIGN OF A GSM WIRELESS NETWORK: Introduction, Tele traffic models, Call model, Topology model, Mobility in

cellular / PCS networks, Application of a fluid flow model, Planning of a wireless network, Radio design for a cellular / PCS network, Radio link design, Coverage planning, Design of a wireless system, Service requirements, Constraints for hardware implementation, Propagation path loss, System requirements, Spectral efficiency of a wireless system, Receiver sensitivity and link budget, Selection of modulation scheme, Design of TDMA frame, Relationship between delay spread and symbol rate, Design example for a GSM system.

7 Hours

UNIT - 8

MANAGEMENT OF GSM NETWORKS: Introduction, Traditional approaches to NM, TMN, TMN layers, TMN nodes, TMN interface, TMN management services, Management requirements for wireless networks, Management of radio resources, Personal mobility management, Terminal mobility, Service mobility management, Platform-centered management, SNMP, OSI systems management, NM interface and functionality, NMS functionality, OMC functionality, Management of GSM network, TMN applications, GSM information model, GSM containment tree, Future work items.

TEXT BOOK:

7 Hours

1. **"Principles of Applications of GSM"**, Vijay K. Garg & Joseph E. Wilkes, Pearson education/ PHI, 1999.

REFERENCE BOOKS:

- 1. **GSM: Evolution towards 3rd Generation Systems**, (Editor), Z. Zvonar Peter Jung, Karl Kammerlander Springer; 1st edition 1998
- 2. **GSM & UMTS: The Creation of Global Mobile Communication,** Friedhelm Hillebrand, John Wiley & Sons; 2001.

ADHOC WIRELESS NETWORKS

Subject Code	: 10EC844	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

AD HOC NETWORKS: Introduction, Issues in Ad hoc wireless networks, Ad hoc wireless internet. 6 Hours

10EE35 ELECTRICAL and ELECTRONIC MEASUREMENTS and INSTRUMENTATION

Subject Code	:	10EE35	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

1-(a) Units and Dimensions: Review of fundamental and derived units. S.I. units. Dimensional equations, problems. **3 Hours**

1-(b) Measurement of Resistance: Wheatstone's bridge, sensitivity, limitations. Kelvin's double bridge. Earth resistance, measurement by fall of potential method and by using Megger. 3 Hours

UNIT 2:

Measurement of Inductance and Capacitance: Sources and detectors, Maxwell's inductance bridge, Maxwell's inductance &capacitance bridge, Hay's bridge, Anderson's bridge, Desauty's bridge, Schering bridge. Shielding of bridges. Problems. 07 Hours

UNIT 3:

Extension of Instrument Ranges: Shunts and multipliers. Construction and theory of instrument transformers, Equations for ratio and phase angle errors of C.T. and P.T (derivations excluded). Turns compensation, illustrative examples (excluding problems on turns compensation), Silsbees's method of testing CT. 07 Hours **UNIT 4:**

Measurement of Power and Energy: Dynamometer wattmeter. UPF and LPF wattmeters, Measurement of real and reactive power in three-phase circuits. Induction type energy meter — construction, theory, errors, adjustments and calibration. Principle of working of electronic energy meter. 06 Hours

PART – B

UNIT 5:

(a) Construction and operation of electro-dynamometer single-phase power factor meter. Weston frequency meter and phase sequence indicator. 04 Hours

(b) Electronic Instruments: Introduction. True RMS responding voltmeter. Electronic multimeters. Digital voltmeters. Q meter. 04 Hours

UNIT 6:

Dual trace oscilloscope — front panel details of a typical dual trace oscilloscope. Method of measuring voltage, current, phase, frequency and period. Use of Lissajous patterns. Working of a digital storage oscilloscope. Brief note on current probes. 06 Hours

UNIT 7:

Transducers: Classification and selection of transducers. Strain gauges, LVDT. Measurement of temperature and pressure. Photo-conductive and photo-voltaic cells.

UNIT 8:

(a) Interfacing resistive transducers to electronic circuits. Introduction to data acquisition systems. 2 Hours

(b) Display Devices and Signal Generators: X-Y recorders. Nixie tubes. LCD and LED display. Signal generators and function generators. 04 Hours

Text Books

- 1. Electrical and Electronic Measurements and Instrumentation, A. K. Sawhney, Dhanpatrai and Sons. New Delhi.
- 2. Modern Electronic Instrumentation and Measuring Techniques, Cooper D. and A.D. Heifrick, PHI, 2009 Edition.

References

- 1. Electronic Instrumentation and Measurement, David A. Bell, oxford Publication ,2nd Edition, 2009.
- 2. Electrical Measurements and Measuring Instruments, Golding and Widdies, Pitman

06 Hours

10EE36 ELECTRIC POWER GENERATION

Subject Code	:	10EE36	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Sources of Electrical Power: Wind, solar, fuel cell, tidal, geo-thermal, hydro-electric, thermal-steam, diesel, gas, nuclear power plants (block diagram approach only). Concept of co-generation. Combined heat and power distributed generation. 06 **Hours**

UNIT 2:

Diesel electric plants. Gas turbine plants. Mini, micro, and bio generation. Concept of distributed generation. 06 Hours

UNIT 3:

(a) Hydro Power Generation: Selection of site. Classification of hydro-electric plants. General arrangement and operation. Hydroelectric plant power station structure and control. 5 Hours

(b) Thermal Power Generation: Introduction. Main parts of a thermal power plant. Working. Plant layout.
3 Hours

UNIT 4:

Nuclear Power Station: Introduction. Pros and cons of nuclear power generation. Selection of site, cost, components of reactors. Description of fuel sources. Safety of nuclear power reactor. 6 Hours

PART – B

UNIT 5 and 6:

(a) **Economics Aspects:** Introduction. Terms commonly used in system operation. Diversity factor, load factor, plant capacity factor, plant use factor, plant utilization factor and loss factor, load duration curve. Cost of generating station, factors influencing the rate of tariff designing, tariff, types of tariff. Power factor improvement.

(b) Substations: Introduction, types, Bus bar arrangement schemes, Location of substation equipment. Reactors and capacitors. Interconnection of power stations. 14 Hours

UNIT 7 and 8 :

Grounding Systems: Introduction, grounding systems. Neutral grounding. Ungrounded system. Resonant grounding. Solid grounding, reactance grounding, resistance grounding. Earthing transformer. Neutral grounding transformer. 12 Hours

Text Books

1. **Power System Engineering,** A. Chakrabarti, M. L. Soni, and P.V. Gupta, Dhanpat Rai and Co.,NewDelhi.

2. Electric Power Generation, Transmission and Distribution, S. N. Singh, PHI, 2nd Edition, 2009.

References

1. Elements of Electrical Power System Design, M. V. Deshpande, PHI,2010

10ES42 MICROCONTROLLERS

(Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES42	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Microprocessors and microcontroller. Introduction, Microprocessors and Microcontrollers, RISC & CISC CPU Architectures, Harvard & Von-Neumann CPU architecture, Computer software. The 8051 Architecture: Introduction, Architecture of 8051, Pin diagram of 8051, Memory organization, External Memory interfacing, Stacks.

UNIT 2:

Addressing Modes: Introduction, Instruction syntax, Data types, Subroutines, Addressing modes: Immediate addressing, Register addressing, Direct addressing, Indirect addressing, relative addressing, Absolute addressing, Long addressing, Indexed addressing, Bit inherent addressing, bit direct addressing.

Instruction set: Instruction timings, 8051 instructions: Data transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction.

6Hours

6 Hours

6 Hours

UNIT 4:

8051 Interfacing and Applications: Basics of I/O concepts, I/O Port Operation, Interfacing 8051 to LCD, Keyboard, parallel and serial ADC, DAC, Stepper motor interfacing and DC motor interfacing and programming

UNIT 5:

8051 Interrupts and Timers/counters: Basics of interrupts, 8051 interrupt structure, Timers and Counters, 8051 timers/counters, programming 8051 timers in assembly and C.

UNIT 6:

8051 Serial Communication: Data communication, Basics of Serial Data Communication, 8051 Serial Communication, connections to RS-232, Serial communication Programming in assembly and C.8255A Programmable Peripheral Interface:, Architecture of 8255A, I/O addressing,, I/O devices interfacing with 8051 using 8255A.

Course Aim – The MSP430 microcontroller is ideally suited for development of low-power embedded systems that must run on batteries for many years. There are also applications where MSP430 microcontroller must operate on energy harvested from the environment. This is possible due to the ultra- low power operation of MSP430 and the fact that it provides a complete system solution including a RISC CPU, flash memory, on-chip data converters and on-chip peripherals.

UNIT 7:

Motivation for MSP430microcontrollers – Low Power embedded systems, On-chip peripherals (analog and digital), low-power RF capabilities. Target applications (Single-chip, low cost, low power, high performance system design).

2 Hours

MSP430 RISC CPU architecture, Compiler-friendly features, Instruction set, Clock system, Memory subsystem. Key differentiating factors between different MSP430 families.

2 Hours

Introduction to Code Composer Studio (CCS v4). Understanding how to use CCS for Assembly, C, Assembly+C projects for MSP430 microcontrollers. Interrupt programming.

UNIT 3: 8051 programming: Assembler directives, Assembly language programs and Time delay calculations.

6 Hours

6 Hours

2 Digital I/O – I/O ports programming using C and assembly, Understanding the muxing scheme of the MSP430 pins. 2 Hours

UNIT 8:

On-chip peripherals. Watchdog Timer, Comparator, Op-Amp, Basic Timer, Real Time Clock (RTC), ADC, DAC, SD16, LCD, DMA.

Using the Low-power features of MSP430. Clock system, low-power modes, Clock request feature, Low-power programming and Interrupt.

Interfacing LED, LCD, External memory. Seven segment LED modules interfacing. Example – Real-time clock.

Case Studies of applications of MSP430 - Data acquisition system, Wired Sensor network, Wireless sensor network with Chipcon RF interfaces.

3 Hours

2 Hours

2 Hours

2 Hours

TEXT BOOKS:

- 1. "The 8051 Microcontroller and Embedded Systems using assembly and C "-, Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; PHI, 2006 / Pearson, 2006
- 2. "MSP430 Microcontroller Basics", John Davies, Elsevier, 2010

REFERENCE BOOKS:

- 1. "The 8051 Microcontroller Architecture, Programming & Applications", 2e Kenneth J. Ayala ;, Penram International, 1996 / Thomson Learning 2005.
- 2. "The 8051 Microcontroller", V.Udayashankar and MalikarjunaSwamy, TMH, 2009
- 3. MSP430 Teaching CD-ROM, Texas Instruments, 2008 (can be requested http://www.uniti.in)
- 4. Microcontrollers: Architecture, Programming, Interfacing and System Design", Raj Kamal, "Pearson Education, 2005

10EE45 POWER ELECTRONICS

Subject Code	:	10EE45	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Power Semiconductor Devices:

Introduction to semiconductors, Power Electronics, Power semiconductor devices, Control Characteristics. Types of power electronic converters and industrial applications-Drives, Electrolysis, Heating, Welding, Static Compensators, SMPS, HVDC power transmission, Thyristorized tap changers and Circuit breakers.

UNIT 2:

Power Transistors: Power BJT's – switching characteristics, switching limits, base drive control. Power MOSFET's and IGBT's –characteristics, gate drive , di/dt and dv/dt limitations. Isolation of gate and base drives. **6 Hours**

UNIT 3:

Thyristors

Introduction, Two Transistor Model, characteristics-static and dynamic. di/dt and dv/dt protection. Ratings of thyristors. Thyristor types. Series and parallel operation of Thyristors. Thyristor firing circuits. Design of firing circuits using UJT, R, R-C circuits. Analysis of firing circuits using operational amplifiers and digital IC's. **7 Hours**

UNIT 4:

UNIT 5:

Commutation Techniques: Introduction. Natural Commutation. Forced commutation- self-commutation, impulse commutation and complementary commutation. 6 Hours

PART – B

Controlled Rectifiers: Introduction. Principle of phase controlled converter operation. Single- phase semiconverters. Full converters. Three-phase half-wave converters. Three-phase full-wave converters. **7 Hours**

UNIT 6:

Choppers: Introduction. Principle of step-down and step-up chopper with R-L load. Performance parameters. Chopper classification. Analysis of impulse commutated thyristor chopper (only qualitative analysis) **6 Hours**

UNIT 7:

Inverters: Introduction. Principle of operation. Performance parameters. Single-phase bridge inverters. Threephase inverters. Voltage control of single-phase inverters – single pulse width, multiple pulse width, and sinusoidal pulse width modulation. Current source inverters. **7 Hours**

UNIT 8:

(a) AC Voltage Controllers: Introduction. Principle of ON-OFF and phase control. Single-phase, bidirectional controllers with resistive and R-L loads.

(b) Electromagnetic Compatibility: Introduction, effect of power electronic converters and remedial measures.

6 Hours

Text Book:

1. Power Electronics, M.H.Rashid, , Pearson, 3rd Edition, 2006.

2. Power Electronics, M.D. Singh and Khanchandani K.B., T.M.H., 2nd Edition,2001

References

- 1. Power Electronics Essentials and Applications, L. Umanand, Wiley India Pvt Ltd, Reprint, 2010
- 2. Thyristorised Power Controllers, G.K. Dubey, S.R. Doradla, A. Joshi and R.M.K. Sinha, New Age International Publishers.
- 3. **Power Electronics Converters, Applications and Design,** Ned Mohan, Tore M. Undeland, and William P. Robins, Third Edition, John Wiley and Sons,2008.
- 4. **Power Electronics: A Simplified Approach,** R.S. Ananda Murthy and V. Nattarasu, pearson/Sanguine Technical Publishers.

7 hours

MICROCONTROLLERS LAB

(Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ESL47	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

I. PROGRAMMING

1. Data Transfer - Block move, Exchange, Sorting, Finding largest element in an array.

- 2. Arithmetic Instructions Addition/subtraction, multiplication and division, square, Cube (16 bits Arithmetic operations bit addressable).
- 3. Counters.
- 4. Boolean & Logical Instructions (Bit manipulations).
- 5. Conditional CALL & RETURN.
- 6. Code conversion: BCD ASCII; ASCII Decimal; Decimal ASCII; HEX Decimal and Decimal HEX .

7. Programs to generate delay, Programs using serial port and on-Chip timer / counter.

Note: Programming exercise is to be done on both 8051 & MSP430.

II. INTERFACING:

Write C programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

8. Simple Calculator using 6 digit seven segment displays and Hex Keyboard interface to 8051.

- 9. Alphanumeric LCD panel and Hex keypad input interface to 8051.
- 10. External ADC and Temperature control interface to 8051.
- 11. Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC interface to 8051; change the frequency and amplitude.
- 12. Stepper and DC motor control interface to 8051.
- 13. Elevator interface to 8051.

10EEL48 POWER ELECTRONICS LAB

Subject Code	:	10EEL48	IA Marks	:	25
No. of Practical Hrs./ Week	:	03	Exam Hours	:	03
Total No. of Practical Hrs.	:	42	Exam Marks	:	50

1. Static characteristics of SCR.

2. Static characteristics of MOSFET and IGBT.

- 3. SCR turn-on circuit using synchronized UJT relaxation oscillator.
- 4. SCR Digital triggering circuit for a single-phase controlled rectifier and A.C. voltage controller.
- 5. Single-phase controlled full-wave rectifier with *R* and *R*-*L* loads.
- 6. A.C. voltage controller using TRIAC and DIAC combination connected to *R* and *R*-*L* loads.
- 7. Speed control of a separately excited D.C. motor using an IGBT or MOSFET chopper.
- 8. Speed control of D.C. motor using single semi converter
- Speed control of a stepper motor.
 Speed control of universal motor using A.C. voltage controller.
- 11. MOSFET OR IGBT based single-phase full-bridge inverter connected to R load.
- 12. Study of commutation using LC circuits and auxiliary circuits.

10EEL57 MEASUREMENTS AND CIRCUIT SIMULATION LABORATORY

Subject Code	:	10EEL57	IA Marks	:	25
No. of Practical Hrs./ Week	:	03	Exam Hours	:	03
Total No. of Practical Hrs.	:	42	Exam Marks	:	50

- 1. Measurement of low resistance using Kelvin's double bridge.
- 2. Measurement of cable insulation and earth resistance using Meggar
- 3. Measurement of inductance using Maxwell Inductance-Capacitance bridge & determination of Qfactor
- 4. Measurement of capacitance using De-Sauty's bridge & determination of dissipation factor.
- 5. M easurement of active and reactive power in balanced 3-phase circuit using two-watt meter method.
- 6. Adjustment & calibration of 1-phase energy meter
- 7. Determination of ratio & phase angle error in CT.
- 8. a) Inverting, non-inverting & scale changing of signals using op -amps
- b) RC phase shift oscillator using op amps (Both using simulation package)
- 9. RC coupled amplifier-frequency response for variation of bias & coupling using simulation package
- 10. Rectifier circuits-Bridge rectifier, diode clipping & clamping circuits using simulation package.
- 11. Schmitt -trigger- inverting and non-inverting.
 12 Signal generator- triangular, saw tooth and rectangular wave generation
 Note: All experiments, except 5,6 and 7, are to be carried out by using components and verify the result by using a simulation package.

10EE61 POWER SYSTEM ANALYSIS AND STABILITY

Subject Code	:	10EE61	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

REPRESENTATION OF POWER SYSTEM COMPONENTS: Circuit models of Transmission line, Synchronous machines, Transformers and load. Single line diagram, impedance and reactance diagrams. Per unit system, per unit impedance diagram of power system. UNIT - 2

SYMMETRICAL 3 - PHASE FAULTS: Analysis of Synchronous machines and Power system. Transients on a transmission line, Short-Circuit currents and the reactance of synchronous machines with and without load . 6 Hours

UNIT - 3 & 4

SYMMETRICAL COMPONENTS: Introduction, analysis of unbalanced load against balanced Threephase supply, neutral shift. Resolution of unbalanced phasors into their symmetrical components, Phase shift of symmetrical components in star-delta transformer bank, Power in terms of symmetrical components, Analysis of balanced and unbalanced loads against unbalanced 3 phase supply, Sequence impedances and networks of power system elements (alternator, transformer and transmission line) Sequence networks of power systems. Measurement of sequence impedance of synchronous generator.

12 Hours

Part - B

UNIT - 5 & 6

UNSYMMETRICAL FAULTS: L-G, L-L, L-L-G faults on an unbalanced alternator with and without fault impedance. Unsymmetrical faults on a power system with and without fault impedance. Open conductor faults in power system. 14 Hours

UNIT - 7

STABILITY STUDIES: Introduction, Steady state and transient stability. Rotor dynamics and the swing equation. Equal area criterion for transient stability evaluation and its applications. **8 Hours**

UNIT – 8

UNBALANCED OPERATION OF THREE PHASE INDUCTION MOTRORS: Analysis of three phase induction motor with one line open., Analysis of three phase induction motor with unbalanced voltage. 4 Hours

TEXT BOOKS:

- 1. Elements of Power System Analysis, W.D.Stevenson, TMH,4th Edition
- 2. Modern Power System Analysis, I. J. Nagrath and D.P.Kothari-TMH, 3rd Edition, 2003.
- 3. Symmetrical Components and Short Circuit Studies, Dr.P.N.Reddy, Khanna Publishers

REFERENCE BOOKS:

- 1. **Power System Analysis**, Hadi Sadat, TMH,2nd Edition.
- 2. Power system Analysis, <u>R.</u>Bergen, and Vijay Vittal, Pearson publications, 2nd edition, 2006.
- 3. Computer Aided Power system analysis, G.L., Kusic, PHI.Indian Edition, 2010 .
- 4. Power System Analysis, W.D. Stevenson & Grainger, TMH, First Edition, 2003.

PART -	A
--------	---

SWITCHES AND FUSES: Introduction, energy management of power system, definition of switchgear, switches - isolating, load breaking and earthing. Introduction to fuse, fuse law, cut -off characteristics,: Time current characteristics, fuse material, HRC fuse, liquid fuse, Application of fuse

UNIT - 2

PRINCIPLES OF CIRCUIT BREAKERS: Introduction, requirement of a circuit breakers, difference between an isolator and circuit breaker, basic principle of operation of a circuit breaker, phenomena of arc, properties of arc, initiation and maintenance of arc, arc interruption theories - slepian's theory and energy balance theory, Restriking voltage, recovery voltage, Rate of rise of Restriking voltage, DC circuit breaking, AC circuit breaking, current chopping, capacitance switching, resistance switching, Rating of Circuit breakers.

UNIT - 3 & 4 CIRCUITS BREAKERS: Air Circuit breakers – Air break and Air blast Circuit breakers, oil Circuit breakers - Single break, double break, minimum OCB, SF₆ breaker - Preparation of SF₆ gas, Puffer and non Puffer type of SF₆ breakers. Vacuum circuit breakers - principle of operation and constructional details. Advantages and disadvantages of different types of Circuit breakers, Testing of Circuit breakers, Unit testing, synthetic testing, substitution test, compensation test and capacitance test.

LIGHTNING ARRESTERS: Causes of over voltages – internal and external, lightning, working principle of different types of lightning arresters. Shield wires.

PART - B

UNIT - 5

UNIT - 1

PROTECTIVE RELAYING: Requirement of Protective Relaying, Zones of protection, primary and backup protection, Essential qualities of Protective Relaying, Classification of Protective Relays

UNIT - 6

INDUCTION TYPE RELAY: Non-directional and directional over current relays, IDMT and Directional characteristics. Differential relay – Principle of operation, percentage differential relay, bias characteristics, distance relay – Three stepped distance protection, Impedance relay, Reactance relay, Mho relay, Buchholz relay, Negative Sequence relay, Microprocessor based over current relay – block diagram approach.

UNIT - 7 & 8

PROTECTION SCHEMES: Generator Protection - Merz price protection, prime mover faults, stator and rotor faults, protection against abnormal conditions – unbalanced loading, loss of excitation, over speeding. Transformer Protection - Differential protection, differential relay with harmonic restraint, Inter turn faults Induction motor protection - protection against electrical faults such as phase fault, ground fault, and abnormal operating conditions such as single phasing, phase reversal, over load. **12 Hours**

TEXT BOOKS:

- 1. Switchgear & Protection Sunil S.Rao,,Khanna Publishers,13th Edition,2008.
- 2. Power System Protection & Switchgear, Badriram & Viswa Kharma, TMH, 1st edition, 2001.
- 3. Fundamentals of Power System protection, Y G. Painthankar and S R Bhide, PHI, 2009.

REFERENCE BOOKS:

- 1. A Course in Electrical Power, Soni, Gupta & Bhatnagar, Dhanapatirai.
- 2. Power System Protection & Switchgear, Ravindarnath & Chandra -New age Publications.
- **3** Electrical Power, Dr S. L. Uppal, Khanna Publishers.
- 4. Handbook of Switchgears, BHEL, TMH, 5th reprint, 2008.

10EE62 SWITCHGEAR & PROTECTION

Subject Code	:	10EE62	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

10 Hours

4 Hours

12 Hours

4 Hours

4 Hours

10 Hours

10EE664 OBJECT ORIENTED PROGRAMMING USING C ++

Subject Code	:	10EE664	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

PRINCIPLES OF OBJECT-ORIENTED PROGRAMMING: Review of Procedure OrientedProgramming, Basic concepts of Object Oriented Programming – Object, Class, Encapsulation,Inheritance, Polymorphism; Benefits of OOPs, Applications of OOP's.**4 Hours**

UNIT - 2

THE BASIC LANGUAGE C++: A comparison of C and C++, Structure of C++ program with Class, Preprocessor directives, C++ Statements – Input/Output, Comments, Tokens, Keywords, Identifiers, Constants, Data types – string, pointer, reference, boole, enumeration, array, complex number; typedef names, type compatibility, type conversion, qualifier – const, volatile; Operators in C++, Operator Precedence and Operator Overloading; C++ expressions – New and Delete. **6 Hours**

UNIT - 3

FUNCTIONS IN C++: Introduction, The main() function, Function prototype, Call by reference, Return by reference, Inline functions, Default arguments, const Arguments, Function Overloading, Friend and Virtual functions, pointer to functions. **8 hours**

UNIT - 4

CLASSES AND OBJECTS: Introduction – declaration and definition of a Class, defining member functions, C++ program with a Class, Making an outside function Inline, Nesting of member functions, Arrays within a class, Static data members, static member functions, Objects – global & local objects, scope & lifetime, memory allocation for objects, dynamically allocated objects, pointers to objects, arrays of objects, function arguments with objects, returning objects; const member functions. **8 Hours**

PART - B

UNIT - 5

CONSTRUCTORS AND DESTRUCTORS: Introduction, Constructors, Parameterized Constructors, Multiple constructors in a class, Constructors with default arguments, Dynamic initialization of objects, Copy constructor, Constructing two-dimensional arrays, const Objects, Destructors. **4 Hours**

UNIT - 6

OPERATOR OVERLOADING AND TYPE CONVERSION: Introduction, Defining operator overloading, Overloading unary operators, Overloading binary operators, Overloading binary operators using Friends, Rules for overloading operators, overloading a comma operator, overloading the output operator, Type conversion. **7 Hours**

UNIT - 7

INHERITANCE: Introduction, Defining derived classes, Single inheritance, Making a private member Inheritable, Multilevel inheritance, Multiple inheritance, Hierarchical inheritance, Hybrid inheritance, Virtual base classes, Abstract classes, Constructors & Destructors in base & derived classes. **6 Hours**

UNIT - 8

POINTER, VIRTUAL FUNCTIONS AND POLYMORPHISM: Introduction, Pointers, Pointers to Objects, this pointer, Pointers to derived classes, type-checking pointers, pointers to members, Virtual functions, Pure virtual functions.

MANAGING CONSOLE I/O AND FILE I/O: C++ streams, C++ stream classes, examples of formatted and unformatted I/O operations, Classes for file stream operations, Methods of Opening and Closing a File, Examples of Opening file using constructor open(), file modes (simple programming exercises). **9 Hours**

TEXT BOOKS:

1. **Object Oriented Programming with C++-** Balagurusamy, E, TMH,4th edition, 2008.

2. C++, The Complete Reference -Herbert Schildt, , TMH, 4th edition

3. Object Oriented Programming with C++, Farrell, Cengage Learning, First Edition, 2008. **REFERENCE BOOKS:**

1. The C++ programming language,Bjarne Stroustrup, Pearson Education, 3rd edition,2006.

2. Objected oriented programming with C++, Bhave, Pearson Education, First Edition, 2006.

10EE72 ELECTRICAL POWER UTILIZATION

Subject Code	:	10EE72	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

HEATING AND WELDING: Advantages and methods of electric of heating, resistance ovens, induction heating, dielectric heating, the arc furnace, heating of building. Electric welding, resistance and arc welding, control devices and welding equipment. **10 Hours**

UNIT - 2

ELECTROLYTIC PROCESS: Fundamental principles, extraction, refining of metals and electroplating. Factors affecting electro deposition process, power supply for electrolytic process. **6 Hours**

UNIT - 3 & 4

ILLUMINATION: Laws of illumination, lighting calculation, factory lighting, flood lighting, street lighting, different types of lamps-incandescent, fluorescent, vapor, CFL and LED lamps and their working, comparision, Glare and its remedy. **10 Hours**

PART - B

UNIT - 5, 6 & 7

ELECTRIC TRACTION: Introduction, requirements of an ideal traction, systems of traction, speed time curve, tractive effort, co-efficient of adhesion, selection of traction motors, method of speed control, energy saving by series parallel control, ac traction equipment. AC series motor, characteristics, regenerative braking, linear induction motor and their use. AC traction, diesel electric equipment, trains lighting system, specific energy, factors affecting specific energy consumption. **20 Hours**

UNIT - 8

INTRODUCTION TO ELECTRIC AND HYBRID VEHICLES: Configuration and performance of electrical vehicles, traction motor characteristics, tractive effort, transmission requirement, vehicle performance and energy consumption. **6 Hours**

TEXT BOOKS:

- 1. Utilization Of Electric Energy, E Openshaw Taylor, 12th Impression, 2009, Universities Press.
- 2. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad, Ehsani, Yimin Gao, Sabastien. E. Gay, Ali Emadi- CRC Press.

REFERENCE BOOKS:

- 1. A Course in Electrical Power, Soni Gupta and Bhatnager-Dhanapat Rai & sons.
- 3. Electrical Power, Dr. S.L.Uppal, Khanna Publications

10EE73 HIGH VOLTAGE ENGINEERING

Subject Code	:	10EE73	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

INTRODUCTION: Introduction to HV technology, need for generating high voltages in laboratory. Industrial applications of high voltage, Electrostatic precipitation, separation, painting and printing.

6Hours

UNIT - 2 & 3

BREAKDOWN PHENOMENA: Classification of HV insulating media. Properties of important HV insulating media under each category. Gaseous dielectrics, Ionization: primary and secondary ionization processes. Criteria for gaseous insulation breakdown based on Townsend's theory. Limitations of Townsend's theory. Streamer's theory breakdown in non uniform fields. Corona discharges. Breakdown in electro negative gases. Paschen's law and its significance. Time lags of Breakdown. Breakdown in solid dielectrics: Intrinsic Breakdown, avalanche breakdown, thermal breakdown, and electro mechanic breakdown. Breakdown of liquid dielectrics: Suspended particle theory, electronic Breakdown, cavity breakdown (bubble's theory), electro convection breakdown. **12 Hours**

UNIT - 4

GENERATION OF HV AC AND DC VOLTAGE: HV AC-HV transformer; Need for cascade connection and working of transformers units connected in cascade. Series resonant circuit- principle of operation and advantages. Tesla coil. HV DC- voltage doubler circuit, cock croft- Walton type high voltage DC set. Calculation of high voltage regulation, ripple and optimum number of stages for minimum voltage drop. **8 Hours**

Part - B

UNIT - 5

GENERATION OF IMPULSE VOLTAGE AND CURRENT: Introduction to standard lightning and switching impulse voltages. Analysis of single stage impulse generator-expression for Output impulse voltage. Multistage impulse generator working of Marx impulse. Rating of impulse generator. Components of multistage impulse generator. Triggering of impulse generator by three electrode gap arrangement. Trigatron gap and oscillograph time sweep circuits. Generation of switching impulse voltage. Generation of high impulse current.

UNIT - 6

MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation. Chubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV DC measurements. Standard sphere gap measurements of HV AC, HV DC, and impulse voltages; Factors affecting the measurements. Potential dividers-resistance dividers capacitance dividers mixed RC potential dividers. Measurement of high impulse currents-Rogogowsky coil and Magnetic Links. **10 Hours**

NON-DESTRUCTIVE INSULATION TESTING TECHNIQUES: Dielectric loss and loss angle measurements using Schering Bridge, Transformer ratio Arms Bridge. Need for discharge detection and PD measurements aspects. Factor affecting the discharge detection. Discharge detection methods-straight and balanced methods. 6 Hours

UNIT - 8

HIGH VOLTAGE TESTS ON ELECTRICAL APPARATUS: Definitions of terminologies, tests on
isolators, circuit breakers, cables insulators and transformers.4 Hours

TEXT BOOKS:

- 1. High Voltage Engineering, M.S.Naidu and Kamaraju- 4th Edition, THM, 2008.
- 2. High Voltage Engineering Fundamentals, E.Kuffel and W.S. Zaengl, 2nd Edition, Elsevier Press, 2005.
- 3. High Voltage Engineering ,C.L.Wadhwa, New Age International Private limited, 1995.

REFERENCE BOOKS:

1.High Voltage Engineering Theory and Practice, Mazen Abdel-Salam, Hussein Anis, Ahdab El-Morshedy, Roshdy Radwan, 2nd Edn(Revised & Expanded) Marcel-Dekker Publishers(Special Indian Edn.).

10EE752 PROGRAMMABLE LOGIC CONTROLLERS

Subject Code	:	10EE752	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	•	52	Exam Marks	•	100

PART - A

UNIT - 1

INTRODUTION: Introduction to Programmable logic controller (PLC), role in automation (SCADA), advantages and disadvantages, hardware, internal architecture, sourcing and sinking, characteristics of I/O devices, list of input and output devices, examples of applications. I/O processing, input/output units, signal conditioning, remote connections, networks, processing inputs I/O addresses. **7 Hours**

UNIT - 2

ROGRAMMING: Ladder programming- ladder diagrams, logic functions, latching, multiple outputs, entering programs, functional blocks, programme examples like location of stop and emergency switches

8 Hours

UNIT - 3 & 4

PROGRAMMING LANGUAGES: Instruction list, sequential functions charts & structured text, jump and call subroutines. 10 Hours

PART - B

UNIT - 5

INTERNAL RELAYS: ladder programmes, battery- backed relays, one - shot operation, set and reset, master control relay. 5 Hours

UNIT - 6 & 7

Timers and counters: Types of timers, programming timers, ON and OFF- delay timers, pulse timers, forms of counter, programming, up and down counters, timers with counters, sequencer. 12 Hours UNIT - 8

Shift register and data handling: shift registers, ladder programs, registers and bits, data handling, arithmetic functions, temperature control and bottle packing applications. 10 Hours Note: Programming is to be with reference to only Mitsubhish PLC

TEXT BOOKS:

- 1. Programmable Logic controllers-W Bolton, 5th edition, Elsevier- newness, 2009.
- 2. **Programmable logic controllers principles and applications**"-John W Webb, Ronald A Reis, Pearson education, 5th edition, 2nd impression, 2007.

REFERENCE BOOKS:

- 1. **Programmable Controller Theory and Applications**, L. A Bryan, E. A Bryan, An industrial text company publication, 2nd edition, 1997.
- 2. Programmable Controllers, An Engineers Guide-E. A Paar, newness, 3rd edition, 2003.

Subject Code	:	10EE836	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

10EE836 RENEWABLE ENERGY SOURCES

UNIT - 1

ENERGY SOURCES: Introduction, Importance of Energy Consumption as Measure of Prosperity, Per Capita Energy Consumption, Classification of Energy Resources; Conventional Energy Resources -Availability and their limitations; Non-Conventional Energy Resources – Classification, Advantages, Limitations; Comparison of Conventional and Non-Conventional Energy Resources; World Energy Scenario; Indian Energy Scenario. 4 Hours

UNIT - 2

SOLAR ENERGY BASICS: Introduction, Solar Constant, Basic Sun-Earth Angles – definitions and their representation, Solar Radiation Geometry (numerical problems), Estimation of Solar Radiation of Horizontal and Tilted Surfaces (numerical problems); Measurement of Solar Radiation Data – Pyranometer and Pyrheliometer. **6 Hours**

UNIT - 3

SOLAR THERMAL SYSTEMS: Principle of Conversion of Solar Radiation into Heat, Solar WaterHeaters (Flat Plate Collectors), Solar Cookers – Box type, concentrating dish type, Solar driers, Solar Still,Solar Furnaces, Solar Green Houses.6 Hours

UNIT - 4

SOLAR ELECTRIC SYSTEMS: Solar Thermal Electric Power Generation – Solar Pond and Concentrating Solar Collector (parabolic trough, parabolic dish, Central Tower Collector). Advantages and Disadvantages; Solar Photovoltaic – Solar Cell fundamentals, characteristics, classification, construction of module, panel and array. Solar PV Systems – stand-alone and grid connected; Applications – Street lighting, Domestic lighting and Solar Water pumping systems. **7 Hours**

ENERGY STORAGE: Introduction, Necessity of Energy Storage, and Methods of Energy Storage (classification and brief description using block diagram representation only). **3 Hours**

PART - B

UNIT - 5

WIND ENERGY: Introduction, Wind and its Properties, History of Wind Energy, Wind Energy Scenario – World and India. Basic principles of Wind Energy Conversion Systems (WECS), Classification of WECS, Parts of WECS, Derivation for Power in the wind, Electrical Power Output and Capacity Factor of WECS, Wind site selection consideration, Advantages and Disadvantages of WECS. **8 Hours**

UNIT - 6

BIOMASS ENERGY: Introduction, Photosynthesis process, Biomass fuels, Biomass conversion technologies, Urban waste to Energy Conversion, Biomass Gasification, Biomass to Ethanol Production, Biogas production from waste biomass, factors affecting biogas generation, types of biogas plants – KVIC and Janata model; Biomass program in India. **6 Hours**

UNIT - 7

ENERGY FROM OCEAN: Tidal Energy – Principle of Tidal Power, Components of Tidal Power Plant (TPP), Classification of Tidal Power Plants, Estimation of Energy – Single basin and Double basin type TPP (no derivations. Simple numerical problems), Advantages and Limitations of TPP. Ocean Thermal Energy Conversion (OTEC): Principle of OTEC system, Methods of OTEC power generation – Open Cycle (Claude cycle), Closed Cycle (Anderson cycle) and Hybrid cycle (block diagram description of OTEC); Siteselection criteria, Biofouling, Advantages & Limitations of OTEC. **6 Hours**

UNIT - 8

EMERGING TECHNOLOGIES: Fuel Cell, Small Hydro Resources, Hydrogen Energy, and Wave Energy. (Principle of Energy generation using block diagrams, advantages and limitations). **6 Hours**

TEXT BOOKS:

- 1. Non-Conventional Sources of Energy, Rai, G. D, Khanna Publishers, 4th Edition, 2007
- 2. Non-Conventional Energy Resources, Khan, B. H., TMH, 2nd Edition.

REFERENCE BOOK:

1. **Fundamentals of Renewable Energy Systems,** Mukherjee, D and Chakrabarti, S., New Age International Publishers, 2005.

MATERIAL SCIENCE AND METALLURGY

Subject Code	: 10ME32A /42A	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Crystal Structure: BCC, FCC and HCP Structures, coordination number and atomic packing factors, crystal imperfections -point line and surface imperfections. Atomic Diffusion: Phenomenon, Ficks laws of diffusion, factors affecting diffusion.

06 Hours

UNIT - 2

Mechanical Behaviour: Stress-strain diagram showing ductile and brittle behaviour of materials, linear and non linear elastic behaviour and properties, mechanical properties in plastic range, yield strength offset yield strength, ductility, ultimate tensile strength, toughness. Plastic deformation of single crystal by slip and twinning.

06 Hours

Fracture: Type I, Type II and Type III.

Creep: Description of the phenomenon with examples. three stages of creep, creep properties, stress relaxation.

Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, fatigue properties, fatigue testing and S-N diagram.

07 Hours

UNIT - 4

Solidification: Mechanism of solidification, Homogenous and Heterogeneous nucleation, crystal growth, cast metal structures. Phase Diagram I: Solid solutions Hume Rothary rule substitutional, and interstitial solid solutions, intermediate phases, Gibbs phase rule.

07 Hours

PART - B

UNIT - 5

Phase Diagram II: Construction of equilibrium diagrams involving complete and partial solubility, lever rule. Iron carbon equilibrium diagram description of phases, solidification of steels and cast irons, invariant reactions.

06 Hours

UNIT - 6

Heat treating of metals: TTT curves, continuous cooling curves, annealing and its types. normalizing, hardening, tempering, martempering, austempering, hardenability, surface hardening methods like carburizing, cyaniding, nitriding, flame hardening and induction hardening, age hardening of aluminium-copper alloys.

07 Hours

UNIT - 7

Ferrous and non ferrous materials: Properties, Composition and uses of

- Grey cast iron, malleable iron, SG iron and steel
- Copper alloys-brasses and bronzes. Aluminium alloys-Al-Cu,Al-Si,Al-Zn alloys.

06 Hours

Composite Materials: Definition, classification, types of matrix materials & reinforcements, fundamentals of production of FRP's and MMC's advantages and application of composites.

07 Hours

TEXT BOOKS:

- 1. Foundations of Materials Science and Engineering, Smith, 4th Edition McGraw Hill, 2009
- 2. Materials Science, Shackleford., & M. K. Muralidhara, Pearson Publication 2007.

REFERENCE BOOKS:

- 1. An Introduction to Metallurgy; Alan Cottrell, Universities Press India Oriental Longman Pvt. Ltd., 1974.
- 2 Engineering Materials Science, W.C.Richards, PHI, 1965
- 3. Physical Metallurgy; Lakhtin, Mir Publications
- 4. Materials Science and Engineering, V.Raghavan, PHI, 2002
- 5. Elements of Materials Science and Engineering, H. VanVlack, Addison-Wesley Edn., 1998
- Materials Science and Engineering, William D. Callister Jr., John Wiley & Sons. Inc, 5th Edition, 2001.
- 7. **The Science and Engineering of Materials,** Donald R. Askland and Pradeep.P. Phule, Cengage Learning, 4^{lh} Ed., 2003.

MECHANICAL MEASUREMENTS AND METROLOGY

Subject Code	: 10ME32B /42B	IA Marks	: 25
Hours/Week	:04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT-1

Standards of measurement: Definition and Objectives of metrology, Standards of length-International prototype meter, Imperial standard yard, Wave length standard, subdivision of standards, line and

end standard, calibration of end bars (Numerical), Slip gauges, Wringing phenomena, Indian Standards (M-81, M-12), Numerical problems on building of slip gauges.

06 Hours

UNIT-2

System of Limits, Fits, Tolerance and Gauging: Definition of tolerance, Specification in assembly, Principle of interchangeability and selective assembly limits of size, Indian standards, concept of limits of size and tolerances, compound tolerances, accumulation of tolerances, definition of fits, types of fits and their designation (IS 919-1963), geometrical tolerance, positional-tolerances, hole basis system, shaft basis system, classification of gauges, brief concept of design of gauges (Taylor's principles), Wear allowance on gauges, Types of gauges-plain plug gauge, ring gauge, snap gauge, limit gauge and gauge materials.

07 Hours

UNIT-3

Comparators and Angular measurement: Introduction to comparators, characteristics, classification of comparators, mechanical comparators-Johnson Mikrokator, sigma comparators, dial indicator, optical comparators-principles, Zeiss ultra optimeter, electric and electronic comparators-principles, LVDT, pneumatic comparators, back pressure gauges, solex comparators. Angular measurements, bevel protractor, sine principle and use of sine bars, sine centre, use of angle gauges (numericals on building of angles), clinometers.

07 Hours

UNIT-4:

Interferometer and screw thread, gear measurement: Interferometer, interferometry, autocollimator. Optical flats. Terminology of screw threads, measurement of major diameter, minor diameter, pitch, angle and effective diameter of screw threads by 2 - wire and 3 -wire methods, best size wire. Tool maker's microscope, gear tooth terminology, use of gear tooth vernier caliper and micrometer.

06 Hours

UNIT-5:

Measurements and measurement systems: Definition, significance of measurement, generalized measurement system, definitions and concept of accuracy, precision, calibration, threshold, sensitivity, hysterisis, repeatability, linearity, loading effect, system response-times delay. Errors in measurement, classification of errors. Transducers, transfer efficiency, primary and secondary transducers, electrical, mechanical, electronic transducers, advantages of each type transducers.

07 Hours

UNIT-6

Intermediate modifying and terminating devices: Mechanical systems, inherent problems, electrical intermediate modifying devices, input circuitry, ballast circuit, electronic amplifiers and telemetry. Terminating devices, mechanical, cathode ray oscilloscope, oscillographs, X-Y plotters.

06 Hours

UNIT-7

Measurement of force, torque and pressure: Principle, analytical balance, platform balance, proving ring. Torque measurement, Prony brake, hydraulic dynamometer. Pressure measurements, principle, use of elastic members, Bridgeman gauge, McLeod gauge, Pirani gauge. 06 Hours

UNIT-8

Temperature and strain measurement: Resistance thermometers, thermocouple, law of thermo couple, materials used for construction, pyrometer, optical pyrometer. Strain measurements, strain gauge, preparation and mounting of strain gauges, gauge factor, methods of strain measurement.

07 Hours

TEXT BOOKS:

- Mechanical Measurements, Beckwith Marangoni and Lienhard, Pearson Education, 6th Ed., 2006.
- 2. Engineering Metrology, R.K. Jain, Khanna Publishers, 1994.

REFERENCE BOOKS:

- 1. **Engineering Metrology,** I.C. Gupta, Dhanpat Rai Publications, Delhi.
- 2. Mechanical Measurements, R.K. Jain Khanna Publishers, 1994
- 3. **Industrial Instrumentation,** Alsutko, Jerry. D. Faulk, Cengage Asia Pvt. Ltd. 2002.
- Measurement Systems Applications and Design, Ernest O. Doebelin, 5th Ed., McGraw Hill Book Co.
- 5. **Metrology & Measurement,** Anand K. Bewoor & Vinay A. Kulkarni, Tata McGraw Hill Pvt. Ltd., New-Delhi

MANUFACTURING PROCESS – I (FUNDAMENTALS OF FOUNDRY & WELDING)

Subject Code	: 10ME35	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART – A

CASTING PROCESS

UNIT - 1

Introduction: Concept of Manufacturing process, its importance. Classification of Manufacturing processes. Introduction to Casting process & steps involved. Varieties of components produced by casting process. Advantages & Limitations of casting process.

Patterns: Definition, functions, Materials used for pattern, various pattern allowances and their importance. Classification of patterns, BIS color coding of Patterns.

Binder: Definition, Types of binder used in moulding sand.

Additives: Need, Types of additives used and their properties..

06 Hours

UNIT - 2

Sand Moulding : Types of base sand, requirement of base sand. Moulding sand mixture ingredients for different sand mixtures. Method used for sand moulding, such as Green sand, dry sand and skin dried moulds.

Cores: Definition, Need, Types. Method of making cores, Binders used, core sand moulding.

Concept of Gating & Risers. Principle and types.

Fettling and cleaning of castings. Basic steps, Casting defects, Causes, features and remedies.

Moulding Machines : Jolt type, Squeeze type, Jolt & Squeeze type and Sand slinger.

07 Hours

Special moulding Process: Study of important moulding processes, No bake moulds, Flaskless moulds, Sweep mould, CO_2 mould, Shell mould, Investment mould.

Metal moulds: Gravity die-casting, Pressure die casting, Centrifugal casting, Squeeze Casting, Slush casting, Thixo-casting and Continuous Casting Processes.

07 Hours

UNIT - 4

Melting Furnaces: Classification of furnaces. Constructional features & working principle of coke fired, oil fired and Gas fired pit furnace, Resistance furnace, Coreless Induction furnace, Electric Arc Furnace, Cupola furnace.

06 Hours

PART – B

WELDING

UNIT - 5

Welding process: Definition, Principles, Classification, Application, Advantages & limitations of welding.

Arc Welding: Principle, Metal Arc welding (**MAW**), Flux Shielded Metal Arc Welding (**FSMAW**), Inert Gas Welding (**TIG & MIG**) Submerged Arc Welding (**SAW**) and Atomic Hydrogen Welding processes. (**AHW**)

Gas Welding: Principle, Oxy – Acetylene welding, Chemical Reaction in Gas welding, Flame characteristics. Gas torch construction & working. Forward and backward welding.

07 Hours

UNIT - 6

Special types of welding: Resistance welding - principles, Seam welding, Butt welding, Spot welding and projection welding.

Friction welding, Explosive welding, Thermit welding, Laser welding and Electron beam welding.

07 Hours

Metallurgical aspect, in welding : Structure of welds, Formation of different zones during welding. Heat affected zone (HAZ). Parameters affecting HAZ. Effect of carbon content on structure and properties of steel. Shrinkage in welds & Residual stresses.

Concept of electrodes, Filler rod and fluxes. Welding defects – Detection causes & remedy.

06 Hours

UNIT - 8

Principles of soldering & brazing: Parameters involved & Mechanism. Different Types of Soldering & Brazing Methods.

Inspection Methods – Methods used for Inspection of casting and welding. Visual, Magnetic particle, Fluorescent particle, Ultrasonic, Radiography, Eddy current, Holography methods of Inspection.

06 Hours

TEXT BOOKS:

- "Manufacturing Process-I", Dr.K.Radhakrishna, Sapna Book House, 5th Revised Edition 2009.
- "Manufacturing & Technology: Foundry Forming and Welding", P.N.Rao, 3rd Ed., Tata McGraw Hill, 2003.

REFERENCE BOOKS:

- 1. **"Process and Materials of Manufacturing**", Roy A Lindberg, 4th Ed. Pearson Edu. 2006.
- "Manufacturing Technology", Serope Kalpakjian, Steuen. R. Sechmid, Pearson Education Asia, 5th Ed. 2006.

COMPUTER AIDED MACHINE DRAWING

Subject Code	:10ME36A/10ME46A	IA Marks	25
Hours/Week	: 04(1 Hrs. Theory &	Exam Hours	03
	3 Hrs Practical)		
Total Hours	: 52	Exam Marks	100

Introduction:

Review of graphic interface of the software. Review of basic sketching commands and navigational commands. Starting a new drawing sheet. Sheet sizes. Naming a drawing, Drawing units, grid and snap.

02 Hours

PART-A

UNIT - 1

Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones and Cylinders resting only on their bases (No problems on axis inclinations, spheres and hollow solids). True shape of sections.

Orthographic Views: Conversion of pictorial views into orthographic projections. of <u>simple machine parts</u> with or without section. (Bureau of Indian Standards conventions are to be followed for the drawings) Hidden line conventions. Precedence of lines.

08 Hours

UNIT - 2

Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External) BSW (Internal & External) square and Acme. Sellers thread, American Standard thread.

Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper and split pin for locking, counter sunk head screw, grub screw, Allen screw.

08 Hours

PART-B

UNIT - 3
Keys & Joints :
Parallel key, Taper key, Feather key, Gibhead key and Woodruff key
Riveted Joints: Single and double riveted lap joints, butt joints with single/double cover straps (Chain and Zigzag, using snap head rivets). cotter joint (socket and spigot), knuckle joint (pin joint) for two rods.

08 Hours

UNIT - 4 Couplings:

Split Muff coupling, Protected type flanged coupling, pin (bush) type flexible coupling, Oldham's coupling and universal coupling (Hooks' Joint)

08 Hours

PART - C

Assembly Drawings (Part drawings should be given)

- 1. Plummer block (Pedestal Bearing)
- 2. Rams Bottom Safety Valve
- 3. I.C. Engine connecting rod
- 4. Screw jack (Bottle type)
- 5. Tailstock of lathe
- 6. Machine vice
- 7. Tool Head of a shaper

18 Hours

TEXT BOOKS:

- 1. 'A Primer on Computer Aided Machine Drawing-2007', Published by VTU, Belgaum.
- 2. 'Machine Drawing', N.D.Bhat & V.M.Panchal

REFERENCE BOOKS:

- 1. **'A Text Book of Computer Aided Machine Drawing'**, S. Trymbaka Murthy, CBS Publishers, New Delhi, 2007
- 2. 'Machine Drawing', K.R. Gopala Krishna, Subhash Publication.

- 3. **'Machine Drawing with Auto CAD**', Goutam Pohit & Goutham Ghosh, 1st Indian print Pearson Education, 2005
- 4. **'Auto CAD 2006, for engineers and designers'**, Sham Tickoo. Dream tech 2005
- 5. **'Machine Drawing'**, N. Siddeshwar, P. Kanniah, V.V.S. Sastri, published by Tata McGraw Hill,2006

NOTE:

Internal assessment: 25 Marks

All the sheets should be drawn in the class using software. Sheet sizes should be A3/A4. All sheets must be submitted at the end of the class by taking printouts.

Scheme of Examination:

Two questions to be set from each Part-A, Part-B and Part-C Student has to answer one question each from Part-A and Part-B for 20 marks each. And one question from Part-C for 60 marks.

> i.e. PART-A 1 x 20 = 20 Marks PART-B 1 x 20 = 20 Marks PART-C 1 x 60 = 60 Marks

> > Total = 100 Marks

FLUID MECHANICS

Subject Code	: 10ME36B / 46B	IA Marks	25
Hours/Week	: 04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT-1

Properties of Fluids: Introduction, Types of fluid, Properties of fluids, viscosity, thermodynamic properties, surface tension, capillarity, vapour pressure and cavitation

06 Hours

Fluid Statistics: Fluid pressure at a point, Pascal's law, pressure variation in a static fluid, absolute, gauge, atmospheric and vacuum pressures, simple manometers and differential manometers. Total pressure and center of pressure on submerged plane surfaces; horizontal, vertical and inclined plane surfaces, curved surface submerged in liquid.

UNIT-3

Buoyancy and Fluid Kinematics:

Buoyancy, center of buoyancy, metacentre and metacentric height, conditions of equilibrium of floating and submerged bodies, determination of Metacentric height experimentally and theoretically.

<u>Kinematics</u>: Types of fluid flow, continuity equation in 2D and 3D (Cartesian Co-ordinates only), velocity and acceleration, velocity potential function and stream function.

07 Hours

UNIT-4

Fluid Dynamics: Introduction equation of motion, Euler's equation of motion, Bernoulli's equation from first principles and also from Euler's equation, limitations of Bernoulli's equation.

06 Hours

PART-B

UNIT-5

Fluid Flow Measurements : Venturimeter, orificemeter, pitot-tube, vertical orifice, V-Notch and rectangular notches.

<u>Dimensional Analysis</u> : Introduction, derived quantities, dimensions of physical quantities, dimensional homogeneity, Rayleigh's method, Buckingham π theorem, dimensionless numbers, similitude, types of similitudes.

07 Hours

UNIT-6

Flow through pipes : Minor losses through pipes. Darey's and Chezy's equation for loss of head due to friction in pipes. HGL and TEL.

06 Hours
UNIT-7

Laminar flow and viscous effects : Reyonold's number, critical Reynold's number, laminar flow through circular pipe-Hagen Poiseille's equation, laminar flow between parallel and stationary plates.

06 Hours

UNIT-8

Flow past immersed bodies : Drag, Lift, expression for lift and drag, boundary layer concept, displacement, momentum and energy thickness. <u>Introduction to compressible flow</u> : Velocity of sound in a fluid, Mach number, Mach cone, propagation of pressure waves in a compressible fluid. 07 Hours

TEXT BOOKS:

- Fluid Mechanics, Oijush.K.Kundu, IRAM COCHEN, ELSEVIER, 3rd Ed. 2005.
- 2. Fluid Mechanics, Dr. Bansal, R.K.Lakshmi Publications, 2004.

REFERENCE BOOKS:

- 1. Fluid Mechanics and hydraulics, Dr.Jagadishlal: Metropolitan Book Co-Ltd., 1997.
- Fluid Mechanics (SI Units), Yunus A. Cengel John M.Oimbala, 2nd Ed., Tata McGraw Hill, 2006.
- 3. **Fluid Mechanics,** John F.Douglas, Janul and M.Gasiosek and john A.Swaffield, Pearson Education Asia, 5th ed., 2006
- 4. Fluid Mechanics and Fluid Power Engineering, Kumar.D.S, Kataria and Sons., 2004
- 5. Fluid Mechanics -. Merle C. Potter, Elaine P.Scott. Cengage learning

Subject Code	: 10MEL37A / 47A	IA Marks	: 25
Hours/Week	: 03	Exam Hours	: 03
Total Hours	: 48	Exam Marks	: 50

PART – A

- 1. Preparation of specimen for Metallograpic examination of different engineering materials. Identification of microstructures of plain carbon steel, tool steel, gray C.I, SG iron, Brass, Bronze & composites.
- 2. Heat treatment: Annealing, normalizing, hardening and tempering of steel. Hardness studies of heat-treated samples.
- 3. To study the wear characteristics of ferrous, non-ferrous and composite materials for different parameters.
- 4. Non-destructive test experiments like,
 - (a). Ultrasonic flaw detection
 - (b). Magnetic crack detection

(c). Dye penetration testing. To study the defects of Cast and Welded specimens

PART - B

- 1. Tensile, shear and compression tests of metallic and non metallic specimens using Universal Testing Machine
- 2. Torsion Test
- 3. Bending Test on metallic and nonmetallic specimens.
- 4. Izod and Charpy Tests on M.S, C.I Specimen.
- 5. Brinell, Rockwell and Vickers's Hardness test.
- 6. Fatigue Test.

Scheme of Examination:

ONE	question	from	part	-A:	20	Marks
ONE	question	from	part	-B:	20	Marks
Viva -	Voice:				10	Marks

Total: 50 Marks

MECHANICAL MEASUREMENTS AND METROLOGY LABORATORY

Subject Code	: 10MEL37B / 47B	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 48	Exam Marks	: 50

PART-A: MECHANICAL MEASUREMENTS

- 1. Calibration of Pressure Gauge
- 2. Calibration of Thermocouple
- 3. Calibration of LVDT
- 4. Calibration of Load cell
- 5. Determination of modulus of elasticity of a mild steel specimen using strain gauges.

PART-B: METROLOGY

- 1. Measurements using Optical Projector / Toolmaker Microscope.
- 2. Measurement of angle using Sine Center / Sine bar / bevel protractor
- 3. Measurement of alignment using Autocollimator / Roller set
- 4. Measurement of cutting tool forces using
 - a) Lathe tool Dynamometer
 - b) Drill tool Dynamometer.
- 5. Measurement of Screw thread Parameters using Two wire or Three-wire method.
- 6. Measurements of Surface roughness, Using Tally Surf/Mechanical Comparator
- 7. Measurement of gear tooth profile using gear tooth vernier /Geartooth micrometer
- 8. Calibration of Micrometer using slip gauges
- 9. Measurement using Optical Flats

Scheme of Examination:

ONE	question	from	part	-A:	20	Marks
ONE	question	from	part	-B:	20	Marks
Viva -	Voice:				10	Marks

Total: 50 Marks

FOUNDRY AND FORGING LABORATORY

Subject Code	: 10MEL38A / 48A	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 48	Exam Marks	: 50

PART – A

1. Testing of Moulding sand and Core sand

Preparation of sand specimens and conduction of the following tests:

- 1 Compression, Shear and Tensile tests on Universal Sand Testing Machine.
- 2 Permeability test

3 Core hardness & Mould hardness tests.

- 4 Sieve Analysis to find Grain Fineness number of Base Sand
- 5 Clay content determination in Base Sand

PART – B

2. Foundry Practice

Use of foundry tools and other equipments.

Preparation of moulds using two moulding boxes using patterns or without patterns. (Split pattern, Match plate pattern and Core boxes). Preparation of one casting (Aluminum or cast iron-Demonstration only)

PART - C

3. Forging Operations :

- Calculation of length of the raw material required to do the model.
- Preparing minimum three forged models involving upsetting, drawing and bending operations.
- Out of these three models, at least one model is to be prepared by using Power Hammer.

Scheme of Examination:

_

One question is to be set from Part-A:10 marksOne question is to be set from either70 marksPart-B or Part-C:30 marksCalculation part in case of forging is made compulsory

(Forging) Viva-Voce	Model .	10 marks	
Calculation	+ Forging =	= 05 + 25 = 30 Marks	
(Forging)	Model		
Calculation	+ Foundry =	= 05 + 25 = 30 Marks	

MACHINE SHOP

Subject Code	: 10MEL38B / 48B	IA Marks	: 25
Hours/Week	: 03	Exam Hours	: 03
Total Hours	: 48	Exam Marks	: 50

PART – A

Preparation of three models on lathe involving Plain turning, Taper turning, Step turning, Thread cutting, Facing, Knurling, Drilling, Boring, Internal Thread cutting and Eccentric turning.

PART – B

Cutting of V Groove/ dovetail / Rectangular groove using a shaper. Cutting of Gear Teeth using Milling Machine.

Scheme of Examination:

ONE question from part -A:30 MarksONE question from part -B:10 MarksViva -Voice:10 Marks

Total: 50 Marks

APPLIED THERMODYNAMICS

Subject Code	: 10ME43	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT - 1

Combustion thermodynamics: Theoretical (Stoichiometric) air and excess air for combustion of fuels. Mass balance, actual combustion. Exhaust gas analysis. A./ F ratio, Energy balance for a chemical reaction, enthalpy of formation, enthalpy and internal energy of combustion, Combustion efficiency, adiabatic flow temperature.

07 Hours

UNIT-2

Gas power cycle: Air Standard cycles: Carnot, Otto, Diesel, Dual and Stirling cycles, P-V and T-S diagrams, description, efficiencies and mean effective pressures, Comparison of Otto, Diesel and dual cycles.

06 Hours

UNIT - 3

I.C. Engine: Testing of two stroke and four stroke SI and CI engines for performance Related numerical problems, heat balance, Motoring Method, Willian's line method, swinging field dynamometer, Morse test.

06 Hours

UNIT - 4

Vapour Power Cycles: Carnot vapour power cycles, drawbacks as a reference cycle, Simple Rankine cycle, description, T- S diagram, analysis for performance, comparison of Carnot and Rankine cycles. Effects of pressure and temperature on Rankine cycle performance. Actual vapour power cycles. Ideal and practical regenerative Rankine cycle, open and closed feed water heaters, Reheat Rankine cycle.

07 Hours

PART-B

UNIT - 5

Reciprocating Compressors: Operation of a single stage reciprocating compressors, work input through P-V diagram and steady state steady flow analysis. Effect of clearance and volumetric efficiency. Adiabatic, isothermal and mechanical efficiencies. Multistage compressor, saving in work, optimum intermediate pressure, inter- cooling, minimum work for compression.

06 Hours

UNIT - 6

Gas turbine and Jet propulsion: Classification of Gas turbines, Analysis of open cycle gas turbine cycle. Advantages and disadvantages of closed cycle. Methods to improve thermal efficiency, Jet propulsion and Rocket propulsion.

07 Hours

UNIT - 7

Refrigeration: Vapour compression refrigeration system ; description, analysis, refrigerating effect, capacity, power required, units of refrigeration, COP, Refrigerants and their desirable properties. Air cycle refrigeration;

reversed Carnot cycle, reversed Brayton cycle, Vapour absorption refrigeration system, steam jet refrigeration.

06 Hours

UNIT - 8

Psychometry: Atmospheric air and psychometric properties; Dry bulb temperature, wet bulb temperature, dew point temperature; partial pressures, specific and relative humidities and the relation between the two enthalpy and adiabatic saturation temperature. Construction and use of psychometric chart . Analysis of various processes; heating, cooling , dehumidifying and humidifying. Adiabatic mixing of moist air. Summer and winter air conditioning.

07 Hours

Data Hand Book :

- 1. Thermodynamic data hand book, B.T. Nijaguna.
- 2. **Properties of Refrigerant & Psychometric** (tables & Charts in SI Units), Dr. S.S. Banwait, Dr. S.C. Laroiya, Birla Pub. Pvt. Ltd., Delhi, 2008

TEXT BOOKS:

- 1. **Basic and applied Thermodynamics**, P.K. Nag, 2nd Ed., Tata McGraw Hill Pub.Co,2002
- 2. Applied Thermodynamics, Rajput, Laxmi Publication
- 3. **Applied Thermodynamics**, B.K. Venkanna, Swati B. Wadavadagi, PHI, New Delhi, 2010

REFERENCE BOOKS:

- Thermodynamics, An engineering approach, Yunus, A. Cengel and Michael A.Boies, 6th Ed., Tata McGraw Hill pub. Co., 2002,
- 2. **Fundamental of Classical Thermodynamics,** G.J. Van Wylen and R.E. Sontang Wiley eastern.

KINEMATICS OF MACHINES

Subject Code	: 10ME44	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

$\boldsymbol{P}\boldsymbol{A}\boldsymbol{R}\boldsymbol{T}-\boldsymbol{A}$

UNIT - 1

Introduction: Definitions Link or element, kinematic pairs, Degrees of freedom, Grubler's criterion (without derivation), Kinematic chain, Mechanism, Structure, Mobility of Mechanism, Inversion, Machine.

Kinematic Chains and Inversions: Inversions of Four bar chain; Single slider crank chain and Double slider crank chain.

07 Hours

UNIT - 2

Mechanisms: Quick return motion mechanisms-Drag link mechanism, Whitworth mechanism and Crank and slotted lever Mechanism.

Straight line motion mechanisms Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisms -Geneva wheel mechanism and Ratchet and Pawl mechanism. Toggle mechanism, Pantograph, Ackerman steering gear mechanism.

06 Hours

UNIT - 3

Velocity and Acceleration Analysis of Mechanisms (Graphical Methods) Velocity and acceleration analysis of Four Bar mechanism, slider crank mechanism and Simple Mechanisms by vector polygons: Relative velocity and acceleration of particles in a common link, relative velocity and accelerations of coincident Particles on separate links- Coriolis component of acceleration. Angular velocity and angular acceleration of links, velocity of rubbing.

07 Hours

UNIT - 4

Velocity Analysis by Instantaneous Center Method: Definition, Kennedy's Theorem, Determination of linear and angular velocity using instantaneous center method

Klein's Construction: Analysis of velocity and acceleration of single slider crank mechanism.

06 Hours

PART – B

UNIT - 5

Velocity and Acceleration Analysis of Mechanisms (Analytical Methods): Analysis of four bar chain and slider crank chain using analytical expressions. (Use of complex algebra and vector algebra)

06 Hours

UNIT - 6

Spur Gears: Gear terminology, law of gearing, Characteristics of involute action, Path of contact. Arc of contact, Contact ratio of spur, helical, bevel and worm gears, Interference in involute gears. Methods of avoiding interference, Back lash. Comparison of involute and cycloidal teeth. Profile Modification.

07 Hours

UNIT - 7

Gear Trains: Simple gear trains, Compound gear trains for large speed. reduction, Epicyclic gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load and torque calculations in epicyclic gear trains.

07 Hours

UNIT - 8

Cams: Types of cams, Types of followers. Displacement, Velocity and, Acceleration time curves for cam profiles. Disc cam with reciprocating follower having knife-edge, roller and flat-face follower, Disc cam with oscillating roller follower. Follower motions including SHM, Uniform velocity, uniform acceleration and retardation and Cycloidal motion.

06 Hours

TEXT BOOKS:

- 1. **"Theory of Machines"**, Rattan S.S, Tata McGraw-Hill Publishing Company Ltd., New Delhi, and 3rd edition -2009.
- 2. **"Theory of Machines",** Sadhu Singh, Pearson Education (Singapore) Pvt. Ltd, Indian Branch New Delhi, 2nd Edi. 2006

REFERENCE BOOKS:

- 1. **"Theory of Machines & Mechanisms**", J.J. Uicker, , G.R. Pennock, J.E. Shigley. OXFORD 3rd Ed. 2009.
- 2. Mechanism and Machine theory, Ambekar, PHI, 2007

Graphical Solutions may be obtained either on the Graph Sheets or on the Answer Book itself.

MANUFACTURING PROCESS – II (Metal Removing Process)

Subject Code	: 10ME45	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Theory of Metal Cutting: Single point cutting tool nomenclature, geometry. Mechanics of Chip Formation, Types of Chips. Merchants circle diagram and analysis, Ernst Merchant's solution, shear angle relationship, problems of Merchant's analysis. Tool Wear and Tool failure, tool life. Effects of cutting parameters on tool life. Tool Failure Criteria, Taylor's Tool Life equation. Problems on tool life evaluation.

07 Hours

UNIT - 2

Cutting Tool Materials: Desired properties and types of cutting tool materials – HSS, carbides coated carbides, ceramics. Cutting fluids. Desired properties, types and selection. Heat generation in metal cutting, factors

affecting heat generation. Heat distribution in tool and work piece and chip. Measurement of tool tip temperature.

07 Hours

UNIT - 3

Turning (Lathe), Shaping and Planing Machines: Classification, constructional features of Turret and Capstan Lathe. Tool Layout, shaping Machine, Planing Machine, Driving mechanisms of lathe, shaping and planing machines, Different operations on lathe, shaping machine and planing machine. Simple problems on machining time calculations

07 Hours

UNIT - 4

Drilling machines: Classification, constructional features, drilling & related operations. Types of drill & drill bit nomenclature, drill materials. Introduction to CNC machines- Principles of operation. Axes of NC machine-Coordinate systems. Basics of Manual part programming methods.

06 Hours

PART - B

UNIT - 5

Milling machines: Classification, constructional features, milling cutters nomenclature, milling operations, up milling and down milling concepts. Various milling operations.

Indexing: Simple, compound, differential and angular indexing calculations. Simple problems on simple and compound indexing.

06 Hours

UNIT - 6

Grinding machines: Types of abrasives, Grain size, bonding process, grade and structure of grinding wheels, grinding wheel types. Classification, constructional features of grinding machines (Centerless, cylindrical and surface grinding). Selection of grinding wheel. Grinding process parameters. Dressing and truing of grinding wheels.

07 Hours

UNIT - 7:

Broaching process - Principle of broaching. Details of a broach. Types of broaching machines-constructional details. Applications. Advantages and Limitations.

Finishing and other Processes Lapping and Honing operations – Principles, arrangement of set up and application. Super finishing process, polishing, buffing operation and application.

06 Hours

UNIT - 8

Non-traditional machining processes: Need for non traditional machining, Principle, equipment & operation of Laser Beam, Plasma Arc Machining, Electro Chemical Machining, Ultrasonic Machining, Abrasive Jet Machining, Water Jet Machining, Electron Beam Machining, Electron Discharge Machining and Plasma Arc Machining.

06 Hours

TEXT BOOKS:

- 1. Workshop Technology, Hazara Choudhry, Vol-II, Media Promoters & Publishers Pvt. Ltd. 2004
- 2. Production Technology, R.K.Jain, Khanna Publications, 2003.
- 3. Production Technology, HMT, Tata Mc Graw Hill, 2001.

REFERENCE BOOKS:

- 1. **Manufacturing Science**, Amitabha Ghosh and Mallik, affiliated East West Press, 2003.
- 2. Fundamentals of Metal Machining and Machine Tools, G. Boothroyd, McGraw Hill, 2000.

DESIGN OF MACHINE ELEMENTS-I

Subject Code	: 10ME52	IA Marks	25
Hours/Week	:04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT-1

Introduction: Definitions: normal, shear, biaxial and tri axial stresses, Stress tensor, Principal Stresses. Engineering Materials and their mechanical properties, Stress-Strain diagrams, Stress Analysis, Design considerations: Codes and Standards.

05 Hours

06 Hours

08 Hours

07 Hours

PART – B

UNIT - 5

Design Of Shafts: Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for power transmission shafting, shafts under fluctuating loads and combined loads.

07 Hours

UNIT - 6

Cotter And Knuckle Joints, Keys And Couplings: Design of Cotter and Knuckle joints, Keys: Types of keys, Design of keys, Couplings: Rigid and flexible couplings, Flange coupling, Bush and Pin type coupling and Oldham's coupling.

07 Hours

48

Design For Static & Impact Strength:

Static Strength: Static loads and factor of safety, Theories of failure: Maximum normal stress theory, Maximum shear stress theory, Maximum strain theory, Strain energy theory, Distortion energy theory. Failure of brittle and ductile materials, Stress concentration, Determination of Stress concentration factor.

Impact Strength: Introduction, Impact stresses due to axial, bending and torsional loads, effect of inertia.

UNIT - 3

UNIT-2

Design For Fatigue Strength: Introduction- S-N Diagram, Low cycle fatigue, High cycle fatigue, Endurance limit, Modifying factors: size effect, surface effect, Stress concentration effects, Fluctuating stresses, Goodman and Soderberg relationship, stresses due to combined loading, cumulative fatigue damage.

UNIT - 4

Threaded Fasteners: Stresses in threaded fasteners, Effect of initial tension, Design of threaded fasteners under static, dynamic and impact loads, Design of eccentrically loaded bolted joints.

UNIT - 7

Riveted and Welded Joints – Types, rivet materials, failures of riveted joints, Joint Efficiency, Boiler Joints, Lozanze Joints, Riveted Brackets. Welded Joints – Types, Strength of butt and fillet welds, eccentrically loaded welded joints.

07 Hours

UNIT - 8

Power Screws: Mechanics of power screw, Stresses in power screws, efficiency and self-locking, Design of Power Screw, Design of Screw Jack: (Complete Design).

05 Hours

TEXT BOOKS:

- 1. Mechanical Engineering Design, Joseph E Shigley and Charles R. Mischke. McGraw Hill International edition, 6th Edition 2009.
- **2. Design of Machine Elements,** V.B. Bhandari, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2nd Edition 2007.

DESIGN DATA HANDBOOK:

- 1. **Design Data Hand Book,** K. Lingaiah, McGraw Hill, 2nd Ed.
- 2. **Data Hand Book,** K. Mahadevan and Balaveera Reddy, CBS Publication
- 3. **Design Data Hand Book,** H.G. Patil, I. K. International Publisher, 2010.

REFERENCE BOOKS:

- 1. Machine Design, Robert L. Norton, Pearson Education Asia, 2001.
- Design of Machine Elements, M. F. Spotts, T. E. Shoup, L. E. Hornberger, S. R. Jayram and C. V. Venkatesh, Pearson Education, 2006.
- Machine Design, Hall, Holowenko, Laughlin (Schaum's Outlines series) Adapted by S.K. Somani, Tata McGraw Hill Publishing Company Ltd., New Delhi, Special Indian Edition, 2008.
- Fundamentals of Machine Component Design, Robert C. Juvinall and Kurt M Marshek, Wiley India Pvt. Ltd., New Delhi, 3rd Edition, 2007.

Subject Code	: 10ME53	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Steam Power Plant: Different Types of Fuels used for steam generation, Equipment for burning coal in lump form, strokers, different types, Oil burners, Advantages and Disadvantages of using pulverized fuel, Equipment for preparation and burning of pulverized coal, unit system and bin system. Pulverized fuel furnaces, cyclone furnace, Coal and ash handling, Generation of steam using forced circulation, high and supercritical pressures.

07 Hours

UNIT - 2

A Brief Account Of Benson, Velox Schmidt Steam Generators. Chimneys: Natural, forced, induced and balanced draft, Calculations and numericals involving height of chimney to produce a given draft. Cooling towers and Ponds. Accessories for the Steam generators such as Superheaters, De-superheater, control of superheaters, Economizers, Air preheaters and re-heaters.

07 Hours

UNIT - 3

Diesel Engine Power Plant: Applications of Diesel Engines in Power field. Method of starting Diesel engines. Auxiliaries like cooling and lubrication system, filters, centrifuges, Oil heaters, intake and exhaust system, Layout of diesel power plant.

06 Hours

UNIT - 4

Hydro-Electric Plants: Hydrographs, flow duration and mass curves, unit hydrograph and numericals. Storage and pondage, pumped storage plants,

low, medium and high head plants, Penstock, water hammer, surge tanks, gates and valves. General layout of hydel power plants.

06 Hours

PART - B

UNIT - 5

Nuclear Power Plant: Principles of release of nuclear energy; Fusion and fission reactions. Nuclear fuels used in the reactors. Multiplication and thermal utilization factors. Elements of the nuclear reactor; moderator, control rod, fuel rods, coolants. Brief description of reactors of the following types-Pressurized water reactor, Boiling water reactor, Sodium graphite reactor, Fast Breeder reactor, Homogeneous graphite reactor and gas cooled reactor, Radiation hazards, Shieldings, Radio active waste disposal.

06 Hours

UNIT - 6

Solar Energy: Solar Extra terrestrial radiation and radiation at the earth surface, radiation-measuring instruments, working principles of solar flat plate collectors, solar pond and photovoltaic conversion (Numerical Examples).

Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, coefficient of performance of a wind mill rotor (Numerical Examples).

08 Hours

UNIT - 7

Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations.

Ocean Thermal Energy Conversion: Principle of working, Rankine cycle, problems associated with OTEC.

Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, problems associated with geothermal conversion, scope of geothermal energy.

06 Hours

UNIT - 8

Energy From Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation.

Bio Chemical Route: Biogas production from organic wastes by anaerobic fermentation, classification of bio gas plants, factors affecting bio gas generation.

Thermo Chemical Route: Thermo chemical conversion on bio mass, types of gasifiers.

06 Hours

TEXT BOOKS:

- 1. **Power Plant Engineering**, P. K. Nag Tata McGraw Hill 2nd edn 2001.
- 2. Power Plant Engineering, Domakundawar, Dhanpath Rai sons. 2003

REFERENCE BOOKS:

- 1. **Power Plant Engineering,** R. K. Rajput, Laxmi publication, New Delhi.
- 2. Principles of Energy conversion, A. W. Culp Jr., McGraw Hill. 1996
- 3. Non conventional Energy sources, G D Rai Khanna Publishers.
- 4. Non conventional resources, B H Khan TMH 2007

1.

MANUFACTURING PROCESS - III

(METAL FORMING PROCESS)

Subject Code	: 10ME55	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction And Concepts: Classification of metal working processes, characteristics of wrought products, advantages and limitations of metal working processes.Concepts of true stress, true strain, triaxial & biaxial

stresses. Determination of flow stress. Principal stresses, Tresca & Von-Mises yield criteria, concepts of plane stress & plane strain.

06 Hours

UNIT - 2

Effects Of Parameters: Temperature, strain rate, friction and lubrication, hydrostatic pressure in metalworking, Deformation zone geometry, workability of materials, Residual stresses in wrought products.

06 Hours

UNIT - 3

Forging: Classification of forging processes. Forging machines & equipment. Expressions for forging pressures & load in open die forging and closed die forging by slab analysis, concepts of friction hill and factors affecting it. Die-design parameters. Material flow lines in forging. Forging defects, Residual stresses in forging. Simple problems.

07 Hours

UNIT - 4

Rolling: Classification of Rolling processes. Types of rolling mills, expression for Rolling load. Roll separating force. Frictional losses in bearing, power required in rolling, Effects of front & back tensions, friction, friction hill. Maximum possible reduction. Defects in rolled products. Rolling variables, simple problems.

06 Hours

PART - B

UNIT - 5

Drawing: Drawing equipment & dies, expression for drawing load by slab analysis, power requirement. Redundant work and its estimation, optimal cone angle & dead zone formation, drawing variables, Tube drawing, classification of tube drawing, simple problems.

07 Hours

UNIT - 6

Extrusion: Types of extrusion processes, extrusion equipment & dies, deformation, lubrication & defects in extrusion. Extrusion dies, Extrusion of seamless tubes. Extrusion variables, simple problem

06 Hours

UNIT - 7

Sheet & Metal Forming: Forming methods, dies & punches, progressive die, compound die, combination die. Rubber forming. Open back inclinable press (OBI press), piercing, blanking, bending, deep drawing, LDR in drawing, Forming limit criterion, defects of drawn products, stretch forming. Roll bending & contouring, Simple problems

06 Hours

UNIT - 8

High Energy Rate Forming Methods: Principles, advantages and applications, explosive forming, electro hydraulic forming, Electromagnetic forming.

Powder Metallurgy: Basic steps in Powder metallurgy brief description of methods of production of metal powders, conditioning and blending powders, compaction and sintering application of powder metallurgy components, advantages and limitations.

07 Hours

TEXT BOOKS:

- 1. **Mechanical metallurgy (SI units),** G.E. Dieter, Mc Graw Hill pub.2001
- Manufacturing Process III, Dr. K.Radhakrishna, Sapna Book House, 2009.

REFERENCE BOOKS:

- 1. **Materials and Processes in Manufacturing,** E.paul, Degramo, J.T. Black, Ronald, A.K. Prentice -hall of India 2002
- 2. **Principles of Industrial metal working process,** G.W. Rowe, CBSpub. 2002
- Manufacturing Science, Amitabha Ghosh & A.K. Malik East -Westpress 2001
- 4. Technology of Metal Forming Process, Surendra kumar, PHI 2008

FLUID MECHANICS AND MACHINES LABORATORY

Subject Code	: 10MEL57	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

1. Determination of coefficient of friction of flow in a pipe.

2. Determination of minor losses in flow through pipes.

3. Determination of force developed by impact of jets on vanes.

4. Calibration of flow measuring devices

- a. Orifice Plate meter
- b. Nozzle
- c. Venturimeter
- d. V-notch

18 Hours

24 Hours

PART - B

5. Performance testing of Turbines

- a. Pelton wheel
- b. Francis Turbine
- c. Kaplan Turbines

6. Performance testing of Pumps

- a. Single stage / Multi stage centrifugal pumps
- b. Reciprocating pump
- 7. Performance test of a two stage Reciprocating Air Compressor
- 8. Performance test on an Air Blower

Scheme for Examination:

One Question from Part A	-	15 Marks (05 Writeup + 10)
One Question from Part B	-	25 Marks (05 Writeup + 20)
Viva-Voce	-	10 Marks

Total

50 Marks

ENERGY CONVERSION ENGINEERING LABORATORY

Subject Code	: 10MEL58	IA Marks	: 25
Hours/Week	:03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

1. Determination of Flash point and Fire point of lubricating oil using Abel Pensky and Marten's (closed) / Cleavland's (Open Cup) Apparatus.

- 2. Determination of Calorific value of solid, liquid and gaseous fuels.
- 3. Determination of Viscosity of a lubricating oil using Redwoods, Saybolt and Torsion Viscometers.
- 4. Valve Timing/port opening diagram of an I.C. engine (4 stroke/2 stroke).
- 5. Use of planimeter

21 Hours

PART - B

- 1. Performance Tests on I.C. Engines, Calculations of IP, BP, Thermal efficiencies, Volumetric efficiency, Mechanical efficiency, SFC, FP, A:F Ratio heat balance sheet for
 - (a) Four stroke Diesel Engine
 - (b) Four stroke Petrol Engine
 - (c) Multi Cylinder Diesel/Petrol Engine, (Morse test)
 - (d) Two stroke Petrol Engine
 - (e) Variable Compression Ratio I.C. Engine.

21 Hours

Scheme for Examination:

Total		50 Marks
Viva-Voce	-	10 Marks
One Question from Part B	-	25 Marks (05 Writeup+20)
One Question from Part A	-	15 Marks (05 Writeup+10)

COMPUTER INTEGRATED MANUFACTURING

Subject Code	: 10ME61	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT - 1

Computer Integrated Manufacturing Systems: Introduction, Automation definition, Types of automation, CIM, processing in manufacturing, Production concepts, Mathematical Models-Manufacturing lead time, production rate, components of operation time, capacity, Utilization and availability, Work-in-process, WIP ratio, TIP ratio, Problems using mathematical model equations.

8 Hours

UNIT - 2

High Volume Production System: Introduction Automated flow linesymbols, objectives, Work part transport-continuous, Intermittent, synchronous, Pallet fixtures, Transfer Mechanism-Linear-Walking beam,. roller chain drive, Rotary-rack and pinion, Rachet & Pawl, Geneva wheel, Buffer storage, control functions-sequence, safety, Quality, Automation for machining operation.

6 Hours

UNIT - 3

Analysis Of Automated Flow Line & Line Balancing: General terminology and analysis, Analysis of Tranfer Line without storage upper bound approach, lower bound approach and problems, Analysis of Transfer lines with storage buffer, Effect of storage, buffer capacity with simple problem, Partial automation-with numerical problems, flow lines with more than two stages, Manual Assembly lines, line balancing problem.

6 Hours

UNIT - 4

Minimum Rational Work Element: Work station process time, Cycle time, precedence constraints. Precedence diagram, Balance delay methods of line balancing-largest Candidate rule, Kilbridge and Westers method, Ranked positional weight method, Numerical problems covering all above methods and computerized line balancing.

6 Hours

PART-B

UNIT - 5

Automated Assembly Systems: Design for automated assembly systems, types of automated assembly system, Parts feeding devices-elements of parts delivery system-hopper, part feeder, Selectors, feed back, escapement and placement analysis of Multistation Assembly Machine analysis of single station assembly. Automated Guided Vehicle System: Introduction, Vehicle guidance and routing, System management, Quantitative analysis of AGV's with numerical problems and application.

8 Hours

UNIT - 6

Computerized Manufacturing Planning System: Introduction, Computer Aided Process Planning, Retrieval types of process planning, Generative type of process planning, Material requirement planning, Fundamental concepts of MRP inputs to MRP, Capacity planning.

6 Hours

UNIT - 7

Cnc Machining Centers: Introduction to CNC, elements of CNC, CNC machining centers, part programming, fundamental steps involved in development of part programming for milling and turning.

6 Hours

UNIT - 8

Robotics: Introduction to Robot configuration, Robot motion, programming of Robots end effectors, Robot sensors and Robot applications.

6 Hours

TEXT BOOKS:

- 2. Automation, Production system & Computer Integrated manufacturing, M. P. Groover Person India, 2007 2nd edition.
- 3. **Principles of Computer Integrated Manufacturing**, S. Kant Vajpayee, Prentice Hall India.

REFERENCE BOOKS:

- 1. **Computer Integrated Manufacturing**, J. A. Rehg & Henry. W. Kraebber.
- 2. CADICAM by Zeid, Tata McGraw Hill.

S

DESIGN OF MACHINE ELEMENTS – II

Total Hours	: 52	Exam Marks	100
Hours/Week	: 04	Exam Hours	03
Subject Code	: 10ME62	IA Marks	25

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Curved Beams: Stresses in curved beams of standard cross sections used in crane hook, punching presses & clamps, closed rings and links **Cylinders & Cylinder Heads**: Review of Lame's Equations; compound cylinders, stresses due to different types of fits, cylinder heads, flats.

08 Hours

UNIT - 2

Belts Ropes and Chains: Flat belts: Length & cross section, Selection of V-belts, ropes and chains for different applications.

05 Hours

UNIT - 3

Springs: Types of springs - stresses in Helical coil springs of circular and non-circular cross sections. Tension and compression springs, springs under fluctuating loads, Leaf Springs: Stresses in leaf springs.

Equalized stresses, Energy stored in springs, Torsion, Belleville and Rubber springs.

08 Hours

UNIT - 4

Spur & Helical Gears: Spur Gears: Definitions, stresses in gear tooth: Lewis equation and form factor, Design for strength, Dynamic load and wear load. Helical Gears: Definitions, formative number of teeth, Design based on strength, dynamic and wear loads.

07 Hours

PART – B

UNIT - 5

Bevel and Worm Gears: Bevel Gears: Definitions, formative number of teeth, Design based on strength, dynamic and wear loads. Worm Gears: Definitions, Design based on strength, dynamic, wear loads and efficiency of worm gear drives.

07 Hours

UNIT - 6

Clutches & Brakes: Design of Clutches: Single plate, multi plate and cone clutches. Design of Brakes: Block and Band brakes: Self locking of brakes: Heat generation in Brakes.

05 Hours

UNIT - 7

Lubrication and Bearings: Lubricants and their properties, Mechanisms of Lubrication bearing modulus, coefficient of friction, minimum oil film thickness, Heat Generated, Heat dissipated, Bearing Materials, Examples of journal bearing and thrust bearing design.

07 Hours

UNIT - 8

IC Engine Parts: Design of piston, connecting rod and crank shaft.

05 Hours

DESIGN DATA HANDBOOK:

- 1. **Design Data Hand Book**, K. Lingaiah, McGraw Hill, 2nd Ed.
- 2. **Data Hand Book,** K. Mahadevan and Balaveera Reddy, CBS Publication
- 3. **Design Data Hand Book,** H.G. Patil, I. K. International Publisher, 2010.

TEXT BOOKS:

- 1. Mechanical Engineering Design, Joseph E Shigley and Charles R. Mischke. McGraw Hill International edition, 6th Edition 2003.
- 2. Design of Machine Elements, V. B Bhandari, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2nd Edition 2007

REFERNCE BOOKS:

- 1. Machine Design, Robert L. Norton, Pearson Education Asia, 2001.
- Design of Machine Elements, M. F. Spotts, T. E. Shoup, L. E. Hornberger, S. R. Jayram and C. V. Venkatesh, Pearson Education, 2006.
- 3. Machine Design, Hall, Holowenko, Laughlin (Schaum's Outlines series) Adapted by S.K. Somani, Tata McGraw Hill Publishing Company Ltd., New Delhi, Special Indian Edition, 2008.
- 4. Machine Design, A CAD Approach: Andrew D DIMAROGONAS, John Wiley Sons, Inc, 2001.

HEAT AND MASS TRANSFER

Subject Code	: 10ME63	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Introductory Concepts And Definitions: Modes of heat transfer: Basic laws governing conduction, convection, and radiation heat transfer; Thermal conductivity; convective heat transfer coefficient; radiation heat transfer;

combined heat transfer mechanism. Boundary conditions of $1^{\,\rm st},\,2^{nd}$ and 3^{rd} kind

Conduction: Derivation of general three dimensional conduction equation in Cartesian coordinate, special cases, discussion on 3-D conduction in cylindrical and spherical coordinate systems (No derivation). One dimensional conduction equations in rectangular, cylindrical and spherical coordinates for plane and composite walls. Overall heat transfer coefficient. Thermal contact resistance.

07 Hours

UNIT - 2

Variable Thermal Conductivity: Derivation for heat flow and temperature distribution in plane wall. Critical thickness of insulation without heat generation, Thermal resistance concept & its importance. Heat transfer in extended surfaces of uniform cross-section without heat generation, Long fin, short fin with insulated tip and without insulated tip and fin connected between two heat sources. Fin efficiency and effectiveness. Numerical problems.

06 Hours

UNIT - 3

One-Dimensional Transient Conduction: Conduction in solids with negligible internal temperature gradient (Lumped system analysis), Use of Transient temperature charts (Heisler's charts) for transient conduction in slab, long cylinder and sphere; use of transient temperature charts for transient conduction in semi-infinite solids. Numerical Problems.

06 Hours

UNIT - 4

Concepts And Basic Relations In Boundary Layers: Flow over a body velocity boundary layer; critical Reynolds number; general expressions for drag coefficient and drag force; thermal boundary layer; general expression for local heat transfer coefficient; Average heat transfer coefficient; Nusselt number. Flow inside a duct- velocity boundary layer, hydrodynamic entrance length and hydro dynamically developed flow; flow through tubes (internal flow discussion only). Numericals based on empirical relation given in data handbook.

Free Or Natural Convection: Application of dimensional analysis for free convection- physical significance of Grashoff number; use of correlations of free convection in vertical, horizontal and inclined flat plates, vertical and horizontal cylinders and spheres, Numerical problems.

07 Hours

PART – B

UNIT - 5

Forced Convections: Applications of dimensional analysis for forced convection. Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. Use of various correlations for hydro dynamically and thermally developed flows inside a duct, use of correlations for flow over a flat plate, over a cylinder and sphere. Numerical problems.

06 Hours

UNIT - 6

Heat Exchangers: Classification of heat exchangers; overall heat transfer coefficient, fouling and fouling factor; LMTD, Effectiveness-NTU methods of analysis of heat exchangers. Numerical problems.

06 Hours

UNIT - 7

Condensation And Boiling: Types of condensation (discussion only) Nusselt's theory for laminar condensation on a vertical flat surface; use of correlations for condensation on vertical flat surfaces, horizontal tube and horizontal tube banks; Reynolds number for condensate flow; regimes of pool boiling, pool boiling correlations. Numerical problems. Mass transfer definition and terms used in mass transfer analysis, Ficks First law of diffusion (no numericals).

07 Hours

UNIT - 8

Radiation Heat Transfer: Thermal radiation; definitions of various terms used in radiation heat transfer; Stefan-Boltzman law, Kirchoff's law, Planck's law and Wein's displacement law. Radiation heat exchange between two parallel infinite black surfaces, between two parallel infinite gray surfaces; effect of radiation shield; intensity of radiation and solid angle;

Lambert's law; radiation heat exchange between two finite surfacesconfiguration factor or view factor. Numerical problems.

07 Hours

TEXT BOOKS:

- 1. Heat & Mass transfer, Tirumaleshwar, Pearson education 2006
- 2. Heat transfer-A basic approach, Ozisik, Tata McGraw Hill 2002

REFERENCE BOOKS:

- 1. **Heat transfer, a practical approach,** Yunus A- Cengel Tata Mc Graw Hill
- 2. Principles of heat transfer, Kreith Thomas Learning 2001
- 3. **Fundamentals of heat and mass transfer,** Frenk P. Incropera and David P. Dewitt, John Wiley and son's.
- 4. Heat transfer, P.K. Nag, Tata McGraw Hill 2002.

FINITE ELEMENT METHODS

Subject Code	: 10ME64	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT-1

Introduction: Equilibrium equations in elasticity subjected to body force, traction forces, and stress-strain relations for plane stress and plane strains. General description of Finite Element Method, Application and limitations. Types of elements based on geometry. Node numbering, Half band width.

07 Hours

UNIT-2

Basic Procedure: Euler - Lagrange equation for bar, beam (cantilever / simply supported fixed) Principle of virtual work, principle of minimum potential energy, Raleigh's Ritz method. Direct approach for stiffness matrix formulation of bar element. Galerkin's method.

07 Hours

UNIT-3

Interpolation Models: Interpolation polynomials- Linear, quadratic and cubic. Simplex complex and multiplex elements. 2D PASCAL's triangle. CST elements-Shape functions and Nodal load vector, Strain displacement matrix and Jacobian for triangular and rectangular element.

07 Hours

UNIT-4

Solution of 1-D Bars: Solutions of bars and stepped bars for displacements, reactions and stresses by using penalty approach and elimination approach. Guass-elimination technique.

06 Hours

PART-B

UNIT-5

Higher Order Elements: Langrange's interpolation, Higher order one dimensional elements-Quadratic and cubic element and their shape functions. Shape function of 2-D quadrilateral element-linear, quadric element Isoparametric, Sub parametric and Super parametric elements. numerical integration : 1, 2 and 3 gauge point for 1D and 2D cases.

06 Hours

UNIT-6

Trusses: Stiffness matrix of Truss element. Numerical problems.

06 Hours

UNIT-7

Beams: Hermite shape functions for beam element, Derivation of stiffness matrix. Numerical problems of beams carrying concentrated, UDL and linearly varying loads.

06 Hours

UNIT-8

Heat Transfer: Steady state heat transfer, 1D heat conduction governing equations. Functional approach for heat conduction. Galerkin's approach for heat conduction. 1D heat transfer in thin fins.

07 Hours

TEXT BOOKS:

- 1. **Finite Elements in Engineering**, T.R.Chandrupatla, A.D Belegunde, 3rd Ed PHI.
- 2. **Finite Element Method in Engineering**, S.S. Rao, 4th Edition, Elsevier, 2006.

REFERENCE BOOKS:

- 1. **"Finite Element Methods for Engineers"** U.S. Dixit, Cengage Learning, 2009
- 2. Concepts and applications of Finite Element Analysis, R.D. Cook D.S Maltus, M.E Plesha, R.J.Witt, Wiley 4th Ed, 2009
- 3. **Finite Element Methods**, Daryl. L. Logon, Thomson Learning 3rd edition, 2001.
- 4. **Finite Element Method**, J.N.Reddy, McGraw -Hill International Edition.

MECHATRONICS & MICROPROCESSOR

Subject Code	: 10ME65	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Introduction to Mechatronic Systems: Measurement and control systems Their elements and functions, Microprocessor based controllers.

06 Hours

UNIT - 2

Review of Transducers and Sensors: Definition and classification of transducers. Definition and classification of sensors. Principle of working and applications of light sensors, proximity sensors and Hall effect sensors.

07 Hours

UNIT - 3

Electrical Actuation Systems: Electrical systems, Mechanical switches, solid-state switches, solenoids, DC & AC motors, Stepper motors and their merits and demerits.

06 Hours

UNIT - 4

Signal Conditioning: Introduction to signal conditioning. The operational amplifier, Protection, Filtering, Wheatstone bridge, Digital signals Multiplexers, Data acquisition, Introduction to Digital system. Processing Pulse-modulation.

07 Hours

PART – B

UNIT - 5

Introduction to Microprocessors: Evolution of Microprocessor, Organization of Microprocessors (Preliminary concepts), basic concepts of programming of microprocessors.

Review of concepts - Boolean algebra, Logic Gates and Gate Networks, Binary & Decimal number systems, memory representation of positive and negative integers, maximum and minimum integers. Conversion of real, numbers, floating point notation, representation of floating point numbers, accuracy and range in floating point representation, overflow and underflow, addition of floating point numbers, character representation.

07 Hours

UNIT - 6

Logic Function: Data word representation. Basic elements of control systems 8085A processor architecture terminology such as CPU, memory and address, ALU, assembler data registers, Fetch cycle, write cycle, state, bus, interrupts. Micro Controllers. Difference between microprocessor and micro controllers. Requirements for control and their implementation in microcontrollers. Classification of micro controllers.

UNIT - 7

07 Hours

Organization & Programming of Microprocessors: Introduction to organization of INTEL 8085-Data and Address buses, Instruction set of 8085, programming the 8085, assembly language programming.

06 Hours
Central Processing Unit of Microprocessors: Introduction, timing and control unit basic concepts, Instruction and data flow, system timing, examples of INTEL 8085 and INTEL 4004 register organization.

06 Hours

TEXT BOOKS:

- 1. **Mechatronics,** W.Bolton, Longman, 2Ed, Pearson Publications, 2007.
- 2. Microprocessor Architecture, Programming And Applications With 8085/8085A, R.S. Ganokar, Wiley Eastern.

REFERENCE BOOKS:

- 1. **Mechatronics and Microprocessors,** K.P.Ramchandran, G.K.Vijayraghavan, M.S.Balasundran, Wiley, 1st Ed, 2009
- 2. Mechatronics Principles, Concepts and applications Nitaigour and Premchand Mahilik Tata McGraw Hill- 2003.
- 3. Mechatronics Principles & applications, Godfrey C. Onwubolu, Elsevier..
- 4. **Introduction Mechatronics & Measurement systems**, David.G. Aliciatore & Michael. B. Bihistaned, Tata McGraw Hill, 2000.

HEAT & MASS TRANSFER LABORATORY

Subject Code	: 10MEL67	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

- 1. Determination of Thermal Conductivity of a Metal Rod.
- 2. Determination of Overall Heat Transfer Coefficient of a Composite wall.
- 3. Determination of Effectiveness on a Metallic fin.
- 4. Determination of Heat Transfer Coefficient in a free Convection on a vertical tube.

- 5. Determination of Heat Transfer Coefficient in a Forced Convention Flow through a Pipe.
- 6. Determination of Emissivity of a Surface.

21 Hours

PART - B

- 1. Determination of Steffan Boltzman Constant.
- 2. Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchangers
- 3. Experiments on Boiling of Liquid and Condensation of Vapour
- 4. Performance Test on a Vapour Compression Refrigeration.
- 5. Performance Test on a Vapour Compression Air Conditioner
- 6. Experiment on Transient Conduction Heat Transfer

21 Hours

Scheme for Examination:		
One Question from Part A	-	20 Marks (05 Write up +15)
One Question from Part B	-	20 Marks (05 Write up +15)
Viva-Voce	-	10 Marks
Total		50 Marks

COMPUTER AIDED MODELING AND ANALYSIS LABORATORY

Subject Code	: 10MEL68	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

Study of a FEA package and modeling stress analysis of

a. Bars of constant cross section area, tapered cross section area and stepped bar

6 Hours

b. Trusses – (Minimum 2 exercises)

3 Hours

c. Beams – Simply supported, cantilever, beams with UDL, beams with varying load etc (Minimum 6 exercises)

12 Hours

PART - B

a)	Stress an	nalysis of a rectangular plate with a circular hole
		3 Hours
b)	Therma	Analysis – 1D & 2D problem with conduction and
	convecti	on boundary conditions(Minimum 4 exercises)
		9 Hours
c)	Dynami	c Analysis
	1)	Fixed – fixed beam for natural frequency determination
	2)	Bar subjected to forcing function
	3)	Fixed - fixed beam subjected to forcing function

9 Hours

REFERENCE BOOKS:

- 1. **A first course in the Finite element method,** Daryl L Logan, Thomason, Third Edition
- 2. Fundaments of FEM, Hutton McGraw Hill, 2004
- 3. Finite Element Analysis, George R. Buchanan, Schaum Series

Scheme for Examination:

Total		50 Marks
Viva-Voce	-	10 Marks
One Question from Part B	-	20 Marks (05 Write up +15)
One Question from Part A	-	20 Marks (05 Write up +15)

HYDRAULICS AND PNEUMATICS

Subject Code	: 10ME73	IA Marks	25
Hours/Week	: 04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT -1

Introduction to Hydraulic Power: Definition of hydraulic system, advantages, limitations, applications, Pascal's law, structure of hydraulic control system, problems on Pascal's law.

The source of Hydraulic Power: Pumps Classification of pumps, Pumping theory of positive displacement pumps, construction and working of Gear pumps, Vane pumps, Piston pumps, fixed and variable displacement pumps, Pump performance characteristics, pump Selection factors, problems on pumps.

07 Hours

UNIT -2

Hydraulic Actuators and Motors: Classification cylinder and hydraulic motors, Linear Hydraulic Actuators [cylinders], single and double acting cylinder, Mechanics of Hydraulic Cylinder Loading, mounting arrangements, cushioning, special types of cylinders, problems on cylinders, construction and working of rotary actuators such as gear, vane, piston motors, Hydraulic Motor Theoretical Torque, Power and Flow Rate, Hydraulic Motor

Performance, problems, symbolic representation of hydraulic actuators (cylinders and motors).

06 Hours

UNIT - 3

Control Components in Hydraulic Systems: Classification of control valves, Directional Control Valves- Symbolic representation, constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, check valves, Pressure control valves - types, direct operated types and pilot operated types. Flow Control Valves - compensated and non-compensated FCV, needle valve, temperature compensated, pressure compensated, pressure and temperature compensated FCV, symbolic representation.

07 Hours

UNIT - 4

Hydraulic Circuit Design And Analysis: Control of Single and Double -Acting Hydraulic Cylinder, Regenerative circuit, Pump Unloading Circuit, Double Pump Hydraulic System, Counter balance Valve Application, Hydraulic Cylinder Sequencing Circuits, Automatic cylinder reciprocating system, Locked Cylinder using Pilot check Valve, Cylinder synchronizing circuit using different methods, factors affecting synchronization, Hydraulic circuit for force multiplication, Speed Control of Hydraulic Cylinder, Speed Control of Hydraulic Motors, Safety circuit, Accumulators, types, construction and applications with circuits.

06 Hours

PART - B

UNIT - 5

Maintenance of Hydraulic System: Hydraulic Oils - Desirable properties, general type of Fluids, Sealing Devices, Reservoir System, Filters and Strainers, wear of Moving Parts due to solid -particle Contamination, temperature control (heat exchangers), Pressure switches, trouble shooting.

06 Hours

Introduction to Pneumatic Control: Definition of pneumatic system, advantages, limitations, applications, Choice of working medium. Characteristic of compressed air. Structure of Pneumatic control System, fluid conditioners and FRL unit.

Pneumatic Actuators: Linear cylinder - Types, Conventional type of cylinder- working, End position cushioning, seals, mounting arrangements-Applications. Rod - Less cylinders types, working, advantages, Rotary cylinders- types construction and application, symbols.

07 Hours

UNIT-7

Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction, use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols. Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, speed control of cylinders - supply air throttling and Exhaust air throttling and Exhaust air throttling. **Signal Processing Elements:** Use of Logic gates - OR and AND gates in

pneumatic applications. Practical Examples involving the use of logic gates, Pressure dependant controls- types - construction - practical applications, Time dependent controls principle. Construction, practical applications.

07 Hours

UNIT-8

Multi- Cylinder Application: Coordinated and sequential motion control, Motion and control diagrams. Signal elimination methods, Cascading method- principle, Practical application examples (up to two cylinders) using cascading method (using reversing valves).

Electro- Pneumatic Control: Principles - signal input and out put, pilot assisted solenoid control of directional control valves, Use of relay and contactors. Control circuitry for simple signal cylinder application.

Compressed Air: Production of compressed air- Compressors Preparation of compressed air-Driers, Filters, Regulators, Lubricators, Distribution of compressed air Piping layout.

06 Hours

TEXT BOOKS:

- 1. **"Fluid Power with Applications"**, Anthony Esposito, Sixth edition, Pearson Education, Inc, 2000.
- 2. 'Pneumatics and Hydraulics', Andrew Parr, Jaico Publishing Co

REFERENCE BOOKS:

- 1. 'Oil Hydraulic systems', Principles and Maintenance S. R. Majurr, Tata McGraw Hill Publishing Company Ltd. - 2001
- 2. **'Industrial Hydraulics', Pippenger, Hicks''** McGraw Hill, New York
- 3. 'Hydraulic & Pneumatic Power for Production', Harry L. Stewart
- 4. **'Pneumatic Systems',** S. R. Majumdar, Tata McGraw Hill Publish 1995
- 5. Power Hydraulics' Michael J Pinches & John G Ashby, Prentice Hall

OPERATION RESEARCH

Subject Code	: 10ME74	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART- A

UNIT -1

Introduction: Evolution of OR, definition of OR, scope of OR, application areas of OR, steps (phases) in OR study, characteristics and limitations of OR, models used in OR, linear programming (LP) problem-formulation and solution by graphical method.

04 Hours

UNIT -2

Solution Of Linear Programming Problems: The simplex methodcanonical and standard form of an LP problem, slack, surplus and artificial variables, big M method and concept of duality, dual simplex method.

08 Hours

Transportation Problem: Formulation of transportation problem, types, initial basic feasible solution using different methods, optimal solution by MODI method, degeneracy in transportation problems, application of transportation problem concept for maximization cases. Assignment Problem-formulation, types, application to maximization cases and travelling salesman problem.

08 Hours

UNIT -4

Integer Programming: Pure and mixed integer programming problems, solution of Integer programming problems-Gomory's all integer cutting plane method and mixed integer method, branch and bound method, Zero-One programming.

06 Hours

PART-B

UNIT -5

Pert-CPM Techniques: Introduction, network construction - rules, Fulkerson's rule for numbering the events, AON and AOA diagrams; Critical path method to find the expected completion time of a project, floats; PERT for finding expected duration of an activity and project, determining the probability of completing a project, predicting the completion time of project; crashing of simple projects.

08 Hours

UNIT -6

Queuing Theory: Queuing systems and their characteristics, Pure-birth and Pure-death models (only equations), empirical queuing models - M/M/1 and M/M/C models and their steady state performance analysis.

06 Hours

UNIT -7

Game Theory: Formulation of games, types, solution of games with saddle point, graphical method of solving mixed strategy games, dominance rule for solving mixed strategy games.

06 Hours

Sequencing: Basic assumptions, sequencing 'n' jobs on single machine using priority rules, sequencing using Johnson's rule-'n' jobs on 2 machines, 'n' jobs on 3 machines, 'n' jobs on 'm' machines. Sequencing 2 jobs on 'm' machines using graphical method.

06 Hours

TEXT BOOKS:

- 1. **Operations Research**, P K Gupta and D S Hira, Chand Publications, New Delhi 2007
- 2. Operations Research, Taha H A, Pearson Education

REFERNCE BOOKS:

- 1. Operations Research, A P Verma, S K Kataria & Sons, 2008
- 2. Operations Research, Paneerselvan, PHI
- 3. **Operations Research,** A M Natarajan, P Balasubramani, Pearson Education, 2005
- 4. **Introduction to Operations Research,** Hillier and Liberman,8th Ed., McGraw Hill
- 5. **Operations Research** S.D. Sharma, Ledarnath Ramanath & Co, 2002

NON-CONVENTIONAL ENERGY SOURCES

Subject Code	: 10ME754	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART A

UNIT – 1

Introduction : Energy source, India's production and reserves of commercial energy sources, need for non-conventional energy sources, energy alternatives, solar, thermal, photovoltaic. Water power, wind biomass, ocean temperature difference, tidal and waves, geothermal, tarsands and oil shale, nuclear (Brief descriptions); advantages and disadvantages, comparison (Qualitative and Quantitative).

6 Hours

Solar Radiation : Extra-Terrestrial radiation, spectral distribution of extra terrestrial radiation, solar constant, solar radiation at the earth's surface, beam, diffuse and global radiation, solar radiation data.

Measurement of Solar Radiation : Pyrometer, shading ring pyrheliometer, sunshine recorder, schematic diagrams and principle of working.

Solar Radiation Geometry : Flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, zenith angle, solar altitude angle expression for the angle between the incident beam and the normal to a plane surface (No derivation) local apparent time. Apparent motion of sum, day length, numerical examples.

9 Hours

UNIT - 3

Radiation Flux on a Tilted Surface : Beam, diffuse and reflected radiation, expression for flux on a tilted surface (no derivations) numerical examples.

Solar Thermal Conversion : Collection and storage, thermal collection devices, liquid flat plate collectors, solar air heaters concentrating collectors (cylindrical, parabolic, paraboloid) (Quantitative analysis); sensible heat storage, latent heat storage, application of solar energy water heating. Space heating and cooling, active and passive systems, power generation, refrigeration. Distillation (Qualitative analysis) solar pond, principle of working, operational problems.

9 Hours

UNIT - 4

Performance Analysis of Liquid Flat Plate Collectors : General description, collector geometry, selective surface (qualitative discussion) basic energy-balance equation, stagnation temperature, transmissivity of the cover system, transmissivity – absorptivity product, numerical examples. The overall loss coefficient, correlation for the top loss coefficient, bottom and side loss coefficient, problems (all correlations to be provided). Temperature distribution between the collector tubes, collector heat removal factor, collector efficiency factor and collector flow factor, mean plate temperature, instantaneous efficiency (all expressions to be provided). Effect of various parameters on the collector performance; collector orientation, selective surface, fluid inlet temperature, number covers, dust.

4 Hours

UNIT – 5

Photovoltaic Conversion : Description, principle of working and characteristics, applications.

Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, elementary design principles; coefficient of performance of a wind mill rotor, aerodynamic considerations of wind mill design, numerical examples.

8 Hours

UNIT – 6

Tidal Power : Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations.

Ocean Thermal Energy Conversion : Principle of working, Rankine cycle, OTEC power stations in the world, problems associated with OTEC.

Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, geothermal plants in the world, problems associated with geothermal conversion, scope of geothermal energy.

7 Hours

UNIT - 7

Energy from Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation, bio gas production from organic wastes by anaerobic fermentation, description of bio-gas plants, transportation of bio-gas, problems involved with bio-gas production, application of bio-gas, application of bio-gas in engines, advantages.

4 Hours

UNIT – 8

Hydrogen Energy : Properties of Hydrogen with respected to its utilization as a renewable form of energy, sources of hydrogen, production of hydrogen, electrolysis of water, thermal decomposition of water, thermo chemical production bio-chemical production.

Storage & Transportation Methods : Gaseous, cryogenic and metal hydrides, application of hydrogen, domestic and industrial safe burning of hydrogen.

5 Hours

TEXT BOOKS:

- 1. Non-Conventional Energy Sources by *G.D. Rai K*, Khanna Publishers, 2003.
- 2. Solar energy, by *Subhas P Sukhatme* Tata McGraw Hill, 2nd Edition, 1996.

REFERENCE BOOKS:

- 1. Renewable Energy Sources and Conversion Technology by *N.K.Bansal, Manfred Kleeman & Mechael Meliss*, Tata McGraw Hill, 2001.
- 2. Renewable Energy Resources, *John W.Twidell Anthony D. Weir El*, BG 2001.
- 3. Solar Power Engineering, P.K.Nag, Tata McGraw Hill, 2003.

CONTROL ENGINEERING

Subject Code	: 10ME82	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction: Concept of automatic controls, Open loop and closed loop systems, Concepts of feedback, requirements of an ideal control system, Types of controllers- Proportional, Integral Proportional Integral, Proportional Integral Differential controllers.

06 Hours

UNIT-2

Mathematical Models: Transfer function models, models of mechanical systems, models of electrical circuits, DC and AC motors in control systems, models of thermal systems, models of hydraulic systems, pneumatic system, Analogous systems: Force voltage, Force current.

06 Hours

UNIT - 3

Block Diagrams and Signal Flow Graphs: Transfer Functions definition, function, block representation of systems elements, reduction of block diagrams, Signal flow graphs: Mason's gain formula.

Hours

Transient and Steady State Response Analysis: Introduction, first order and second order system response to step, ramp and impulse inputs, concepts of time constant and its importance in speed of response. System stability: Routh's-Hurwitz Criterion.

06 Hours

PART - B

UNIT - 5

Frequency Response Analysis: Polar plots, Nyquist stability criterion, Stability analysis, Relative stability concepts, Gain margin and phase margin, M&N circles.

06 Hours

UNIT - 6

Frequency Response Analysis Using Bode Plots: Bode attenuation diagrams, Stability analysis using Bode plots, Simplified Bode Diagrams.

07 Hours

UNIT - 7

Root Locus Plots: Definition of root loci, General rules for constructing root loci, Analysis using root locus plots.

06 Hours

UNIT 8

System Compensation and State Variable Characteristics of Linear Systems: Series and feedback compensation, Introduction to state concepts, state equation of linear continuous data system. Matrix representation of state equations, controllability and observability, Kalman and Gilberts test.

07 Hours

TEXT BOOKS :

- 1. **Modern Control Engineering,** Katsuhiko Ogatta, Pearson Education, 2004.
- 2. **Control Systems Principles and Design,** M.Gopal, 3rd Ed., TMH,2000.

REFERENCE BOOKS :

- 1. **Modern Control Systems**, Richard.C.Dorf and Robert.H.Bishop, Addison Wesley,1999
- 2. **System dynamics & control**, Eronini-Umez, Thomson Asia pte Ltd. singapore, 2002.
- 3. Feedback Control System, Schaum's series. 2001.

ELECTIVE-IV (GROUP - D)

TRIBOLOGY

Subject Code	: 10ME831	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction To Tribology: Properties of oils and equation of flow: Viscosity, Newton's Law of viscosity, Hagen-Poiseuille Law, Flow between parallel stationary planes, viscosity measuring apparatus. Lubrication principles, classification of lubricants.

06 Hours

UNIT - 2

Hydrodynamic Lubrication: Friction forces and power loss in lightly loaded bearing, Petroff's law, Tower's experiments, mechanism of pressure development in an oil film, Reynold's investigation and Reynold's equation in 2D.

06 Hours

UNIT - 3

Idealized Journal Bearing: Introduction to idealized journal bearing, load carrying capacity, condition for equilibrium, Sommerfeld's numbers and significance of it; Partial bearings, end leakages in journal bearing, numerical problems.

07 Hours

Slider / Pad Bearing With A Fixed And Pivoted Shoe: Pressure distribution, Load carrying capacity, coefficient of friction, frictional resistance in a pivoted shoe bearing, numerical examples.

07 Hours

PART – B

UNIT - 5

Oil Flow And Thermal Equilibrium Of Journal Bearing: Oil flow through bearings, self-contained journal bearings, bearings lubricated under pressure, thermal equilibrium of journal bearings.

06 Hours

UNIT - 6

Hydrostatic Lubrication: Introduction to hydrostatic lubrication, hydrostatic step bearings, load carrying capacity and oil flow through the hydrostatic step bearing.

06 Hours

UNIT - 7

Bearing Materials: Commonly used bearings materials, properties of typical bearing materials. Advantages and disadvantages of bearing materials.

07 Hours

UNIT - 8

Behavior Of Tribological Components: Selection, friction, Wear of ceramic materials, wear measurements, effects of speed, temperature and pressure. Tribological measures, Material selection, improved design, surface engineering

07 Hours

TEXT BOOKS:

- 1. **Fundamentals of Tribology**, Basu S K., Sengupta A N., Ahuja B. B., , PHI 2006
- 2. Introduction to Tribology Bearings, Mujumdar B. C., S. Chand company pvt. Ltd 2008.

REFERENEC BOOKS:

- 1. **Theory and Practice of Lubrication for Engineers,** Fuller, D., New York company 1998
- 2. **Principles and Applications of Tribology,** Moore, Pergamaon press 1998
- 3. **Tribology in Industries,** Srivastava S., S Chand and Company limited, Delhi 2002
- 4. Lubrication of bearings Theoretical Principles and Design, Redzimovskay E I., Oxford press company 2000

AUTOMOTIVE ENGINEERING

Subject Code	: 10ME844	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Engine Components And Cooling & Lubrication Systems: Spark Ignition (SI) & Compression Ignition (CI) engines, cylinder – arrangements and their relatives merits, Liners, Piston, connecting rod, crankshaft, valves, valve actuating mechanisms, valve and port timing diagrams, Types of combustion chambers for S.I.Engine and C.I.Engines, Compression ratio, methods of a Swirl generation, choice of materials for different engine components, engine positioning, cooling requirements, methods of cooling, thermostat valves, different lubrication arrangements.

07 Hours

UNIT - 2

Fuels, Fuel Supply Systems For Si And Ci Engines: Conventional fuels, alternative fuels, normal and abnormal combustion, cetane and octane numbers, Fuel mixture requirements for SI engines, types of carburetors, C.D.& C.C. carburetors, multi point and single point fuel injection systems, fuel transfer pumps, Fuel filters, fuel injection pumps and injectors.

07 Hours

UNIT - 3

Superchargers And Turbochargers: Naturally aspirated engines, Forced Induction, Types pf superchargers, Turbocharger construction and operation, Intercooler, Turbocharger lag.

06 Hours

UNIT - 4

Ignition Systems: Battery Ignition systems, magneto Ignition system, Transistor assist contacts. Electronic Ignition, Automatic Ignition advance systems.

06 Hours

Power Trains: General arrangement of clutch, Principle of friction clutches, Torque transmitted, Constructional details, Fluid flywheel, Single plate, multi-plate and centrifugal clutches.

Gear box: Necessity for gear ratios in transmission, synchromesh gear boxes, 3, 4 and 5 speed gear boxes. Free wheeling mechanism, planetary gears systems, over drives, fluid coupling and torque converters, Epicyclic gear box, principle of automatic transmission, calculation of gear ratios, Numerical calculations for torque transmission by clutches.

08 Hours

UNIT - 6

Drive To Wheels: Propeller shaft and universal joints, Hotchkiss and torque tube drives, differential, rear axle, different arrangements of fixing the wheels to rear axle, steering geometry, camber, king pin inclination, included angle, castor, toe in & toe out, condition for exact steering, steering gears, power steering, general arrangements of links and stub axle, over steer, under steer and neutral steer, numerical problems, types of chassis frames.

06 Hours

UNIT - 7

Suspension, Springs And Brakes: Requirements, Torsion bar suspension systems, leaf spring, coil spring, independent suspension for front wheel and rear wheel. Air suspension system.

Types of brakes, mechanical compressed air, vacuum and hydraulic braking systems, construction and working of master and wheel cylinder, brake shoe arrangements, Disk brakes, drum brakes, Antilock –Braking systems, purpose and operation of antilock-braking system, ABS Hydraulic Unit, Rear-wheel antilock & Numerical Problems

06 Hours

UNIT - 8

Automotive Emission Control Systems: Automotive emission controls, Controlling crankcase emissions, Controlling evaporative emissions, Cleaning the exhaust gas, Controlling the air-fuel mixture, Controlling the combustion process, Exhaust gas recirculation, Treating the exhaust gas, Airinjection system, Air-aspirator system, Catalytic converter, Emission standards- Euro I, II, III and IV norms, Bharat Stage II, III norms.

6 Hours

TEXT BOOKS:

- Automotive mechanics, William H Crouse & Donald L Anglin, 10th Edition Tata McGraw Hill Publishing Company Ltd., 2007
 Automotive Mechanics, S. Srinivasan, 2nd Ed., Tata McGraw Hill
- Automotive Mechanics, S. Srinivasan, 2nd Ed., Tata McGraw Hill 2003.

REFERENCE BOOKS:

- 1. **Automotive mechanics: Principles and Practices**, Joseph Heitner, D Van Nostrand Company, Inc
- 2. **Fundamentals of Automobile Engineering,** K.K.Ramalingam, Scitech Publications (India) Pvt. Ltd.
- Automobile Engineering, R. B. Gupta, Satya Prakashan, 4th edn. 1984.
- 4. Automobile engineering, Kirpal Singh. Vol I and II 2002.

MANAGEMENT & ORGANIZATIONAL BEHAVIOUR

SubjectCode	:16MBA11	IA Marks	: 20
No. of Lecture Hours / Week: 03		Exam Hours	: 03
Number ofLectureHours	56	Exam Marks	: 80
PracticalComponent	: 02 Hours /Week		

Course Objectives:

- To make students understand fundamental concepts and principles of management, including the basic roles, skills, and functions of management
- To make students knowledgeable of historical development, theoretical aspects and practice applications of managerialprocess
- To understand the basic concepts and theories underlying individual behavior besides developing better insights into one's own self
- To make students aware of Individual behavior in groups, dynamics of groups and team building besides developing a better awareness of how they can be better facilitators for building effective teams as leadersthemselves

Course Outcomes:

At the end of the course students are able to:

- Comprehend & correlate all the management activities which are happening around them with fundamental concepts and principles of management.
- Get an overview of management, theory of management and practical applications of thesame.
- Effectively use their individual skill to work in groups to achieve organizational goals and ability to leadgroups/teams.

Demonstrate their acumen in applying managerial and behavioral concept in realworld/situation.

Part A - Principles of Management

(8Hours)

(12 Hours)

(5 Hours)

Introduction: Management: Introduction, Definition of management, Nature, Purpose and Functions, Levels and types of managers, managerial roles, skills for managers, evolution of management thought, Fayol's fourteen principles of management, Recent trends in management.

Unit2:

Unit1:

Planning and Organizing:

Planning: Nature of Planning, Planning Process, Objectives, MBO, Strategies, level of strategies, policies, methods and programs, Planning Premises, Decision-making, Process of decision-making, Types of decisions, Techniques in decision-making.

Organizing: Organization structure, Formal and informal organizations, Principles of organizations-chain of command, span of control, delegation, decentralization, and empowerment. Functional, divisional, geographical, customer based and matrix organizations, tram based structures, virtual organizations, boundary less organizations.

Unit3:

Controlling: Controlling, importance of controlling, controlling process, types of control, factors influencing control effectiveness.

RECOMMENDED BOOKS

- Essentials of Management-Koontz, 8/e, McGrawHill
- Management: Text and Cases-VSP Rao, ExcelBooks
- MGMT, An Innovative approach to teaching and learning Principles of Management, Chuck Williams, Cengage Publications,2010
- Principles and practices of Management, Kiran Nerkar, Vilas Chopde, Dreamtech Press, 2011
- Management Theory & practice Chandan J. S, Vikas Publishing House.
- Management Theory & Practice Text & Cases Subba Rao P & HimaBindu, HimalayaPublication.

REFERENCE BOOKS:

• Masters of Management Thought – MahanandCharati& M MMunshi, Sapna Book House, Bangalore, 2015.

Part B - Organizational Behaviour

Unit4:

(6hours)

Introduction: Organizational Behaviour: Introduction, definition, historical development, fundamental principles of OB, contributing disciplines, challenges and opportunities.

Unit5:

(15Hours)

Foundations of Individual Behaviour: Individual behaviour: Foundations of individual behaviour. Ability: Intellectual abilities, Physical ability, the role of disabilities.

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

Personality: Meaning, formation, determinants, traits of personality, big five and MBTI, personality attributes influencing OB.

Attitude: Formation, components of attitudes, relation between attitude and behaviour.

Perception: Process of perception, factors influencing perception, link between perception and individual decision-making.

Unit6:

(10 Hours)

Motivation: Meaning, theories of motivation-needs theory, two factor theory, Theory X and Y, application of motivational theories.

Leadership: Meaning, styles of leadership, leadership theories, trait theory, behavioural theories, managerial grid, situational theories.

Note: Related case studies to be discussed.

Practical Components:

- Studying organizational structures of any 10 companies and classifying them into different types of organizations which are studied in Unit 2 and justifying why such structures are chosen by those organizations.
- Preparing the leadership profiles of any 5 business leaders and studying their leadership qualities and behaviours with respects to the trait, behavioural and contingency theoriesstudied.
- Identifying any five job profiles and listing the various types, abilities required for those jobs and also the personality traits/attributes required for the jobsidentified.

Note: Faculty can either identify the organizations/ leaders/jobs or students can be allowed to choose the same.

RECOMMENDED BOOKS:

- Organizational behaviour, Stephen P Robbins, Timothy A. Judge, Neharika Vohra, 14th Edition, Pearson,2012.
- Introduction to OrganisationalBehaviour Michael Butler, Jaico Publishing House,
- Organization Behaviour Ashwathappa, Himalaya Publication House
- ORGB Nelson, Quick, Khanelwal, 2/e, Cengage Learning, 2012.
- Organizational Behaviour Anada Das Gupta, Biztantra, 2011.
- Organizational Behaviour: A modern approach Arun Kumar and Meenakshi, Vikas Publishing House, 2011.
- Organizational Behaviour Rao V. S. P, Excel BOOKS,2009.

REFERENCE BOOKS:

- Organizational Behaviour Fred Luthans, 12/e, McGraw Hill International, 2011.
- Management and Organizational Behaviour Laurie J Mullins, Pearson education

ACCOUNTING FOR MANAGERS

SubjectCode	:16MBA13	IA Marks	: 20
No. of Lecture Hours / Week: 03		Exam Hours	: 03
Number ofLectureHours	56	Exam Marks	: 80
PracticalComponent	: 02 Hours /Week		

Objectives:

- To explain fundamental accounting concepts and conventions.
- To explain and use the accountingequation.
- To prepare basic journal entries for business transactions and present the data in an accuratemanner
- To present financial statements in vertical and horizontalformat.
- To analyze a company's financial statements using various ratios for decisionmaking.
- To understand emerging issues in accounting andtaxation.

Course Outcomes:

At the end of the course students are able to:

- Acquire the knowledge about the concepts and fundamental principles ofaccounting.
- Demonstrate theoretical knowledge and its application in real time accounting.
- Capable of preparing financial statement of sole trading concerns and companies.
- Independently undertake financial statement analysis and take decisions.
- Comprehend emerging trends in accounting andtaxation.

Unit1:

(6Hours)

Introduction to Accounting: Need and Types of Accounting, Users of Accounting, concepts and conventions of Accounting, Accounting Equation (problems on accounting equation).

Unit2:

(10 Hours)

Preparation of books of Accounts: Journals, three column cash book, ledgers and trial balance. Depreciation- Straight line and Written down Value Methods.

Unit3:

(14 Hours)

(12 Hours)

Preparation of Financial Statements: Preparation of final accounts of sole traders. Preparation of final accounts of companies, vertical form of financial statements. (Basic problems Final Accounts)

Unit4:

Analysis of Financial Statements: Ratio Analysis, Preparation of financial statements using ratios, Preparation of Cash flow Statement (only indirect method).

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

Unit5:

(8 Hours)

Emerging issues in Accounting: Human Resource Accounting, Forensic Accounting, Sustainability Reporting -Accounting Standards and IFRS: Nature and significance

Unit6:

(6 Hours)

Fundamentals of Taxation: Heads of Income, Deductions u/s 80C, Income Tax Rates and Returns for Individuals only (only theory)

Practical Components:

- Collecting Annual reports of the companies and analyzing the financial statements using different techniques and presenting the same in the class.
 - Analyzing the companies' cash flow statements and presenting the same in the class.=
- Exposing the students to usage of accounting software's (Preferably Tally)
- Filling up of ITRforms
- Identify the sustainability report of a company and study the contents.

Note 1: Related case studies to be discussed.

Note 2: 25 percent theory and 75 percent problems

RECOMMENDED BOOKS:

- Financial Accounting: A Managerial Perspective, Narayanaswamy R, 5/e, PHI,2014
- A Text book of Accounting For Management, Maheswari S. N,MaheswariSharadK.Maheswari,2/e,VikasPublishinghouse (P) Ltd.
- Financial Accounting, Tulsian P. C, 1/e, PearsonEducation.
- Accounting for managers, Madegowda J, Himalaya Publishing House.
- Advanced Accountancy, Gupta R. L & Radhaswamy M, Sultan Chand Publications.
- Financial Accounting, Jain S. P and Narang K L, KalyaniPublishers.
- Business Taxation, Akhileshwar Pathak and SavanGodiawala, 2/e, McGraw Hill Education (India) Pvt. Ltd,2013.

REFERENCE BOOKS:

- Financial Accounting for Management: An Analytical Perspective, Ambrish Gupta, 4/e, Pearson Education.
- Introduction to Financial Statement Analysis, Ashish K Bhattacharya, ElsevierIndia.
- Financial Accounting Raman B. S, Vol I & Vol II, 1/e, United Publishers, 2011.
- Financial Accounting (IFRS update), Gary A. Porter & Curtis L. Norton, 6/e, CengageLearning.

- Accounting For Management, Arora M. N, Himalaya Publishing House.
- Essentials of Financial Accounting (Based on IFRS), Bhattacharya, 3/e, Prentice HallIndia.
- Comdex (Computer and Financial Accounting with Tally 9.0 Course Kit), DreamTech.
- Comdex Tally 9, Namrata Agrawal DreamTech.
- IFRS: A Practical approach, Jasmine Kaur, McGrawHill.

MANAGERIAL COMMUNICATION

SubjectCode	:16MBA16	IA Marks	: 20
No. of Lecture Hours / Week: 03		Exam Hours	: 03
Number ofLectureHours	56	Exam Marks	: 80
PracticalComponent	: 02 Hours /Week		

Objective:

To enhance students communication skills through verbal, non-verbal, correspondence, presentations, interviews and negotiation.

Course Outcomes:

At the end of the course students are able to:

- Describe and develop written and oralcommunication.
- Independently prepare business letters and reports.
- Exhibit, develop and apply negotiationstrategies.
- Gain exposure to media management and demonstrate the skill in analyzing businesssituation.

Unit1:

(10Hours)

Introduction: Meaning & Definition, Role, Classification – Purpose of communication – Communication Process – Characteristics of successful communication – Importance of communication in management – Communication structure in organization – Communication in conflict resolution - Communication in crisis. Communication and negotiation -Communication in a cross-cultural setting

Unit 2:

(8 Hours)

Oral Communication: Meaning – Principles of successful oral communication – Barriers to communication – Conversation control – Reflection and Empathy: two sides of effective oralcommunication.

Modes of Oral Communication - Listening as a Communication Skill, Non-verbal communication

Unit3:

(8Hours)

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

- Business Communication: Process and Product Mary Ellen Guffey, 3/e, Cengage Learning,2002.

- Advanced Business Communication Penrose, Rasberry, Myers, 5/e, Cengage Learning,2004.
- BCOM Lehman, DuFrene, Sinha, Cengage Learning, 2/e,2012

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

Written Communication: Purpose of writing – Clarity in writing – Principles of effective writing - Approaching the writing process systematically: The 3X3 writing process for business communication: Pre writing - Writing - Revising - Specific writing features -CoherenceElectronic writingprocess.

Unit4:

Business Letters and Reports: Introduction to business letters - Types of Business Letters -Writing routine and persuasive letters - Positive and Negative messages Writing Reports: Purpose, Kinds and Objectives of reports - Organization & Preparing reports, short and long reports Writing Proposals: Structure & preparation - Writingmemos

Media Management: The press release – Press conference – Media interviews

Group Communication: Meetings - Planning meetings - objectives - participants - timing venue of meetings.

Meeting Documentation: Notice, Agenda, and Resolution & Minutes

Unit5:

Presentation skills: What is a presentation – Elements of presentation – Designing & Delivering Business Presentations – Advanced Visual Support for managers.

Case Methods of learning: Understanding the case method of learning. Negotiation

What negotiation need skills: is Nature _ and for negotiation – Factors affecting negotiation – Stages of negotiation process – Negotiation strategies.

Unit6:

Employment communication: Introduction - Composing Application Messages - Writing CVs - Group discussions - Interview skills

Impact of Technological Advancement on Business Communication

Technology-enabled Communication-Communication Intranet-Internet-E-mails-SMS- teleconferencing -videoconferencing

Practical Components:

- Demonstrate the effect of noise as a barrier tocommunication ٠
- Make students enact and analyze the non-verbalcues
- Give exercises for clarity and conciseness in writtencommunication.
- Demonstrating using Communication Equipments like Fax, Telex, Intercoms, etc, •
- Demonstrating Video conferencing & teleconferencing in the class.
- Conduct a mock meeting of students in the class identifying an issue of their concern. The students should prepare notice, agenda and minutes of themeeting.
- Each student to give presentation of 5 minutes (this can be spread throughout the ٠ semester) and to be evaluated by the faculty

RECOMMENDED BOOKS:

- Business Communication : Concepts, Cases And Applications Chaturvedi P. D, &MukeshChaturvedi ,2/e, PearsonEducation,2011
- Business Communication Renuka Murthy T P and YathishChandra M S, HPH.
- Business Communication Lesikar, Flatley, Rentz&Pande, 11/e, TMH, 2010

networks-

(8Hours)

(10 Hours)

(12 Hours)

- Business Communication Madhukar R. K, 2/e, Vikas Publishing House. **REFERENCE BOOKS:**
- Effective Technical Communication Ashraf Rizvi M, TMH, 2005.
- Business Communication Sehgal M. K & Khetrapal V, Excel Books.
- Business Communication Krizan, Merrier, Jones, 8/e, Cengage Learning, 2012.
- Basic Business Communication Raj Kumar, Excel Books, 2010.

FINANCIAL MANAGEMENT

Subject Code	: 16MBA22	IA Marks : 20
No. of Lecture Hours / Week	: 03	Exam Hours : 03
Total Number of Lecture Hours	: 56	Exam Marks : 80
Practical Component	: 02 Hours / Week	

Course Objectives:

- To familiarize the students with basic concepts of financialmanagement.
- To understand time value of money and cost ofcapital.
- To analyze capital structure, capital budgeting and dividenddecision.
- To understand the short term and long term financing and working capitalmanagement.

Course Outcome:

At the end of the course students will be able to:

- Understand the basic financial concepts
- Apply time value of money
- Evaluate the investment decisions
- > Analyze the capital structure and dividenddecisions.
- Estimate working capitalrequirements.

Unit 1:

(8Hours)

Financial management – Introduction to financial management, objectives of financial management – profit maximization and wealth maximization. Changing role of finance managers. Interface of Financial Management with other functionalareas. **SourcesofFinancing:** Shares, Debentures, Term loans, Lease financing, Hybrid financing, Venture Capital, Angel investing and private equity, Warrants and convertibles (Theory Only) **Emerging Issues:** Risk management, Behavioral finance and Financialengineering.

Unit 2:

(10Hours)

Time value of money –Future value of single cash flow & annuity, present value of single cash flow, annuity & perpetuity.Simple interest & Compound interest, Capital recovery & loan amortization.

Unit 3:

(10Hours)

Cost of Capital Cost of capital – basic concepts. Cost of debenture capital, cost of preferential capital, cost of term loans, cost of equity capital (Dividend discounting and CAPM model) - Cost of retained earnings - Determination of Weighted average cost of capital (WACC) and Marginal cost of capital.

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

Unit 4:

Investment decisions – Capital budgeting process, Investment evaluation techniques – Net present value, Internal rate of return, Modified internal rate of return, Profitability index, Payback period, discounted payback period, accounting rate of return.

Unit 5:

Working capital management – factors influencing working capital requirements - Current asset policy and current asset finance policy- Determination of operating cycle and cash cycle - Estimation of working capital requirements of a firm (Does not include Cash, Inventory & ReceivablesManagement)

Unit 6:

Capital structure and dividend decisions – Planning the capital structure. (No capital structure theories to be covered) Leverages – Determination of operating leverage, financial leverage and total leverage. Dividend policy – Factors affecting the dividend policy - Dividend Policies- Stable Dividend, Stable Payout (No dividend theories to becovered)

Practical Components:

- Identifying the small or medium sized companies and understanding the Investment evaluation techniques used bythem.
- Using the annual reports of selected companies, students can study the working capital management employed by them. Students can also compare the working capital management of companies in the same sector.
- Students can choose the companies that have gone for stock split and Bonus issue in the last few years and study the impact of the same on the stockprice.

RECOMMENDED BOOKS:

- Financial Management -Prasanna Chandra, 8/e, TMH,2011.
- Financial Management, Shashi K Gupta and R K Sharma, 8th Revised Edition, Kalyani Publishers, -2014
- Financial Management, Khan M. Y.& Jain P. K, 6/e, TMH, 2011.
- Financial Management, Rajiv Srivastava and Anil Misra, Second edition, Oxford UniversityPress, 2011
- Financial Management ,I M Pandey, 10th Edition, Vikas Publishing House-2014
- Financial Management & Policy-Vanhorne, James C., 12/e, Pearson, 2002
- Financial Management, PralhadRathod, Babitha&S.HarishBabu, Himalaya Publishing House, 2015

REFERENCE BOOKS:

- Financial Management, V K Bhalla ,1st Edition- S.Chand2014,
- Fundamentals of Financial Management, Brigham& Houston, 10/e, CengageLearning.
- Corporate Finance, Damodaran , 2/e, Wiley India (P) Ltd., 2004
- Financial Management, Paresh P., Shah 2/e, Biztantra.
- Fundamentals of Financial Management, Sheeba Kapil, Pearson, 2013
- Financial Management, Sumit Gulati & Y P Singh, McGraw Hill, New Delhi –2013

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

(12Hours)

(8Hours)

(8Hours)

RESEARCH METHODS

SubjectCode	:16MBA23	IAMarks	20
No. of Lecture Hours/Week	:03	Exam Hours	03
Total Number of Lecture Hours	:56	Exam Marks	80
PracticalComponent	: 02 Hours /Week		

Objectives:

- To understand the basic components of researchdesign
- To Gain an insight into the applications of researchmethods
- To equip students with various research analytical tools used in businessresearch

Course outcome:

At the end of the course students are able to:

- Understand various research approaches, techniques and strategies in theappropriate in business.
- Apply a range of quantitative / qualitative research techniques tobusiness and day to day managementproblems
- Demonstrate knowledge and understanding of data analysis, interpretation and report writing
- > Develop necessary critical thinking skills in order to evaluate different researchapproaches inBusiness.

Unit 1:

(8hours)

Business Research – Meaning, types, process of research- management problem, defining the research problem, formulating the research Hypothesis, developing the research proposals, research design formulation, sampling design, planning and collecting the data for research, data analysis and interpretation. Research Application in business decisions, Features of good research study.

Unit 2:

(10hours)

Business Research Design: Meaning and significance - **Types**: Exploratory and Conclusive Research Design.

Exploratory Research: Meaning, purpose, methods- Literature search, experience survey, focus groups and comprehensive case methods.

Conclusive Research Design - Descriptive Research - Meaning, Types – Cross sectional studies and longitudinalstudies.

Experimental Research Design – Meaning and classification of experimental designsformal and informal, Pre experimental design, Quasi-experimental design, True experimental design, statistical experimentaldesign.

Unit 3:

(8hours)

Sampling: Concepts- Types of Sampling - Probability Sampling – simple random sampling, systematic sampling, stratified random sampling, cluster sampling -Non Probability Sampling –

convenience sampling- judgemental sampling, snowball sampling- quota sampling - Errors in sampling.

Unit 4:

Data Collection: Primary and Secondary data

Primary data collection methods - Observations, survey, Interview and Questionnaire, Qualitative Techniques of data collection, Questionnaire design – Meaning - process of designing questionnaire. Secondary data -Sources – advantages and disadvantages.

Measurement and Scaling Techniques: Basic measurement scales-Nominal scale, Ordinal scale, Interval scale, Ratio scale. Attitude measurement scale - Likert's Scale, Semantic Differential Scale, Thurstone scale, Multi-DimensionalScaling

Unit5:

Hypothesis - types, characteristics, source, formulation of hypotheses, errors in hypotheses. Parametric and Non-Parametric Tests- t-test, z-test, f-test, u-test, K-W Test (problems on all tests) Statistical analysis- Bivariate and Multivariate Analysis- (only theory). ANOVA-one-way and two-way classification (theoryonly)

Unit6:

(8 hours)

(10 hours)

(12hours)

Data Analysis and Report Writing: Editing, Coding, Classification, Tabulation, Validation Analysis and Interpretation- **Report writing and presentation of results:** Importance of report writing, types of research report, report structure, guidelines for effective documentation.

Practical Components:

- To identify research problem and collect relevant literatures for dataanalysis
- To write the research design by using Exploratory and Descriptive Researchmethods
- To prepare the questionnaire on brand awareness, effectiveness of training in public sector organization, Investors attitude towards Mutual funds in any financialinstitutions.
- To conduct Market survey and to investigate consumer perception towards anyFMCG.
- To demonstrate Report writing and Presentationmethods

RECOMMENDED BOOKS

- Business Research Methods: A South-Asian Perspective with course Mate William G.Zikmund/Barry J.Babin/Jon C.Carr/AtanuAdhikari/Mitch Griffin, Cengagelearning
- Business Research Methods: S.N.Murthy&U.Bhojanna. ExcelBooks
- Business Research Methods. Donald R. Cooper & Pamela s Schindler, 9/e, TMH/2007
- Research Methods M MMunshi& K Gayathri Reddy, Himalaya Publishing House, 2015
- Research Methods for Business, Uma Sekaran& Roger Bougie, 6th Edition, Wiley, 2013
- Business Research Methods-SL Guptah and HeteshGuptha, McGraw hill -2012
- Marketing Research- Naresh K Malhotrs- 5th Edition, Pearson Education /PHI2007

REFERENCE BOOKS

• Research Methods- William M C Trochi, - 2/e, Biztantra, 2007

- Methodology of Research in social Sciences- O R Krishnaswami, M Ranganatham, HPH, 2007
- Research Methodology C.R.Kothari, VishwaPrakashan
- Business Research Methodology J K Sachdeva 2nd Edition HPH,2011
- Research Methodology concepts and cases Deepak Chawla and NeenaSondhi Vikas Publication -2014

INDUSTRIAL RELATIONS AND

LEGISLATIONS

Subject Code	: 16MBA HR301	IA Marks :20
Number of Lecture Hours/Week	: 03	Exam Hours: 03
Number of Lecture Hours	: 56	Exam Marks: 80
Practical Component	: 02 Hours/ Week	

Course Objectives:

- To enable students to understand and apply the principles of IR and develop an awareness of the significance of industrial peace.
- To provide a conceptual basis of IndustrialRelations.
- To give an understanding of the components and meaning of sustaining Industrial peace anchored on harmonious Employee-Managementrelations.
- To discuss the various Industrialacts.

Course Outcomes:

The students should be able to

- ➢ Gain the insights of IR practices in theindustry.
- > Develop the knowledge related to employee-managementrelations
- Implementation of various industrialacts

PART A: INDUSTRIALRELATIONS

Unit 1

Introduction:

Background of Industrial Relations – Definition, scope, objectives, factors affecting IR, participants of IR, importance of IR. Approaches to Industrial relations, system of IR in India –Historical perspective & post-independence period, Code of Discipline and historical initiatives for harmonious IR, Government policies relating to labor, ILO and its influence on Legal enactments inIndia.

Unit2

Collective Bargaining & Negotiation:

Collective Bargaining: Definition, Meaning, Nature, essential conditions for the success of collective bargaining, functions of collective bargaining, importance of Collective Bargaining, collective bargaining process, prerequisites for collective bargaining, implementation and administration of agreements.

(8Hours)

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

(32hours)

(8hours)

Grievance procedures, model grievance procedure. Disciplinary procedures, approaches to

• Dynamics of Industrial Relations, Mamoria&Mamoria, Himalaya Publications, 2012

- Human Resource Management Principles & Practice, Aquinas, VikasPublication.
- Personnel Management & Industrial Relations, Nair N G, Nair L, S. Chand Limited, 2001
- Revised edition, Himalaya Publishing House, 2010.

REFERENCE BOOKS:

Industrial Relations, Trade Unions & Labour Legislation, P R N Sinha et al, Pearson Education, 2004.

• BareActs

• Industrial Relations and labor laws, ArunMonappa, RanjeetNambudiri, PatturajuSelvaraj, TMH. 1997.

• Industrial relations, trade unions and labor legislations, P R N Sinha, InduBala Sinha, Seema PriyadarshiniShekar, Pearson Education, 2013, ISBN:9788131731642

PARTB:

Unit 5

INDUSTRIALLEGISLATIONS

Only basic objectives and major provisions of the following legislations:

- Factories Act1948,
- Industrial Employment (Standing orders) Act, 1946
- Employees' State Insurance (ESI) Act, 1948,
- Maternity Benefit Act, 1961
- Contract LabourAct,
- Shops and EstablishmentsAct
- Child Labour (Prohibition & Regulation) Act, 1986
- Industrial disputes act of1947

Unit6

- Minimum Wages Act, 1948
- Payment of Wages Act, 1936

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

Negotiations-Types of Negotiations-Problem solving attitude, Techniques of negotiation, negotiation process, essential skills for negotiation, Workers Participation in Management

Unit3

Trade Union

Trade Unions: Meaning, trade union movement in India, Objective, role and functions of the Trade Unions in Modern Industrial Society of India, Procedure for registration of Trade Unions, Grounds for the withdrawal and cancellation of registration, union structure, Rights and responsibilities of TUs, Problems of trade unions, Employee relations in ITsector

Unit5

Grievance procedure and Discipline management: Grievance - Meaning and forms, sources of grievance, approaches to grievance machinery,

manage discipline in Industry, Principles of Hot stoverule. **RECOMMENDED BOOKS:**

- Employee Relations Management, P N Singh, Singh P. N., Pearson Publications, 2011.

- Essentials of Human Resource Management and Industrial Relations, Subba Rao, 3rd

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in

(8Hours)

(24Hours) (16hours)

(8Hours)

(8Hours)

- Payment of Gratuity Act1972,
- Employees' Provident Fund and Miscellaneous Provisions Act1952;
- Payment of Bonus Act, 1965.
- Employees Compensation Act in2013

NO PRACTICAL COMPONENT

RECOMMENDED BOOKS:

- Labor Laws for Managers, BD Singh, Excel Books, 2009
- Industrial Relations and Labor laws, SC Srivatava, 5th Edition, VikasPublications.
- Elements of Mercantile Law N. D Kapoor, Sultan Chand, 2004.
- Industrial Relations and Labour Legislations, Piyali Ghosh & ShefaliNandan, TMH.
- Labor Industrial Laws, Dr. V. G. Goswami, Eighth Edition, Central Law Agency, Allahabad

REFERENCE BOOKS:

- Industrial Relations, Trade Unions &Labour Legislation, P R N Sinha et al, Pearson Education, 2004.
- BareActs
- Industrial Relations and labor laws, ArunMonappa, RanjeetNambudiri, PatturajuSelvaraj, TMH,1997.
- Industrial relations, trade unions and labor legislations, P R N Sinha, InduBala Sinha, Seema PriyadarshiniShekar, Pearson Education,2013.

RECRUITMENT & SELECTION

Subject Code	: 16MBA HR302	IAMarks 20
Number of Lecture Hours/Week	: 03	Exam Hours:03
Number of Lecture Hours	: 56	Exam Marks: 80
Practical Component	: 02 Hours/ Week	

Course Objectives:

To understand and apply the policies and procedures of recruitment

- To provide a conceptual framework of Selection Procedure in theIndustry.
- To understand the new concepts and techniques of recruitment and Selection in the Corporate.

Course Outcomes:

The students should be able to

- > Learn the various recruitment policies and procedures.
- > Equip with conceptual framework of selectionprocedures.
- > Gain insights of the latest concepts and techniques used in recruitment and selection.

Unit1:

(6 Hours)

Job Analysis: Meaning, definition and purpose. Methods of job analysis: job analysis interviews, job analysis questionnaire, task analysis inventory, position analysis questionnaire, subject expert

workshops, critical incident technique, Fleisclunann job analysis survey, functional job analysis, job element method, repertory grid, critical incident technique

Unit2:

Hiring Process & Hiring decision: Nature of hiring: regular, temporary, full time, part time, apprentice, contractual, and outsourcing, Existing post or new post to be created, Need analysis, cost analysis and job analysis.

Unit3:

Hiring internally: Meaning and definition of internal recruitment, Advantages and disadvantages in terms of cost, time, quality and suitability. Sources of internal recruitment: circulars, intranet advertisements, employee referrals, Appointment or promotion, Policy guidelines and union settlements.

Unit4:

External Hiring: Meaning and definition of external recruitment. Sources of recruitment:advertisement, in newspaper, TV/Radio, Internet, search on the internet, wanted signboards, consultants, employment exchange, campus recruitment, employee referrals and unsolicited applications. Advantages and disadvantages of the above sources in terms of cost, time, convenience, reach of the targeted population, and quality of applicant pool.

Job advertisement: drafting, size and contents. Contents of public sector recruitment: single or multiple sources and choosing the best source

Unit5: Screening the candidates: Application Forms: bio-data / resume / curriculum vitae and Weighted application blanks: meaning definition, purpose, advantages and disadvantages taking a Behavioral approach to recruitment: spotting personality patterns, making basic assumptions, Predicting the future, strategy Vs. Technique, Pinning down what is needed: targeted interviewing, focusing on behavior, assessing how person performs, assuming they have been hired. - Identifying the ingredients of success: the winning candidate's profile, challenges in the Interview, the starting point, day to day execution, dealing with people, the inner person, additional characteristics. Studying the CV.

Unit6:

Testing, Reference checking & Appointment orders: Meaning, definition, purpose,

advantages and disadvantages, Ability tests clerical ability test, mechanical ability test, mental ability test, physical ability test, personality assessment test, typing test, shorthand test,

computer proficiency test Interviewing: Planning the interview, Interview process - Interview in public sector undertaking. Statutory requirements.

Reference checking: meaning, definition and purpose. Verification of character, criminal antecedents, previous work behavior and education qualifications. Verification of community certificates in public sectorcompanies.

Appointment orders: Meaning, definition, and purpose. Contents of appointment letter, hard copy (or softcopy),

Practical Components:

Students need to identify two jobs in the college and need to do job analysis for those • positions using any of the job analysismethods.

(7Hours)

(10 Hours)

(9 Hours)

(8Hours)

(16Hours)

- In teams students can be asked to give presentations about various types of jobs (regular, temporary, full time, part time, apprentice, contractual, and outsourcing) in different industries along with its advantages and isadvantages
- In Teams, select and analyze any two of the Job postings advertisements in Newspapers to know more about job description and job specification mentioned in each advertisement for every post.
- Obtain online access to the resume data base of Naukri.com or Monsterindia.com for a week give at least four Job Descriptions and specification to each student, to search and download from the data base at least five resumes for eachpositions.
- Students can identify 4 or 5 jobs of their interest and can create Advertisements for the same imaging that they are Proprietors of the companies and hiring for these positions.
- Debate on Advantages and disadvantages of hiring external and Internal for the selected jobs like
- Police Constable, Doctor, CEO, Mechanical Engineer, Professoretc.,
- Role play: Students can do the role play for the entire process of hiring and selecting 3 or 4 selected roles in a specificindustry.

RECOMMENDED BOOKS:

- Human Resource Selection, Robert D. Gatewood and Hubert S. I, South western Cengage Learning, Mason, Ohio,2001.
- Recruitment and Selection -Theory and Practice. Dipak kumar Bhattacharya Cengage Learning.
- StaffingOrganization,HerbertG.HenemanIII,TimothyA.Judge,5thEdition,McGraw Hill International.
- Recruitment and Selection, Elearn, Revised Edition, Routledge, 2009.
- Online Recruiting and Selection: Innovations in Talent Acquisition, Douglas H. Reynolds, John A. Weiner, John Wiley & Sons,2009.
- Effective Recruitment and Selection Practices, R. L. Compton, William J. Morrissey, Alan R. Nankervis, Bill Morrissey, CCH Australia Limited, 2009.

REFERENCE BOOKS:

- Employee Selection, Lilly M Berry, 1 edition, Cengage Learning, 2002.
- Hiring & keeping the best people, HBS Press, 2013, ISBN: 1422131785,9781422131787
- Human Resource Planning, Dipak Kumar Bhattacharyya, 2nd edition, Excel Books, 2009, ISBN: 8174464980,9788174464989
- High performance hiring by Robert W. Wendover, Crisp Publication, California, 1991.

CONCRETE TECHNOLOGY (COMMON TO CV/TR/CTM)

Sub Code	:	10 CV 42	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	÷	03
Total Hrs.	:	52	Exam Marks	:	100

$\mathbf{PART} - \mathbf{A}$

Unit-1

Cement, Chemical composition, hydration of cement, Types of cement, manufacture of OPC by wet and dry, process (flow charts only) Testing of cement - Field testing, Fineness by sieve test and Blaine's air permeability test, Normal consistency, testing time, soundness, Compression strength of cement and grades of cement, Quality of mixing water. -7 Hours Unit-2

Fine aggregate - grading, analysis, Specify gravity, bulking, moisture content, deleterious materials. Coarse aggregate – Importance of size, shape and texture.Grading of aggregates - Sieve analysis, specific gravity, Flakiness and elongation index, crushing, impact and abrasion tests. - 6 Hours **Unit-3**

www.universityupdates.in // www.android.universityupdates.in

Workability - factors affecting workability, Measurement of workability slump, flow tests, Compaction factor and vee-bee consistometer tests, Segregation and bleeding, Process of manufactures of concrete : Batching, Mixing, Transporting, Placing, Compaction, Curing. -7 Hours **Unit-4**

Chemical admixtures - plasticizers, accelerators, retarders and air entraining agents, Mineral admixtures - Fly ash, Silica fumes and rice husk ash.

-6 Hours

Part-B

Unit-5

Factors affecting strength, w/c ratio, gel/space ratio, maturity concept, Effect of aggregate properties, relation between compressive strength, and tensile strength, bond strength, modulus of rupture, Accelerated curing, aggregate - cement bond strength, Testing of hardened concrete - compressive strength, split tensile strength, Flexural strength, factors influencing strength test results. - 6Hours

Unit-6

Elasticity - Relation between modulus of elasticity and Strength, factors affecting modulus of elasticity, Poisson , Ratio, Shrinkage - plastic shrinkage and drying shrinkage, Factors affecting shrinkage, Creep - Measurement of creep, factors affecting creep, effect of creep, -7 Hours

Unit-7

Durability - definition, significance, permeability, Sulphate attack, Chloride attack, carbonation, freezing and thawing, Factors contributing to cracks in concrete - plastic shrinkage, settlement cracks, construction joints, Thermal expansion, transition zone, structural design deficiencies, - 6 Hours **Unit-8**

Concept of Concrete Mix design, variables in proportioning, exposure conditions, Procedure of mix design as per IS 10262-1982, Numerical examples of Mix Design -7 Hours

TEXT BOOKS:

1. "Concrete Technology" - Theory and Practice, M.S.Shetty, S.Chand and Company, New Delhi, 2002.

REFERENCES :

1. "Properties of Concrete"Neville, A.M.:, ELBS, London

2. "Concrete Technology" – A.R.Santakumar. Oxford University Press (2007)'

3. "Concrete Manual" - Gambhir Dhanpat Rai & Sons, New Delhi.

4. "Concrete Mix Design" - N.Krishna Raju, Sehgal - publishers.

5. "Recommended guidelines for concrete mix design" - IS:10262,BIS Publication

STRUCTURAL ANALYSIS –I (COMMON TO CV/TR)

Sub Code	:	10 CV 43	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

STRUCTURAL SYSTEMS AND ENERGY CONCEPT

1.1 Forms of structures, 1.2 Conditions of equilibrium, 1.3 Degree of freedom, 1.4 Linear and Non linear structures, 1.5 One, two, three dimensional structural systems, 1.6 Determinate and indeterminate structures [Static and Kinematics]. 1.7 Strain energy and complimentary strain energy, 1.8 Strain energy due to axial load, bending and shear, 1.9 Theorem of minimum potential energy, 1.10 Law of conservation of energy, 1.11 Principle of virtual work,

UNIT 2: DEFLECTION OF BEAMS

2.1 Moment area method, 2.2 Conjugate beam method

UNIT 3:

DEFLECTION OF BEAMS AND FRAMES BY STRAIN ENERGY

3.1 The first and second theorem of Castigliano, problems on beams, frames and trusses, 3.2 Betti's law, 3.3 Clarke - Maxwell's theorem of reciprocal deflection.

7 Hours

UNIT 4:

ANALYSIS OF BEAMS AND PLANE TRUSSES BY STRAIN ENERGY

4.1 Analysis of beams (Propped cantilever and Fixed beams) and trusses using strain energy and unit load methods

7 Hours

7 Hours

6 Hours

PART – B

UNIT 5: ARCHES AND CABLES

5.1 Three hinged circular and parabolic arches with supports at same levels and different levels, 5.2 Determination of thrust, shear and bending moment, 5.3 Analysis of cables under point loads and UDL, length of cables (Supports at same levels and at different levels).

6 Hours

UNIT 6: ANALYSIS OF BEAMS

6.1 Consistent deformation method - Propped cantilever and fixed beams

6 Hours

UNIT 7:

7.1 Clapeyron's theorem of three moments - continuous beams and fixed beams

6 Hours

UNIT 8:

ANALYSIS OF ARCHES

8.1 Two hinged parabolic arch, 8.2 Two hinged Circular Arch

7 Hours

TEXT BOOKS:

- 1. Theory of Structures, Pandit and Guptha, Vol. I, Tata McGraw Hill, New Delhi.
- 2. Basic Structural Analysis Reddy C. S., Tata McGraw Hill, New Delhi.
- 3. Strength of Materials and theory of structures Vol I & II, B.C. Pumia , R.K., Jain Laxmi Publication New Delhi

REFERENCE BOOKS:

- 1. **Elementary Structural Analysis**, Norris and Wilbur, International Student Edition. McGraw Hill Book Co: New York
- 2. **Structural Analysis**, 4th SI Edition by Amit Prasanth & Aslam Kassimali, Thomson Learning.
- 3. Analysis of Structures, Thandava Murthy, Oxford University Press, Edition 2005.

SURVEYING – II (COMMON TO CV/TR/EV/CTM)

Sub Code	:	10 CV 44	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1: THEODOLITE SURVEY

1.1 Thedolite and types, 1.2 Fundamental axes and parts of a transit theodolite, 1.3 Uses of theodolite, 1.4 Temperary adjustments of a transit thedolite, 1.5 Measurement of horizontal angles – Method of repetitions and reiterations, 1.6 Measurements of vertical angles, 1.7 Prolonging a straight line by a theodolite in adjustment and theodolite not in adjustment

6 Hours

UNIT 2: PERMANENT ADJUSTMENT OF DUMPY LEVEL AND TRANSIT THEODOLITE

2.1 Interrelationship between fundamental axes for instrument to be in adjustment and step by step procedure of obtaining permanent adjustments

7 Hours

UNIT 3:

TRIGONOMETRIC LEVELING

3.1 Determination of elevation of objects when the base is accessible and inaccessible by single plane and double plane method, 3.2 Distance and difference in elevation between two inaccessible objects by double plane method. Salient features of Total Station, Advantages of Total Station over conventional instruments, Application of Total Station.

8 Hours

UNIT 4: TACHEOMETRY

4.1 Basic principle, 4.2 Types of tacheometric survey, 4.3 Tacheometric equation for horizontal line of sight and inclined line of sight in fixed hair method, 4.4 Anallactic lens in external focusing telescopes, 4.5 Reducing the constants in internal focusing telescope, 4.6 Moving hair method and

tangential method, 4.7 Subtance bar, 4.8 Beaman stadia arc.

7 Hours

PART – B

UNIT 5:

CURVE SETTING (Simple curves)

5.1 Curves – Necessity – Types, 5.2 Simple curves, 5.3 Elements, 5.4 Designation of curves, 5.5 Setting out simple curves by linear methods, 5.6 Setting out curves by Rankines deflection angle method.

6 Hours

UNIT 6:

CURVE SETTING (Compound and Reverse curves)

6.1 Compound curves 6.2 Elements 6.3 Design of compound curves 6.4 Setting out of compound curves 6.5 Reverse curve between two parallel straights (Equal radius and unequal radius).

6 Hours

UNIT 7:

CURVE SETTING (Transition and Vertical curves)

7.1 Transition curves 7.2 Characteristics 7.3 Length of Transition curve 7.4 Setting out cubic Parabola and Bernoulli's Lemniscates, 7.5 Vertical curves – Types – Simple numerical problems.

6 Hours

UNIT 8: AREAS AND VOLUMES

8.1 Calculation of area from cross staff surveying, 8.2 Calculation of area of a closed traverse by coordinates method. 8.3 Planimeter – principle of working and use of planimeter to measure areas, digital planimeter, 8.4 Computations of volumes by trapezoidal and prismoidal rule, 8.5 Capacity contours

6 Hours

TEXT BOOKS:

1. 'Surveying' Vol 2 and Vol 3 - B. C. Punmia, Laxmi Publications 2. 'Plane Surveying' A. M. Chandra – New age international (P) Ltd

3. 'Higher Surveying' A.M. Chandra – New age international (P) Ltd

REFERENCE BOOKS:

1. **Fundamentals of Surveying** - Milton O. Schimidt – Wong, Thomson Learning.

DESIGN OF RCC STRUCTURAL ELEMENTS

Subject Code	: 10CV52	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

GENERAL FEATURES OF REINFORCED CONCRETE: Introduction, Design Loads, Materials for Reinforced Concrete and Code requirements. Design Philosophy – Limit State Design principles. Philosophy of limit state design, Principles of limit states, Factor of Safety, Characteristic and design loads, Characteristic and design strength.

6 Hours

UNIT - 2

PRINCIPLES OF LIMIT STATE DESIGN AND ULTIMATE STRENGTH OF R.C. SECTION: General aspects of Ultimate strength, Stress block parameters for limit state of collapse, Ultimate flexural strength of singly reinforced rectangular sections, Ultimate flexural strength of doubly reinforced rectangular sections, Ultimate flexural strength of flanged sections, Ultimate shear strength of RC sections, Ultimate torsional strength of RC sections, Concepts of development length and anchorage, Analysis examples of singly reinforced, doubly reinforced, flanged sections, shear strength and development length.

7 Hours

UNIT - 3

FLEXURE AND SERVICEABILITY LIMIT STATES: General Specification for flexure design of beams-practical requirements, size of beam, cover to reinforcement-spacing of bars. General aspects of serviceability-Deflection limits in IS: 456 – 2000-Calculation of deflection (Theoretical method), Cracking in structural concrete members, Calculation of deflections and crack width.

6 Hours

DESIGN OF BEAMS: Design procedures for critical sections for moment and shears. Anchorages of bars, check for development length, Reinforcement requirements, Slenderness limits for beams to ensure lateral stability, Design examples for Simply supported and Cantilever beams for rectangular and flanged sections.

PART - B

UNIT - 5

DESIGN OF SLABS: General consideration of design of slabs, Rectangular slabs spanning one direction, Rectangular slabs spanning in two directions for various boundary conditions. Design of simply supported, cantilever and continuous slabs as per IS: 456 – 2000.

UNIT - 6

DESIGN OF COLUMNS: General aspects, effective length of column, loads on columns, slenderness ratio for columns, minimum eccentricity, design of short axially loaded columns, design of column subject to combined axial load and uniaxial moment and biaxial moment using SP - 16 charts.

5 Hours

8 Hours

UNIT - 7

DESIGN OF FOOTINGS: Introduction, load for footing, Design basis for limit state method, Design of isolated rectangular footing for axial load and uniaxial moment, design of pedestal.

6 Hours

UNIT - 8

DESIGN OF STAIR CASES: General features, types of stair case, loads on stair cases, effective span as per IS code provisions, distribution of loading on stairs, Design of stair cases. With waistslabs.

6 Hours

REFERENCE BOOKS:

- 1. Limit State Design of Reinforced concrete-by P.C. Varghese, PHI Learning Private Limited 2008-2009
- **2. Fundamentals of Reinforced concrete Design-**by M.L.Gambhir, PHI Learning Private Limited 2008-2009.
- **3. Reinforced concrete Design-**by Pallai and Menon, TMH Education Private Limited,
- **4. Reinforced concrete Design-**by S.N.Shinha, TMH Education Private Limited,

38

UNIT - 4

8 Hours

Reinforced concrete Design-by Karve & Shaha, Structures Publishers Pune.

- Design of RCC Structural Elements S. S. Bhavikatti, Vol-I, New Age International Publications, New Delhi.
- 7. IS-456-2000 and SP-16

GEOTECHNICAL ENGINEERING - I

Subject Code	: 10CV54	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT-1

INTRODUCTION: History of soil mechanics, Definition, origin and formation of soil. Phase Diagram, Voids ratio, Porosity, Percentage Air Voids, Air content, Degree of saturation, Water content, Specific Gravity of soil solids and soil mass, Densities and Unit weights - Bulk, Dry, Saturated & Submerged and their inter relationships.

6 Hours

UNIT - 2

INDEX PROPERTIES OF SOIL AND THEIR DETERMINATION: Index Properties of soil- Water content, Specific Gravity, Particle size distribution, Relative Density, Consistency limits and indices, in-situ density, Activity of Clay, Laboratory methods of determination of index properties of soil: Water content (Oven Drying method & Rapid Moisture method), Specific gravity of soil solids (Pycnometer and density bottle method), Particle size distribution (Sieve analysis and Hydrometer analysis only), Liquid Limit- (Casagrande and Cone penetration methods), Plastic limit and shrinkage limit.

7 Hours

UNIT - 3

CLASSIFICATION OF SOILS: Purpose of soil classification, Particle size classification – MIT classification and IS classification, Textural classification. IS classification - Plasticity chart and its importance, Field identification of soils.

CLAY MINERALOGY AND SOIL STUCTURE: Single grained, honey combed, flocculent and dispersed structures, Valence bonds, Soil-Water system, Electrical diffuse double layer, adsorbed water, base-exchange capacity, Isomorphous substitution. Common clay minerals in soil and their structures- Kaolinite, Illite and Montmorillonite.

8 Hours

UNIT - 4

FLOW OF WATER THROUGH SOILS: Darcy's law- assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified soils, Seepage

velocity, Superficial velocity and coefficient of percolation, quick sand phenomena, Capillary Phenomena.

6 Hours

PART - B

UNIT - 5

SHEAR STRENGTH OF SOIL: Concept of shear strength, Mohr-coulomb theory, conventional and modified failure envelops, Effective stress concept-total stress, effective stress and Neutral stress, Concept of pore pressure, Total and effective shear strength parameters, factors affecting shear strength of soils, Sensitivity and Thixotropy of clay.

7 Hours

UNIT - 6

COMPACTION OF SOIL: Definition, Principle of compaction, Standard and Modified proctor's compaction tests, factors affecting compaction, effect of compaction on soil properties, Field compaction control – compactive effort & method, lift thickness and number of passes, Proctor's needle, Compacting equipment.

UNIT - 7

6 Hours

CONSOLIDATION OF SOIL: Definition, Mass-spring analogy, Terzaghi's one dimensional consolidation theory-assumption and limitations (no derivation), Normally consolidated, under consolidated and over consolidated soils, pre-consolidation pressure and its determination by Casagrande's method. Consolidation characteristics of soil (C_c , a_v , m_v and C_v).

UNIT-8

DETERMINATION OF SHEAR STRENGTH AND CONSOLIDATION OF SOIL: Measurement of shear parameters- Direct shear test, unconfined compression test, Triaxial compression test and vane shear test, Test under different drainage conditions.

Laboratory one dimensional consolidation test, Determination of consolidation characteristics of soils-compression index and coefficient of consolidation (square root of time fitting method, logarithmic time fitting method).

6 Hours

TEXT BOOKS:

- 1. Soil Mechanics and Foundation Engg.- Punmia B.C. (2005), 16th Edition Laxmi Publications Co., New Delhi.
- 2. **Principles of Soil Mechanics and Foundation Engineering**-Murthy V.N.S. (1996), 4th Edition, UBS Publishers and Distributors, New Delhi.

3. Geotechnical Engineering; Braja, M. Das (2002), Fifth Edition, Thomson Business Information India (P) Ltd., India

REFERENCES BOOKS:

- 1. Foundation Analysis and Design- Bowles J.E. (1996), 5th Edition, McGraw Hill Pub. Co. New York.
- Soil Engineering in Theory and Practice- Alam Singh and 2. Chowdhary G.R. (1994), CBS Publishers and Distributors Ltd., New Delhi.
- 3. Basic and Applied Soil Mechanics- Gopal Ranjan and Rao A.S.R. (2000), New Age International (P) Ltd., Newe Delhi.
- 4. Geotechnical Engineering- Donold P Coduto Phi Learning Private Limited, New Delhi
- 5. Geotechnical Engineering- Shashi K. Gulathi & Manoj Datta. (2009), "Tata Mc Graw Hill.
- 6. Text Book of Geotechnical Engineering- Iqbal H. Khan (2005), 2nd Edition, PHI, India.
- 7. Numerical Problems, Examples and objective questions in Geotechnical Engineering- Narasimha Rao A. V. & Venkatrahmaiah C. (2000), Universities Press., Hyderabad.

Hydrology and Irrigation Engineering

Hydro	logy and Irrig	gation Engine	eering	
Sub Code	10CV55	IA Marks	<mark>: 25</mark>	
Hrs/ Week	<mark>: 04</mark>	Exam Hours	<mark>: 03</mark>	
<mark>Total Hrs.</mark>	<mark>: 52</mark>	<mark>Exam Marks</mark>	<mark>: 100</mark>	
	PAR	T-A		
	HYDRO	DLOGY		
Sub Code Hrs/ Week Total Hrs.	: 10CV55 : 04 : 52 PAR HYDRO	IA Marks Exam Hours Exam Marks T-A DLOGY	25 03 100	

PART-A HYDROLOGY

UNIT 1: INTRODUCTION & PRECIPITATION

Introduction ,Hydrologic cycle (Horton's representation). Water budget equation

Precipitation: introduction, forms of precipitation, types of precipitation, measurement of precipitation (Simon's gauge & Syphon gauge only), selection of rain gauge station. Adequacy of raingauges, methods of computing average rainfall, interpolation of missing data, adjustment of missing data by double mass curve method. Hyetograph and mass curve of 07 hrs rainfall,

UNIT 2 : LOSSES FROM PRECIPITATION

Evaporation: Definition, factors affecting, measurement (Class A pan). Estimation using empirical methods (Meyer's and Rohwer's equation), evaporation control.

Evapo-transpiration: Definition, factors affecting, measurement, estimation (Blaney criddle method)

Infiltration: Definition, factors affecting, measurement (double ring infiltrometer), infiltration indices, Horton's equation of infiltration. 07 hrs

UNIT 3: HYDROGRAPHS

Definition, components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, Prepositions of unit hydrograph- problems

06 hrs

UNIT 4: ESTIMATION OF FLOOD & FLOOD ROUTING Definition of flood, factors affecting flood, methods of estimation (envelope curves, empirical formulae, rational method).

Flood routing: Introduction to hydrological routing, relationship of out flow and storage, general storage equation, Muskingum routing method. 07 hrs

PART-B

IRRIGATION ENGINEERING

UNIT 5 : INTRODUCTION

Introduction, need for irrigation, advantages and disadvantages of irrigation, environmental impacts of irrigation, Systems of irrigation: Gravity irrigation, lift irrigation, well irrigation, tube well irrigation, infiltration galleries, sewage irrigation, supplemental irrigation.

06 hrs

UNIT 6: SOIL-WATER-CROP RELATIONSHIP

Introduction, soil profile, physical properties of soil, soil classification. Indian soils, functions of irrigation soils, maintaining soil fertility, soil-water-plant relationship, soilmoisture. Irrigation relationship, frequency of irrigation. 06 hrs

UNIT 7: WATER REQUIREMENT OF CROPS Introduction, definitions, crop seasons of India, water requirement of a crop, duty, delta, base period. Consumptive use. Irrigation efficiencies. Assessment of irrigation water.

07 hrs

Unit 8: Canals

Definition, Types of canals, Alignment of canals, Design of canals by Kenedy's and Lacey's methods- Problems 06 hrs

TEXT BOOKS:

- Engineering Hydrology Subramanya.K; Tata Mcgraw Hill NewDelhi-2008 (Ed)
- 2. Hydrology- Madan Mohan Das, Mim Mohan Das-PHI Learning private Ltd. New Delhi-2009 (Ed)
- A Text Book Of Hydrology- Jayarami Reddy, Laksmi Publications, New Delhi-2007 (Ed)
- Irrigation, water Resources and water power Engineering- P.N.Modi- standard book house, New Delhi.
- Irrigation and Water Power Engineering-Madan Mohan Das & Mimi Das Saikia; PHILearning pvy. Ltd. New Delhi 2009 (Ed).

REFERENCE BOOKS:

- Hydrology & Soil Conservation Engineering-Ghanshyam Das- PHI Learning Private Ltd., New Delhi-2009 (Ed)
- 2. Hydrology & Water Resources Engineering- Patra K.C. Narosa Book Distributors Pvt. Ltd. New Delhi-2008 (Ed)
- Hydrology & Water Resources Engineering-R.K.Sharma & Sharma, Oxford and Ibh, New Delhi
- 4. Irrigation Engineering and Hydraulic structures- S. K. garg- Khanna Publication, New Delhi.

TRANSPORTATION ENGINEERING I

Subject Code		:10CV56
I A Marks	:25	
No. of lecture Hours/week		:04
Exam Hours	:03	
Total No. of Lecture Hours		:52
Exam Marks	:100	

<u>PART – A</u>

UNIT - 1

PRINCIPLES OF TRANSPORTATION ENGINEERING: Importance of transportation, Different modes of transportation and comparison, Characteristics of road transport Jayakar committee recommendations, and implementation – Central Road Fund, Indian Roads Congress, Central Road Research Institute

04 Hrs

UNIT - 2

HIGHWAY DEVELOPMENT AND PLANNING: Road types and classification, road patterns, planning surveys, master plan – saturation system of road planning, phasing road development in India, problems on best alignment among alternate proposals Salient Features of 3rd and 4th twenty year

road development plans and Policies, Present scenario of road development in India (NHDP & PMGSY) and in Karnataka (KSHIP & KRDCL) Road development plan - vision 2021.

06 Hrs

UNIT - 3

HIGHWAY ALIGNMENT AND **SURVEYS:** Ideal Alignment, Factors affecting the alignment, Engineering surveys-Map study, Reconnaissance, Preliminary and Final location & detailed survey, Reports and drawings for new and re-aligned projects 04 Hrs HIGHWAY GEOMETRIC DESIGN - I: Importance, Terrain classification, Design speed, Factors affecting geometric design, Cross sectional elements-Camber- width of pavement-Shoulders-, Width of formation- Right of way, Typical cross sections 05 Hrs

UNIT - 4

HIGHWAY GEOMETRIC DESIGN – II: Sight Distance-Restrictions to sight distance- Stopping sight distance-Overtaking sight distance- overtaking zones- Examples on SSD and OSD- Sight distance at intersections, Horizontal alignment-Radius of Curve- Superelevation – Extra widening-Transition curve and its length, setback distance – Examples, Vertical alignment-Gradient-summit and valley curves with examples. 07 Hrs

<u> PART - B</u>

UNIT - 5

PAVEMENT MATERIALS: Subgrade soil - desirable properties-HRB soil classification-determination of CBR and modulus of subgrade reaction-Examples on CBR and Modulus of subgrade reaction, **Aggregates-** Desirable properties and list of tests, **Bituminous materials**-Explanation on Tar, bitumen,cutback and emulsion-List of tests on bituminous materials **06 Hrs**

UNIT - 6

PAVEMENT DESIGN: Pavement types, component parts of flexible and rigid pavements and their functions, design factors, ESWL and its determination-Examples, **Flexible pavement**-Design of flexible pavements as per IRC;37-2001-Examples, **Rigid pavement**- Westergaard's equations for load and temperature stresses- Examples- Design of slab thickness only as per IRC:58-2002

06 Hrs

UNIT – 7

PAVEMENT CONSTRUCTION: Earthwork –cutting-Filling, Preparation of subgrade, Specification and construction of i) Granular Subbase, ii) WBM Base, iii) WMM base, iv) Bituminous Macadam, v) Dense Bituminous Macadam vi) Bituminous Concrete, vii) Dry Lean Concrete sub base and PQC viii) concrete roads 05

Hrs

HIGHWAY DRAINAGE: Significance and requirements, Surface drainage system and design-Examples, sub surface drainage system, design of filter materials

03 Hrs

UNIT – 8

HIGHWAY ECONOMICS: Highway user benefits, VOC using charts only-Examples, Economic analysis - annual cost method-Benefit Cost Ratio method-NPV-IRR methods-Examples, Highway financing-BOT-BOOT concepts

06 Hrs

TEXT BOOKS:

1. Highway Engineering – S K Khanna and C E G Justo, Nem Chand Bros, Roorkee

2. Highway Engineering - L R Kadiyali, Khanna Publishers, New Delhi

- **3. Transportation Engineering** K P Subramanium, Scitech Publications, Chennai
- 4. Transportation Engineering James H Banks, Mc. Graw. Hill Pub. New Delhi
- Highway Engineeering –R. Sreenivasa Kumar, University Press. Pvt.Ltd. Hyderabad

REFERENCE BOOKS:

- 1. Relevant IRC Codes
- 2. Specifications for Roads and Bridges-MoRT&H, IRC, New Delhi.
- 3. Transportation Engineering C. Jotin Khisty, B. Kent lal, PHI Learning Pvt. Ltd. New Delhi.

VI SEMESTER

ENVIRONMENTAL ENGINEERING-I

Subject Code	: 10CV61	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

Part - A

Unit - 1

INTRODUCTION: Human activities and environmental pollution. Water for various beneficial uses and quality requirement. Need for protected water supply.

2 Hours

DEMAND OF WATER: Types of water demands- domestic demand in detail, institutional and commercial, public uses, fire demand. Per capita consumption –factors affecting per capita demand, population forecasting, different methods with merits &demerits- variations in demand of water. Fire demand – estimation by Kuichling's formula, Freeman formula & national board of fire underwriters formula, peak factors, design periods & factors governing the design periods

6 Hours

Unit - 2

SOURCES: Surface and subsurface sources – suitability with regard to quality and quantity.

3 Hours

COLLECTION AND CONVEYANCE OF WATER: Intake structures – different types of intakes; factor of selection and location of intakes. Pumps- Necessity, types – power of pumps; factors for the selection of a pump. Pipes – Design of the economical diameter for the rising main; Nomograms – use; Pipe appurtenances.

6 Hours

Unit - 3

QUALITY OF WATER: Objectives of water quality management. wholesomeness & palatability, water borne diseases. Water quality parameters – Physical, chemical and Microbiological. Sampling of water for examination. Water quality analysis (IS: 3025 and IS: 1622) using analytical and instrumental techniques. Drinking water

standards BIS & WHO guidelines. Health significance of Fluoride, Nitrates and heavy metals like Mercury, Cadmium, Arsenic etc. and toxic / trace organics.

6 Hours

Unit - 4 WATER TREATMENT: Objectives – Treatment flow-chart. Aeration-Principles, types of Aerators.

Hours

SEDIMENTATION: Theory, settling tanks, types, design. Coagulant aided sedimentation, jar test, chemical feeding, flash mixing, and clariflocculator.

Hours

Part - B

Unit - 5

FILTRATION: Mechanism – theory of filtration, types of filters, slow sand, rapid sand and pressure filters including construction, operation, cleaning and their design – excluding under drainage system – back washing of filters. Operational problems in filters.

6 Hours

4

2

4

Unit - 6

DISINFECTION: Theory of disinfection, types of disinfection, Chlorination, chlorine demand, residual chlorine, use of bleaching powder. UV irradiation treatment – treatment of swimming pool water

Hours

SOFTENING – definition, methods of removal of hardness by lime soda process and zeolite process RO & Membrane technique.

3 Hours

Unit - 7

MISCELLANEOUS TREATMENT: Removal of color, odor, taste, use of copper sulfate, adsorption technique, fluoridation and defluoridation.

4 Hours

DISTRIBUTION SYSTEMS: System of supply, service reservoirs and their capacity determination, methods of layout of distribution systems.

4

Hours

Unit - 8

MISCELLANEOUS: Pipe appurtenances, various valves, type of fire hydrants, pipefitting, Layout of water supply pipes in buildings.

2

Hours

TEXT BOOKS:

- 1. Water supply Engineering –S.K.Garg, Khanna Publishers
- 2. Environmental Engineering I B C Punima and Ashok Jain
- 3. Manual on Water supply and treatment –CPHEEO, Minstry of Urban Development, New Delhi

REFERENCES

1. Hammer, M.J., (1986), Water and Wastewater Technology –SI Version, 2nd

Edition, John Wiley and Sons.

2. Karia, G.L., and Christian, R.A., (2006), **Wastewater Treatment – Concepts** and **Design Approach**, Prentice Hall of India Pvt. Ltd., New Delhi.

3. Metcalf and Eddy, (2003), **Wastewater Engineering, Treatment and Reuse**, 4th Edition, Tata McGraw Hill Edition, Tata McGraw Hill Publishing Co. Ltd.

4. Peavy, H.S., Rowe, D.R., and Tchobanoglous, G., (1986), **Environmental Engineering**–Mc Graw Hill Book Co.

5. Raju, B.S.N., (1995), **Water Supply and Wastewater Engineering, T**ata McGraw Hill Pvt. Ltd., New Delhi.

6. Sincero, A.P., and Sincero, G.A., (1999), **Environmental Engineering – A Design Approach**–Prentice Hall of India Pvt. Ltd., New Delhi.

GEOTECHNICAL ENGINEERING - II

Subject Code	: 10CV64	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

SUBSURFACE EXPLORATION: Importance of exploration program, Methods of exploration: Boring, Seismic refraction method of grophysical exploration, Types of samples undisturbed, disturbed and representative samples, Samplers, sample disturbance, area ratio, Recovery ratio, clearance, Stabilisation of boreholes - Typical bore log. Number and depth of borings for various civil engineering structures, soil exploration report.

DRAINAGE AND DEWATERING: Determination of ground water level by Hvorselev's method, Control of ground water during excavation: Dewatering - Ditches and sumps, well point system, Vacuum method, Electro- Osmosis method.

8 Hours

UNIT - 2

UNIT - 3

UNIT - 4

STRESSES IN SOILS: Boussinesq's and Westergaard's theories for concentrated, circular and rectangular loads. Comparison of Boussinesq's and westergaard's analysis. Pressure distribution diagrams, Contact pressure, Newmark's chart.

Hours

6

FLOWNETS: Laplace equation (no derivation) assumptions and limitations only, characteristics and uses of flownets, Methods of drawing flownets for Dams and sheet piles. Estimating quantity of seepage and Exit gradient. Determination of phreatic line in earth dams with and without filter. Piping and protective filter.

5 Hours

LATERAL EARTH PRESSURE: Active and Passive earth pressures, Earth pressure at rest. Rankine's and Coulomb's Earth pressure theories--assumptions and limitations, Graphical solutions for active earth pressure (cohesionless soil only) – Culmann's and Rebhann's methods, Lateral earth pressure in cohesive and cohesionless soils, Earth pressure distribution.

7 Hours PART - B

UNIT - 5

STABILITY OF EARTH SLOPES: Types of slopes, causes and type of failure of slopes. Definition of factor of safety, Stability of infinite slopes, Stability of finite slopes by Method of slices and Friction Circle method, Taylor's stability number, Fellineous method,.

7 Hours

UNIT - 6

BEARING CAPACITY: Definitions of ultimate, net and safe bearing capacities, Allowable bearing pressure. Terzaghi's and Brinch Hansen's bearing capacity equations assumptions and limitations, Bearing capacity of footing subjected to eccentric loading. Effect of ground water table on bearing capacity. Field methods of evaluation of bearing capacity - Plate load test, Standard penetration test and cone penetration test.

8 Hours

UNIT - 7

FOUNDATION SETTLEMENT: Importance and Concept of Settlement Analysis, Immediate, Consolidation and Secondary settlements (no derivations, but, computation using relevant formula for Normally Consolidated soils), Tolerance. BIS specifications for total and differential settlements of footings and rafts.

5 Hours

UNIT – 8

PROPORTIONING SHALLOW AND PILE FOUNDATIONS

Allowable Bearing Pressure, Factors influencing the selection of depth of foundation, Factors influencing Allowable Bearing Pressure, Factors influencing the choice of foundation, Proportioning isolated, combined, strip and mat foundations, Classification of pile foundation, Pile load capacity, Proportioning pile foundation.

6 Hours

TEXT BOOKS:

- 1. Soil Engineering in Theory and Practice- Alam Singh and Chowdhary G.R. (1994), CBS Publishers and Distributors Ltd., New Delhi.
- Soil Mechanics and Foundation Engg.- Punmia B.C. (2005), 16th Edition Laxmi Publications Co., New Delhi. REFERENCES BOOKS:
- 1. Foundation Analysis and Design- Bowles J.E. (1996), 5th Edition, McGraw Hill Pub. Co. New York.

- Soil Mechanics and Foundation Engineering- Murthy V.N.S. (1996), 4th Edition, UBS Publishers and Distributors, New Delhi.
- 3. Basic and Applied Soil Mechanics- Gopal Ranjan and Rao A.S.R. (2000), New Age International (P) Ltd., Newe Delhi.
- Geotechnical Engineering- Venkatrahmaiah C. (2006), 3rd Edition New Age International (P) Ltd., Newe Delhi.
- Soil Mechanics- Craig R.F. (1987), Van Nostrand Reinhold Co. Ltd.
- Principles of Geotechnical Engineering- Braja M. Das (2002), 5th Edition, Thomson Business Information India (P) Ltd., India.
- Text Book of Geotechnical Engineering- Iqbal H. Khan (2005), 2nd Edition, PHI, India.

ALTERNATIVE BUILDING MATERIALS AND TECHNOLOGIES

Subject Code	: 10CV662	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

- **INTRODUCTION:** 1. Energy in building materials
- 2. Environmental issues concerned to building materials
- 3. Global warming and construction industry
- 4. Environmental friendly and cost effective building technologies.
- 5. Requirements for building of different climatic regions.
 - 6. Traditional building methods and vernacular architecture.

6 Hours

UNIT - 2

ALTERNATIVE BUILDING MATERIALS:

- 1. Characteristics of building blocks for walls
- 2. Stones and Laterite blocks
- 3. Bricks and hollow clay blocks
- 4. Concrete blocks
- 5. Stabilized blocks: Mud Blocks, Steam Cured Blocks, Fal-G Blocks and Stone Masonry Block

6 Hours

UNIT - 3 LIME-POZZOLANA CEMENTS

- 1. Raw materials
- 2. Manufacturing process
- 3. Properties and uses
- 4. Fibre reinforced concretes
- 5. Matrix materials
- 6. Fibers : metal and synthetic
- 7. Properties and applications
- 8. Fibre reinforced plastics
- 9. Matrix materials
- 10. Fibers : organic and synthetic
- 11. Properties and applications
- 12. Building materials from agro and industrial wastes
- 13. Types of agro wastes

14. Types of industrial and mine wastes

- 15. Properties and applications
 - 16. Field quality control test methods

6 Hours

UNIT - 4 ALTERNATIVE BUILDING TECHNOLOGIES

- 1. Alternative for wall construction
- 2. Types
- 3. Construction method
- 4. Masonry mortars
- 5. Types
- 6. Preparation
- 7. Properties
- 8. Ferrocement and ferroconcrete building components
- 9. Materials and specifications
- 10. Properties
- 11. Construction methods
- 12. Applications
- 13. Alternative roofing systems
- 14. Concepts
- 15. Filler slabs
- 16. Composite beam panel roofs

17. Masonry vaults and domes

8 ours

PART - B

STRUCTURAL MASONRY

- 1. Compressive strength of masonry elements
- 2. Factors affecting compressive strength
- 3. Strength of units, prisms / wallettes and walls
- 4. Effect of brick work bond on strength
- 5. Bond strength of masonry : Flexure and shear
- 6. Elastic properties of masonry materials and masonry

6 Hours

UNIT - 6

UNIT - 5

- 1. IS Code provisions
- 2. Design of masonry compression elements
- 3. Concepts in lateral load resistance

Hours

8

UNIT - 7 COST EFFECTIVE BUILDING DESIGN

1. Cost concepts in buildings

- 2. Cost saving techniques in planning, design and construction
 - 3. Cost Analysis : Case studies using alternatives.

UNIT - 8 EQUIPMENT FOR PRODUCTION OF ALTERNATIVE MATERIALS

- 1. Machines for manufacture of concrete
- 2. Equipments for production of stabilized blocks
 - 3. Moulds and methods of production of precast elements.

6 Hours

6 Hours

TEXT BOOKS:

- 1. Alternative building methodologies for engineers and architects, lecture notes edited: K.S. Jagadish and B.V. Venkatarama Reddy, Indian Institute of cience, Bangalore.
- 2. Structural Masonry by Arnold W. Hendry.

REFERENCE BOOKS:

- 1. Relevant IS Codes.
- 2. Alternative building materials and technologies.
- 3. Proceedings of workshop on Alternative building material and technology, 19th to 20th December 2003 @ BVB College of Engineering. & Tech., Hubli.

67

www.universityupdates.in || www.android.universityupdates.in

GROUND WATER HYDROLOGY

Subject Code	: 10CV665	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION: Importance. Vertical distribution of sub-surface water. Occurrence in different types of rocks and soils. Definition of aquifer, Aquifuge, Aquitard and Aquiclude. Confined and unconfined aquifers.

6 Hours

UNIT - 2

AQUIFER PROPERTIES: Aquifer parameters – Specific yield, Specific retention, Porosity, Storage coefficient, derivation of the expression. Determination of specific yield. Land subsidence due to ground water withdrawals.

6 Hours

UNIT - 3

DARCY'S LAW AND HYDRAULIC CONDUCTIVITY: Introduction. Darcy's law. Hydraulic conductivity. Coefficient of permeability and Intrinsic permeability, Transmissibility, Permeability in Isotropic, Unisotropic layered soils. Steady one dimensional flow, different cases with recharge.

7 Hours

UNIT - 4

WELL HYDRAULICS – STEADY FLOW: Introduction. Steady radial flow in confined and unconfined aquifers. Pumping tests.

7 Hours

PART - B

UNIT - 5

WELL HYDRAULICS – UNSTEADY FLOW: Introduction. General equation derivation; Theis method, Cooper and JaCob method, Chow's method. Solution of unsteady flow equations.

7 Hours

UNIT - 6

GROUND WATER DEVELOPMENT: Types of wells. Methods of constructions. Tube well design. Dug wells. Pumps for lifting water: Working principles, Power requirements.

UNIT - 7

7 Hours

GROUND WATER EXPLORATION: Seismic method, Electrical resistivity method, Bore hole geo-physical techniques; Electrical logging, Radio active logging, Induction logging, Sonic logging and Fluid logging.

6 Hours

UNIT - 8

GROUND WATER RECHARGE AND RUNOFF: Recharge by vertical leakage. Artificial recharge. Ground water runoff. Ground water budget.

6 Hours

TEXT BOOKS:

- 1. Ground Water- H.M. Raghunath, Wiley Eastern Limited, New Delhi.
- 2. Ground Water Hydrology- K. Todd, Wiley and Sons, New Delhi.
- 3. Numerical Ground Water Hydrology- A.K. Rastogi, Penram, International Publishing (India), Pvt. Ltd., Mumbai.

REFERENCE BOOKS:

- 1. Ground Water Hydrology- Bower H.- McGraw Hill, New Delhi.
- 2. Ground Water and Tube Wells- Garg Satya Prakash, Oxford and IBH, New Delhi.
- 3. Ground Water Resource Evaluation- W.C. Walton, McGraw Hill Kogakusha Ltd., New Delhi.
- 4. Water wells and Pumps Michel D.M., Khepar. S.D., Sondhi. S.K., McGraw Hill Education 2nd Edition.

TRAFFIC ENGINEERING

Subject Code	: 10CV667	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION: Definition, objectives of Traffic Engineering and scope of Traffic Engineering.

2

Hours

UNIT - 2

TRAFFIC CHARACTERISTICS: Road user characteristics, vehicular characteristics – static and dynamic characteristics, power

performance of vehicles, Resistance to the motion of vehicles – Reaction time of driver – Problems on above.

6

Hours

UNIT - 3

TRAFFIC STUDIES: Various types of traffic engineering studies, data collection, analysis objectives and method of study – Definition of study area – Sample size and analysis.

6 Hours

UNIT - 4

INTERPRETATION OF TRAFFIC STUDIES: Classified traffic Volume at mid block and intersections, PCU, origin and destination, spot speed, speed and delay, parking – on street parking, off street parking, Accident – causes, analysis measures to reduce accident – problems on above.

6 Hours

PART - B

UNIT - 5

TRAFFIC FLOW THEORIES: Traffic flow theory, Green shield theory – Goodness of fit, - correlation and regression analysis (linear only) – Queuing theory, Car following theory and relevant problems on above.

8 Hours

UNIT - 6

STATISTICAL ANALYSIS: Poisson's distribution and application to traffic engineering. Normal Distribution – Significance tests for observed traffic data, Chi Square test – problems on above. Traffic forecast – simulation technique.

12 Hours UNIT - 7

TRAFFIC REGULATION AND CONTROL: Driver, vehicle and road controls – Traffic regulations – one way – Traffic markings, Traffic signals – Vehicle actuated and synchronized signals – Signals co-ordination. Webster's method of signal design, IRC method, traffic rotary elements and designs, traffic operation – Street lighting, Road side furniture, Relevant problems on above.

Hours

10

UNIT - 8

INTELLIGENT TRANSPORT SYSTEM: Definition, Necessities, Application in the present traffic scenario

2

Hours

TEXT BOOKS:

- Traffic Engineering & Transport Planning L.R. Kadiyali-Khanna Publishers.
- 2. Highway Engineering Nemchand & Bros- Khanna & Justo-Roorkee (UA).
- 3. Traffic Engg. Matson & Smith:-Mc.Graw Hill and Co.
- 4. Traffic flow theory Drew- Mc. Graw Hill and Co.

REFERENCE BOOKS:

- 1. Traffic Engineering. Pignataro- Prentice Hall.
- 2. Highway Capacity Manual 2000.
- An introduction to traffic engineering- Jotin Khistey and Kentlal- PHI.
- 4. Traffic Engineering- Mc Shane & Roess- PHI.

ESTIMATION & VALUATION

Subject Code	: 10CV73	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

ESTIMATION: Study of various drawings with estimates, important terms, units of measurement, abstract Methods of taking out quantities and cost – center line method, long and short wall method or crossing method. Preparation of detailed and abstract estimates for the following Civil Engineering works – Buildings – RCC framed structures with flat, sloped RCC roofs with all Building components.

16 Hours

PART - B

ESTIMATE: Different type of estimates, approximate methods of estimating buildings, cost of materials. Estimation of wooden joineries such as doors, windows & ventilators.

5 Hours

ESTIMATES: Steel truss (Fink and Howe truss), manhole and septic tanks, RCC Culverts.

6 Hours

SPECIFICATIONS: Definition of specifications, objective of writing specifications, essentials in specifications, general and detail specifications of common item of works in buildings.

5 Hours

PART - C

RATE ANALYSIS: Definition and purpose. Working out quantities and rates for the following standard items of works – earth work in different types of soils, cement concrete of different mixes, bricks and stone masonry, flooring, plastering, RCC works, centering and form work for different RCC items, wood and steel works for doors, windows and ventilators.

6 Hours

MEASUREMENT OF EARTHWORK FOR ROADS: Methods for computation of earthwork - cross sections - mid section formula or average end area or mean sectional area, trapezoidal & prismoidal formula with and without cross slopes.

6 Hours

CONTRACTS: Types of contract – essentials of contract agreement – legal aspects, penal provisions on breach of contract. Definition of the terms -Tender, earnest money deposit, security deposit, tender forms, documents and types. Acceptance of contract documents. Termination of contract, completion certificate, quality control, right of contractor, refund of deposit. Administrative approval – Technical sanction. Nominal muster roll, measurement books - procedure for recording and checking measurements preparation of bills.

Valuation- Definitions of various terms, method of valuation, Freehold & Leasehold properties, Sinking fund, depreciation and method of estimating depreciation, Outgoings.

8 Hours

REFERENCE BOOKS:

- 1. Estimating & Costing, B. N. Dutta, Chand Publisher
- 2.
- Quantity Surveying- P.L. Basin S. Chand : New Delhi. Estimating & Specification S.C. Rangwala :: Charotar publishing 3. house, Anand.
- 4. Text book of Estimating & Costing- G.S. Birde, Dhanpath Rai and sons : New Delhi.
- A text book on Estimating, Costing and Accounts- D.D. Kohli 5. and R.C. Kohli S. Chand : New Delhi.
- 6. Contracts and Estimates, B. S. Patil, University Press, 2006.

DESIGN OF PRE-STRESSED CONCRETE STRUCTURES

Subject Code	: 10CV74	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

MATERIALS: High strength concrete and steel, Stress-Strain characteristics and properties.

2 Hours BASIC PRINCIPLES OF PRESTRESSING: Fundamentals, Load balancing concept, Stress concept, centre of Thrust. Pre-tensioning and posttensioning systems, tensioning methods and end anchorages.

4 Hours

UNIT - 2

ANALYSIS OF SECTIONS FOR FLEXURE: Stresses in concrete due to pre-stress and loads, stresses in steel due to loads, Cable profiles.

8 Hours

UNIT - 3

LOSSES OF PRE-STRESS: Various losses encountered in pre-tensioning and post tensioning methods, determination of jacking force.

6 Hours

UNIT - 4

DEFLECTIONS: Deflection of a pre-stressed member – Short term and long term deflections, Elastic deflections under transfer loads and due to different cable profiles. Deflection limits as per IS 1343. Effect of creep on deflection, load verses deflection curve, methods of reducing deflection **6 Hours**

PART - B

UNIT - 5

LIMIT STATE OF COLLAPSE: Flexure -IS Code recommendations – Ultimate flexural strength of sections.

5 Hours

UNIT - 6 LIMIT

LIMIT STATE OF COLLAPSE (cont...): Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking.

7 Hours

UNIT - 7

DESIGN OF END BLOCKS: Transmission of prestress in pretensioned members, transmission length, Anchorage stress in post-tensioned members. Bearing stress and bursting tensile force-stresses in end blocks-Methods, I.S. Code, provision for the design of end block reinforcement.

6 Hours

8 Hours

UNIT - 8

DESIGN OF BEAMS: Design of pre-tensioned and post-tensioned symmetrical and asymmetrical sections. Permissible stress, design of prestressing force and eccentricity, limiting zone of pre-stressing force cable profile.

REFERENCE BOOKS:

- 1. **Pre-stressed Concrete-** N. Krishna Raju Tata Mc. Graw Publishers.
- 2. **Pre-stressed Concrete-** P. Dayarathnam : Oxford and IBH Publishing Co.

- Design of pre-stressed concrete structures- T.Y. Lin and Ned H. Burns - John Wiley & Sons, New York.
- 4. Fundamental of pre-stressed concrete- N.C. Sinha & S.K. Roy
- 5. IS: 1343: 1980
- 6. Pre-stressed Concrete- N. Rajgopalan
PAVEMENT MATERIALS AND CONSTRUCTION

Subject Code	: 10CV763	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A PAVEMENT MATERIALS

UNIT - 1

AGGREGATES: Origin, classification, requirements, properties and tests on road aggregates, concepts of size and gradation – design gradation, maximum aggregate size, aggregate blending by different methods to meet specification.

6 Hours

UNIT - 2

BITUMEN AND TAR: Origin, preparation, properties and chemical constitution of bituminous road binders; requirements.

4 Hours

UNIT - 3

BITUMINOUS EMULSIONS AND CUTBACKS: Preparation, characteristics, uses and tests. Adhesion of Bituminous Binders to Road Aggregates: Adhesion failure, mechanism of stripping, tests and methods of improving adhesion.

8 Hours

UNIT - 4

BITUMINOUS MIXES: Mechanical properties, dense and open textured mixes, flexibility and brittleness, (no Hveem Stabilometer & Hubbar – Field Tests) bituminous mix, design methods using Rothfuch's Method only and

www.universityupdates.in || www.android.universityupdates.in

specification, Marshal mixed design criteria- voids in mineral aggregates, voids in total mix, density, flow, stability, percentage voids filled with bitumen.

6 Hours

PART - B

PAVEMENT CONSTRUCTION

UNIT - 5

EQUIPMENT IN HIGHWAY CONSTRUCTION: Various types of equipment for excavation, grading and compaction – their working principle, advantages and limitations. Special equipment for bituminous and cement concrete pavement and stabilized soil road construction.

6 Hours

UNIT - 6

SUBGRADE: Earthwork grading and construction of embankments and cuts for roads. Preparation of subgrade, quality control tests.

6 Hours

UNIT - 7

FLEXIBLE PAVEMENTS: Specifications of materials, construction method and field control checks for various types of flexible pavement layers.

8 Hours

UNIT - 8

CEMENT CONCRETE PAVEMENTS: Specifications and method of cement concrete pavement construction (PQC Importance of providing DLC as sub-base and polythene thin layer between PQC and sub-base); Quality control tests; Construction of various types of joints.

8 Hours

TEXT BOOKS:

- 1. **Highway Engineering** Khanna, S.K., and Justo, C.E.G., : Nem Chand and Bros. Roorkee
- 2. Construction Equipment and its Management- Sharma, S.C. : Khanna Publishers.
- 3. Hot Mix Asphalt Materials, Mixture Design and Construction-Freddy L. Roberts, Kandhal, P.S. : University of Texas Austin, Texas. NAPA Education Foundation Lanham, Maryland.

REFERENCES BOOKS:

- 1. RRL, DSIR, 'Bituminous Materials in Road Construction', HMSO Publication.
- 2. RRL, DSIR, 'Soil Mechanics for Road Engineers', HMSO Publication.
- 3. Relevant IRC codes and MoRT & H specifications.

CONCRETE AND HIGHWAY MATERIALS LABORATORY

Subject Code	: 10CVL78	IA Marks	: 25
No. of Practical Hours/Week	: 03	Exam Hours	: 03
Total No. of Practical Hours	: 42	Exam Marks	: 50

PART - A

CEMENT: Normal Consistency, Setting time, Soundness by Autoclave method, Compression strength test and Air permeability test for fineness, Specific gravity of cement.

FRESH CONCRETE: Workability – slump, Compaction factor and Vee Bee tests.

HARDENED CONCRETE: Compression strength and Split tensile tests. Test on flexural strength of RCC beams, Permeability of concrete.

PART - B

SOIL: Density of Soil by Sand replacement method, CBR Text.

AGGREGATES: Crushing, abrasion, impact and Shape tests (Flaky, Elongation, Angularity number) Specific gravity and water absorption.

BITUMINOUS MATERIALS AND MIXES: Specific Gravity, Penetration, Ductility, Softening point, Flash and fire point, Viscosity, proportioning of aggregate mixes by Rothfutch Method, Marshall Stability tests.

REFERENCE BOOK:

1. Relevant IS Codes and IRC Codes.

www.universityupdates.in || www.android.universityupdates.in

- 2. **Highway Material Testing Laboratory Manual** by Khanna S K and Justo, CEG Nemi Chand & Bros.
- 3. M. L. Gambhir : Concrete Manual : Dhanpat Rai & sons New Delhi.

www.universityupdates.in || www.android.universityupdates.in

www.universityupdates.in || www.android.universityupdates.in

VIII -SEMESTER

ADVANCED CONCRETE TECHNOLOGY

Subject Code	: 10CV81	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

UNIT - 1

Importance of Bogue's compounds, Structure of a Hydrated Cement Paste, Volume of hydrated product, porosity of paste and concrete, transition Zone, Elastic Modulus, factors affecting strength and elasticity of concrete, Rheology of concrete in terms of Bingham's parameter.

7 Hour

UNIT - 2

CHEMICAL ADMIXTURES- Mechanism of chemical admixture, Plasticizers and super Plasticizers and their effect on concrete property in fresh and hardened state, Marsh cone test for optimum dosage of super plasticizer, retarder, accelerator, Air-entraining admixtures, new generation superplasticiser.

MINERAL ADMIXTURE-Fly ash, Silica fume, GCBS, and their effect on concrete property in fresh state and hardened state.

6 Hours

UNIT - 3

MIX DESIGN - Factors affecting mix design, design of concrete mix by BIS method using IS10262 and current American (ACI)/ British (BS) methods. Provisions in revised IS10262-2004.

6 Hours

UNIT - 4

DURABILITY OF CONCRETE - Introduction, Permeability of concrete, chemical attack, acid attack, efflorescence, Corrosion in concrete. Thermal conductivity, thermal diffusivity, specific heat. Alkali Aggregate Reaction, IS456-2000 requirement for durability.

7 Hours

PART - B

UNIT - 5

RMC concrete - manufacture, transporting, placing, precautions, Methods of concreting- Pumping, under water concreting, shotcrete, High volume fly ash concrete concept, properties, typical mix

www.universityupdates.in // www.android.universityupdates.in

Self compacting concrete concept, materials, tests, properties, application and Typical mix.

6 Hours

UNIT - 6

Fiber reinforced concrete - Fibers types and properties, Behavior of FRC in compression, tension including pre-cracking stage and post-cracking stages, behavior in flexure and shear, Ferro cement - materials, techniques of manufacture, properties and application

7 Hours

UNIT - 7

Light weight concrete-materials properties and types. Typical light weight concrete mix High density concrete and high performance concrete-materials, properties and applications, typical mix.

6 Hours

UNIT - 8

Test on Hardened concrete-Effect of end condition of specimen, capping, H/D ratio, rate of loading, moisture condition. Compression, tension and flexure tests. Tests on composition of hardened concrete-cement content, original w/c ratio. NDT tests concepts-Rebound hammer, pulse velocity methods.

7 Hours

TEXT / REFERENCE BOOKS:

- 1. **Properties of Concrete** Neville, A.M. ELBS Edition, Longman Ltd., London
- 2. Concrete Technology- M.S. Shetty
- 3. **Concrete Technology-** A.R. Santhakumar,-Oxford University Press.
- 4. **Concrete** P.K. Mehta, P J M Monteiro,- Prentice Hall, New Jersey (Special Student Edition by Indian Concrete Institute Chennai)
- 5. ACI Code for Mix Design
- 6. IS 10262-2004
- 7. Concrete Mix Design- N. Krishna Raju Sehgal Publishers
- 8. Concrete Manual- Gambhir M.L.- Dhanpat Rai & Sons, New Delhi
- 9. Advanced Concrete Technology Processes- John Newman, Ban Seng Choo, London.
- 10. Advanced Concrete Technology Constituent materials- John Newman, Ban Seng Choo- London
- 11. Non-Destructive Test and Evaluation of Materials- J.Prasad, C G K Nair,-Mc Graw Hill.
- 12. High Performance Concrete- Prof Aitcin P C- E and FN, London.
- 13. Properties of Fresh Concrete- Power T.C.- E and FN, London

ENVIRONMENTAL IMPACT ASSESSMENT

Subject Code	: 10CV847	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Development Activity and Ecological Factors EIA, Rapid and Comprehensive EIA, EIS, FONSI. Need for EIA Studies, Baseline Information,

6 Hours

UNIT - 2

Step-by-step procedures for conducting EIA, Limitations of EIA.

6 Hours

UNIT - 3

Frame work of Impact Assessment. Development Projects-Environmental Setting, Objectives and Scope, Contents of EIA, Methodologies, Techniques of EIA.

8 Hours

UNIT - 4

Assessment and Prediction of Impacts on Attributes Air, Water, Noise, Land Ecology, Soil, Cultural and Socio-economic Environment. EIA guidelines for Development Projects, Rapid and Comprehensive EIA.

6 Hours

PART - B

UNIT - 5

EIA guidelines for Development Projects, Rapid and Comprehensive EIA.

UNIT - 6

Public Participation in Environmental Decision making. Practical Considerations in preparing Environmental Impact Assessment and Statements.

6 Hours

6 Hours

UNIT - 7

Salient Features of the Project Activity-Environmental Parameter Activity Relationships- Matrices.

4 Hours

UNIT - 8

EIA for Water resource developmental projects, Highway projects: Nuclear-Power plant projects, Mining project (Coal, Iron ore), Thermal Power Plant, Infrastructure Construction Activities.

10 Hours

REFERENCES

- 1. Environmental Impact Analysis-Jain R.K.-Van Nostrand Reinhold Co.
- 2. Environment Impact Assessment.- Anjaneyalu. Y.
- 3. Guidelines for EIA of developmental Projects Ministry of Environment and Forests, GOI.
- 4. **Environment Impact Assessment** Larry W. Canter McGraw Hill Publication.

ADVANCED DESIGN OF RCC STRUCTURES

Subject Code	: 14CSE12	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

Objectives:

The objectives of this course is to make students to learn principles of Structural Design, To design different types of structures and to detail the structures. To evaluate performance of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Structural Design
- Design and develop analytical skills.
- Summarize the principles of Structural Design and detailing
- Understands the structural performance.
- 1. Yield line method of design of slabs. Design of flat slabs.
- 2. Design of grid floors.
- 3. Design of continuous beams with redistribution of moments
- 4. Design of Chimneys, Design of silos and bunkers.
- 5. Art of detailing earthquake resistant structures. Expansion and contraction joints

- 1. A Park and Paulay, "Reinforced Reinforced and Prestressed Concrete"
- 2. Lin TY and Burns N H, "Reinforced Concrete Design".
- 3. Kong KF and Evans T H "Design of Prestressed Concrete Structures
- 4. P.C.Varghese, "Advanced Reinforced Concrete Design", Prentice-Hall of India, New Delhi, 2005.
- 5. Dr.B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Comprehensive RCC Design"

STRUCTURAL DYNAMICS

Subject Code	: 14CSE14	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

Objectives:

The objectives of this course is to make students to learn principles of Structural Dynamics, To implement these principles through different methods and to apply the same for free and forced vibration of structures. To evaluate the dynamic characteristics of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Structural Dynamics
- Design and develop analytical skills.
- Summarize the Solution techniques for dynamics of Multi-degree freedom systems
- Understand the concepts of damping in structures.
- 1. Introduction: Introduction to Dynamic problems in Civil Engineering, Concept of degrees of freedom, D'Alembert's principle, principle of virtual displacement and energy principles Dynamics of Single-degree-of-freedom systems: Mathematical models of Single-degree-of-freedom systems system, Free vibration response of damped and undamped systems. Methods of evaluation of damping.
- 2. Response of Single-degree-of-freedom systems to harmonic loading (rotation unbalance, reciprocating unbalance) including support motion, vibration isolation, transmissibility, Numerical methods applied to Single-degree-of-freedom systems Duhamel integral, principle of vibration-measuring instruments seismometer and accelerometer.
- **3.** Dynamics of Multi-degree freedom systems: Mathematical models of multi-degree-of-freedom systems, Shear building concept, free vibration of undamped multi-degree-of-freedom systems Natural frequencies and mode shapes orthogonality property of modes.
- 4. Response of Shear buildings for harmonic loading without damping using normal mode approach. Response of Shear buildings for forced vibration for harmonic loading with damping using normal mode approach, condition of damping uncoupling.
- 5. Approximate methods: Rayleigh's method Dunkarley's method, Stodola's method. Dynamics of Continuous systems: Free longitudinal vibration of bars, flexural vibration of beams with different end conditions,- Stiffness matrix, mass matrix (lumped and consistent); equations of motion for the discretised beam in matrix form.

Books for Reference:

- 1. Dynamics of Structures Theory and Application to Earthquake Engineering"- 2nd ed., Anil K. Chopra, Pearson Education.
- 2. Earthquake Resistant Design of Building Structures, Vinod Hosur, WILEY (india)
- 3. Vibrations, structural dynamics- M. Mukhopadhaya : Oxford IBH
- 4. Structural Dynamics- Mario Paz: CBS publishers.
- 5. Structural Dynamics- Clough & Penzien : TMH
- 6. Vibration Problems in Engineering Timoshenko, S, Van-Nostrand Co.

ELECTIVE - I

SPECIAL CONCRETE

Subject Code	: 14CSE152	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of Concrete mix design, To differentiate between different types of concrrete. To characterize the high Performance concrete.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Concrete mix design
- Design and develop analytical skills.
- Summerize the Light Weight concrete, Fibre reinforced concrete and High Performance concrete:
- Understand the concepts of high Performance concrete.
- 1. Components of modern concrete and developments in the process and constituent materials : Role of constituents, Development in cements and cement replacement materials, pozzolona, fly ash, silica fume, rice husk ash, recycled aggregates, chemical admixtures. Mix proportioning of Concrete: Principles and methods.
- 2. Light Weight concrete: Introduction, classification, properties, strength and durability, mix proportioning and problems. High density concrete: Radiation shielding ability of concrete, materials for high density concrete, mix proportioning, properties in fresh and hardened state, placement methods.
- **3.** Ferro cement: Ferrocement materials, mechanical properties, cracking of ferrocement, strength and behaviour in tension, compression and flexure, Design of ferrocement in tension, ferrocement constructions, durability, and applications.
- 4. *Fibre reinforced concrete:* Fibre materials, mix proportioning, distribution and orientation, interfacial bond, properties in fresh state, strength and behavior in tension, compression and flexure of steel fibre reinforced concrete, mechanical properties, crack arrest and toughening mechanism, applications.
- **5.** High Performance concrete: constituents, mix proportioning, properties in fresh and hardened states, applications and limitations. Ready Mixed Concrete, Self Compacting Concrete, Reactive powder concrete, bacterial concrete.

- 1. Neville A.M, "Properties of Concrete" Pearson Education Asis, 2000
- 2. P. Kumar Mehta, Paul J.N.Monterio, CONCRETE, "Microstructure, Properties and Materials"- Tata McGraw Hill
- 3. A.R.Santhakumar, (2007) "Concrete Technology"-Oxford University Press, New Delhi, 2007
- 4. Gambhir "Concrete Technology" TMH.
- 5. Short A and Kinniburgh.W, "Light Weight Concrete"- Asia Publishing House, 1963
- 6. Aitcin P.C. "High performance concrete"-E and FN, Spon London 1998
- 7. Rixom.R. and Mailvaganam.N., "Chemical admixtures in concrete"- E and FN, Spon London 1999
- 8. Rudnai.G., "Light Wiehgt concrete"- Akademiaikiado, Budapest, 1963.

STRUCTURAL ENGINEERING LAB-1

Subject Code	: 14CSE16	IA Marks	: 25
No. of Lab Hrs./ Week	: 03	Exam Hrs	: 03
Total No. of Lab Hrs.	: 48	Exam Marks	:50

The objectives of this course is to make students to learn principles of design of experiments, To investigate the performance of structural elements . To evaluate the different testing methods and equipments. .

Course Outcomes: On completion of this course, students are able to

Achieve Knowledge of design and development of experimenting skills. •

- Understand the principles of design of experiments
- Design and develop analytical skills.
- Summerize the testing methods and equipments. .
- 1. Testing of beams for deflection, flexure and shear 12 Hrs 12 Hrs
- 2. Experiments on Concrete, including Mix design
- 3. Experiments on vibration of multi storey frame models for Natural frequency and modes. 12Hrs

4. Use of Non destructive testing (NDT) equipments - Rebound hammer, Ultra sonic pulse velocity meter and Profometer

12 Hrs

EARTHQUAKE RESISTANT STRUCTURES

Subject Code	: 14CSE22	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of engineering seismology, To design the reinforced concrete buildings for earthquake resistance. To evaluate the seismic response of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of engineering seismology
- Design and develop analytical skills.
- Summarize the Seismic evaluation and retrofitting of structures.
- Understand the concepts of earthquake resistance of reinforced concrete buildings.
- 1. Introduction to engineering seismology, Geological and tectonic features of India, Origin and propagation of seismic waves, characteristics of earthquake and its quantification Magnitude and Intensity scales, seismic instruments. Earthquake Hazards in India, Earthquake Risk Evaluation and Mitigation. Structural behavior under gravity and seismic loads, Lateral load resisting structural systems, Requirements of efficient earthquake resistant structural system, damping devises, base isolation systems.
- 2. The Response history and strong motion characteristics. Response Spectrum elastic and inelastic response spectra, tripartite (D-V-A) response spectrum, use of response spectrum in earthquake resistant design.Computation of seismic forces in multi-storeyed buildings using procedures (Equivalent lateral force and dynamic analysis) as per IS-1893.
- 3. Structural Configuration for earthquake resistant design, Concept of plan irregularities and vertical irregularities, Soft storey, Torsion in buildings. Design provisions for these in IS-1893. Effect of infill masonry walls on frames, modeling concepts of infill masonry walls. Behaviour of masonry buildings during earthquakes, failure patterns, strength of masonry in shear and flexure, Slenderness concept of masonry walls, concepts for earthquake resistant masonry buildings codal provisions.
- 4. Design of Reinforced concrete buildings for earthquake resistance-Load combinations, Ductility and energy absorption in buildings. confinement of concrete for ductility, design of columns and beams for ductility, ductile detailing provisions as per IS-1893. Structural behavior, design and ductile detailing of shear walls.
- 5. Seismic response control concepts Seismic demand, seismic capacity, Overview of linear and nonlinear procedures of seismic analysis. Performance Based Seismic Engineering methodology, Seismic evaluation and retrofitting of structures.

Books for Reference:

- 1. Dynamics of Structures Theory and Application to Earthquake Engineering- 2nd ed. Anil K. Chopra, Pearson Education.
- 2. Earthquake Resistant Design of Building Structures, Vinod Hosur, WILEY (india)
- 3. Earthquake Resistant Design of Structures, Duggal, Oxford University Press
- 4. Earthquake resistant design of structures Pankaj Agarwal, Manish Shrikande PHI India
- 5. IS 1893 (Part I): 2002, IS 13920: 1993, IS 4326: 1993, IS-13828: 1993
- 6. Design of Earthquake Resistant Buildings, Minoru Wakabayashi, McGraw Hill Pub.
- 7. Seismic Design of Reinforced Concrete and Masonry Buildings, T Paulay and M J N Priestley, John Wiley and Sons

FINITE ELEMENT METHOD OF ANALYSIS

Subject Code	: 14CSE23	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of Analysis of Stress and Strain, To apply the Finite Element Method for the analysis of one and two dimensional problems. To evaluate the stress and strain parameters and their inter relations of the continuum.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of stress-strain behaviour of continuum
- Design and develop analytical skills.
- Describe the state of stress in a continuum
- Understand the concepts of elasticity and plasticity.
- Basic concepts of elasticity Kinematic and Static variables for various types of structural problems approximate method of structural analysis – Rayleigh – Ritz method – Finite difference method – Finite element method. Variation method and minimization of Energy approach of element formulation.Principles of finite element method – advantages & disadvantages – Finite element procedure. Finite elements used for one, two & three dimensional problems – Element aspect ratio – mesh refinement vs. higher order elements – Numbering of nodes to minimize band width.
- 2. Nodal displacement parameters Convergence criterion Compatibility requirements Geometric invariance Shape function Polynomial form of displacement function. Generalized and Natural coordinates Lagrangian interpolation function shape functions for one, two & three dimensional elements.
- **3.** Isoparametric elements Internal nodes and higher order elements Serendipity and Lagrangian family of Finite Elements Sub parametric and Super parametric elements Condensation of internal nodes Jacobian transformation Matrix. Development of strain displacement matrix and stiffness matrix, consistent load vector, numerical integration.
- 4. Application of Finite Element Method for the analysis of one & two dimensional problems Analysis of simple beams and plane trusses Application to plane stress / strain / axisymmetric problems using CST & Quadrilateral Elements.
- **5.** Application to Plates & Shells- Choice of displacement function (C, C and C type) Techniques for Non linear Analysis.

- 1. Krishnamoorthy C S, "Finite Element Analysis"- Tata McGraw Hill
- 2. Desai C and Abel J F, "Introduction to the Finite Element Method"- East West Press Pvt. Ltd., 1972
- 3. Bathe K J, "Finite Element Procedures in Engineering Analysis" Prentice Hall
- 4. Rajasekaran. S, "Finite Element Analysis in Engineering Design"-Wheeler Publishing
- Cook R D, Malkan D S & Plesta M.E, "Concepts and Application of Finite Element Analysis" 3rd Edition, John Wiley and Sons Inc., 1989
- 6. Shames I H and Dym C J, "**Energy and Finite Element Methods in Structural Mechanics**"- McGraw Hill, New York, 1985

DESIGN CONCEPTS OF SUBSTRUCTURES

Subject Code	: 14CSE24	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of subsoil exploration, To design the sub structures. To evaluate the soil shear strength parameters.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of subsoil exploration
- Design and develop analytical skills.
- Identify and evaluate the soil shear strength parameters .
- Understand the concepts of Settlement analysis.
- 1. Introduction, Site investigation, In-situ testing of soils, Subsoil exploration, Classification of foundations systems. General requirement of foundations, Selection of foundations, Computations of Loads, Design concepts.
- 2. Concept of soil shear strength parameters, Settlement analysis of footings, Shallow foundations in clay, Shallow foundation in sand & C- Φ soils, Footings on layered soils and sloping ground, Design for Eccentric or Moment Loads.
- 3. Types of rafts, bearing capacity & settlements of raft foundation, Rigid methods, Flexible methods, soil-structure interaction, different methods of modeling the soil. Combined footings (rectangular & trapezoidal), strap footings & wall footings, Raft super structure interaction effects & general concepts of structural design, Basement slabs.
- 4. Deep Foundations: Load Transfer in Deep Foundations, Types of Deep Foundations, Ultimate bearing capacity of different types of piles in different soil conditions, Laterally loaded piles, tension piles & batter piles, Pile groups: Bearing capacity, settlement, uplift capacity, load distribution between piles, Proportioning and design concepts of piles.
- 5. Types of caissons, Analysis of well foundations, Design principles, Well construction and sinking. Foundations for tower structures: Introduction, Forces on tower foundations, Selection of foundation type, Stability and design considerations, Ring foundations general concepts.

IMPORTANT NOTE:

Only design principles of all type footings as per relevant BIS codes are to be covered, design of RC elements need not be covered

- 1. Swami Saran "Analysis & Design of Substructures"- Oxford & IBH Pub. Co. Pvt. Ltd., 1998.
- 2. Nainan P Kurian "Design of Foundation Systems" Narosa Publishing House, 1992.
- 3. R.B. Peck, W.E. Hanson & T.H. Thornburn "Foundation Engineering"- Wiley Eastern Ltd., Second Edition, 1984.
- 4. J.E. Bowles "Foundation Analysis and Design"- McGraw-Hill Int. Editions, Fifth Ed., 1996.
- 5. W.C. Teng "Foundation Design"- Prentice Hall of India Pvt. Ltd., 1983.
- 6. Bureau of Indian Standards:IS-1498, IS-1892, IS-1904, IS-6403, IS-8009, IS-2950, IS-11089, IS-11233, IS-2911 and all other relevant codes.

DESIGN OF TALL STRUCTURES

Subject Code	: 14CSE252	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of stability of tall buildings, To design the tall buildings for earthquake and wind resistance. To evaluate the performance of tall structures for strength and stability.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of strength and stability
- Design and develop analytical skills.
- Summarize the behavior of various structural systems.
- Understand the concepts of P-Delta analysis.
- 1. Design Criteria: Design philosophy, loading, sequential loading, and materials high performance concrete, fiber reinforced concrete, lightweight concrete, design mixes. Loading and Movement: Gravity loading: Dead and live load, methods of live load reduction, Impact, Gravity loading, Construction loads
- **2.** Wind loading: static and dynamic approach, Analytical and wind tunnel experimentation method. Earthquake loading: Equivalent lateral force, modal analysis, combinations of loading, working stress design, Limit state design, Plastic design.
- **3.** Behavior of Various Structural Systems: Factors affecting growth, Height and structural form; High rise behavior, Rigid frames, braced frames, in-filled frames, shear walls, coupled shear walls, wall-frames, tubular, cores, Futigger braced and hybrid mega system.
- **4. Analysis and Design:** Modeling for approximate analysis, accurate analysis and reduction techniques, analysis of building as total structural system considering overall integrity and major subsystem interaction, analysis for member forces; drift and twist, computerized general three dimensional analyses.
- **5. Stability of Tall Buildings:** Overall buckling analysis of frames, wall frames, approximate methods, second order effects of gravity of loading, P-Delta analysis, simultaneous first order and P-Delta analysis, Transnational, Torsional instability, out of plum effects, stiffness of member in stability, effect of foundation rotation. Structural elements: sectional shapes, properties and resisting capacities, design, deflection, cracking, pre-stressing, shear flow. Design for differential movement, creep and shrinkage effects, temperature effects and fire

- 1. Taranath B.S, "Structural Analysis and Design of Tall Buildings"- McGraw Hill
- 2. Wilf gang Schuller, "High rise building structures" John Wiley
- 3. Bryan Stafford Smith & Alexcoull, "Tall building structures Analysis and Design"- John Wiley
- 4. T.Y Lin & D.Stotes Burry, "Structural concepts and system for Architects and Engineers"- John Wiley
- 5. Lynn S.Beedle, "Advances in Tall Buildings"- CBS Publishers and Distributors.
- 6. Dr. Y.P. Gupta Editor, "Proceedings National Seminar on High Rise Structures- Design and Construction practices for middle level cities"- New Age International Limited.
- 7.

STRUCTURAL ENGINEERING LAB-2

Subject Code	: 14CSE26	IA Marks	: 25
No. of Lab Hrs./ Week	: 03	Exam Hrs	: 03
Total No. of Lab Hrs.	: 48	Exam Marks	:50

The objectives of this course is to make students to learn the soft wares for structural analysis and design, To investigate the performance of structures for static and dynamic forces.

Course Outcomes: On completion of this course, students are able to

• Achieve Knowledge of design and development of programming skills.

- Understand the principles of structural analysis and design
- Design and develop analytical skills.
- Summerize the performance of structures for static and dynamic forces..

1. Static and Dynamic analysis of Building structure using software (ETABS / STAADPRO)	12 Hrs
2. Design of RCC and Steel structure using software (ETABS / STAADPRO)	12 Hrs
3. Analysis of folded plates and shells using software.	12 Hrs
4. Preparation of EXCEL sheets for structural design.	12 Hrs

Subject Code:	10IS51	I.A. Marks : 25
Hours/Week :	04	Exam Hours: 03
Total Hours :	52	Exam Marks: 100

PART – A

UNIT - 1

6 Hours

Overview: Introduction: FAQ's about software engineering, Professional and ethical responsibility. Socio-Technical systems: Emergent system properties; Systems engineering;

Organizations, people and computer systems; Legacy systems.

UNIT - 2

6 Hours

Critical Systems, Software Processes: Critical Systems: A simple safetycritical system; System dependability; Availability and reliability.

Software Processes: Models, Process iteration, Process activities; The Rational Unified Process; Computer Aided Software Engineering.

UNIT-3

7 Hours

Requirements: Software Requirements: Functional and Non-functional requirements; User requirements; System requirements; Interface specification; The software requirements document.

Requirements Engineering Processes: Feasibility studies; Requirements elicitation and analysis; Requirements validation; Requirements management.

UNIT - 4

7 Hours System models, Project Management: System Models: Context models; Behavioral models; Data models; Object models; Structured methods. Project Management: Management activities; Project planning; Project scheduling; Risk management

PART - B

UNIT - 5

7 Hours

Software Design: Architectural Design: Architectural design decisions; System organization; Modular decomposition styles; Control styles.

Object-Oriented design: Objects and Object Classes; An Object-Oriented design process; Design evolution.

UNIT - 6

6 Hours

Development: Rapid Software Development: Agile methods; Extreme programming; Rapid application development.

Software Evolution: Program evolution dynamics; Software maintenance; Evolution processes; Legacy system evolution.

UNIT – 7

7 Hours

Verification and Validation: Verification and Validation: Planning; Software inspections; Automated static analysis; Verification and formal methods.

Software testing: System testing; Component testing; Test case design; Test automation.

UNIT-8

6 Hours

Management: Managing People: Selecting staff; Motivating people; Managing people; The People Capability Maturity Model.

Software Cost Estimation: Productivity; Estimation techniques; Algorithmic cost modeling, Project duration and staffing.

Text Books:

Software Engineering, 8th Edition, Pearson 1. Ian Sommerville: Education, 2007.

(Chapters-: 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 21, 22, 23, 25, 26)

Reference Books:

- Roger.S.Pressman: Software Engineering-A Practitioners approach, 1. 7th Edition, Tata McGraw Hill, 2007.
- 2. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India, 2009.

DATABASE MANAGEMENT SYSTEMS

Subject Code: 10CS54	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT - 1

6 Hours

6 Hours

Introduction: Introduction; An example; Characteristics of Database approach; Actors on the screen; Workers behind the scene; Advantages of using DBMS approach; A brief history of database applications; when not to use a DBMS.

Data models, schemas and instances; Three-schema architecture and data independence; Database languages and interfaces; The database system environment; Centralized and client-server architectures; Classification of Database Management systems.

UNIT - 2

Entity-Relationship Model: Using High-Level Conceptual Data Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types; Refining the ER Design; ER Diagrams, Naming Conventions and Design Issues; Relationship types of degree higher than two.

UNIT - 3

Relational Model and Relational Algebra : Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update

Operations, Transactions and dealing with constraint violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations : JOIN and DIVISION; Additional Relational Operations; Examples of Queries in Relational Algebra; Relational Database Design Using ER- to-Relational Mapping.

UNIT - 4

6 Hours **SQL** – 1: SQL Data Definition and Data Types; Specifying basic constraints in SQL; Schema change statements in SQL; Basic queries in SQL; More complex SQL Queries.

UNIT – 5

PART - B

SQL - 2 : Insert, Delete and Update statements in SQL; Specifying constraints as Assertion and Trigger; Views (Virtual Tables) in SQL; Additional features of SQL; Database programming issues and techniques; Embedded SQL, Dynamic SQL; Database stored procedures and SQL / PSM.

UNIT - 6

Database Design – 1: Informal Design Guidelines for Relation Schemas; Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form

UNIT - 7

Database Design -2: Properties of Relational Decompositions; Algorithms for Relational Database Schema Design; Multivalued Dependencies and Fourth Normal Form; Join Dependencies and Fifth Normal Form; Inclusion Dependencies; Other Dependencies and Normal Forms

8 Hours

6 Hours

6 Hours

UNIT – 8

Transaction Management: The ACID Properties; Transactions and Schedules; Concurrent Execution of Transactions; Lock- Based Concurrency Control; Performance of locking; Transaction support in SQL; Introduction to crash recovery; 2PL, Serializability and Recoverability; Lock Management; Introduction to ARIES; The log; Other recovery-related structures; The write-ahead log protocol; Checkpointing; Recovering from a System Crash; Media Recovery; Other approaches and interaction with concurrency control.

Text Books:

1. Elmasri and Navathe: Fundamentals of Database Systems, 5th Edition, Pearson Education, 2007.

(Chapters 1, 2, 3 except 3.8, 5, 6.1 to 6.5, 7.1, 8, 9.1, 9.2 except SOLJ, 9.4, 10)

2. Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, 3rd Edition, McGraw-Hill, 2003. (Chapters 16, 17.1, 17.2, 18)

Reference Books:

- 1. Silberschatz, Korth and Sudharshan: Data base System Concepts, 6th Edition, Mc-GrawHill, 2010.
- 2. C.J. Date, A. Kannan, S. Swamynatham: An Introduction to Database Systems, 8th Edition, Pearson Education, 2006.

COMPUTER NETWORKS - I

Subject Code: 10CS55	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART – A

UNIT - 1

Introduction: Data Communications, Networks, The Internet, Protocols & Standards, Layered Tasks,

The OSI model, Layers in OSI model, TCP/IP Protocol suite, Addressing

UNIT-2

Physical Layer-1: Analog & Digital Signals, Transmission Impairment, Data Rate limits, Performance, Digital-digital conversion (Only Line coding: Polar, Bipolar and Manchester coding), Analog-to-digital conversion (only PCM), Transmission Modes, Digital-to-analog conversion

UNIT-3

Physical Layer-2 and Switching: Multiplexing, Spread Spectrum, Introduction to switching, Circuit Switched Networks, Datagram Networks, Virtual Circuit Networks

UNIT-4

Data Link Layer-1: Error Detection & Correction: Introduction, Block coding, Linear block codes, Cyclic codes, Checksum.

PART - B

UNIT-5

6 Hours Data Link Layer-2: Framing, Flow and Error Control, Protocols, Noiseless Channels, Noisy channels, HDLC, PPP (Framing, Transition phases only)

UNIT-6

Multiple Access & Ethernet: Random access, Controlled Access, Channelization, Ethernet: IEEE standards, Standard Ethernet, Changes in the standard, Fast Ethernet, Gigabit Ethernet

6 Hours

6 Hours

7 Hours

7 Hours

7 Hours

UNIT - 7

6 Hours

Wireless LANs and Cellular Networks: Introduction, IEEE 802.11,

Bluetooth, Connecting devices, Cellular Telephony

UNIT - 8:

7 Hours

Network Layer: Introduction, Logical addressing, IPv4 addresses, IPv6 addresses, Internetworking basics,

IPv4, IPv6, Comparison of IPv4 and IPv6 Headers.

Text Books:

 Behrouz A. Forouzan,: Data Communication and Networking, 4th Edition Tata McGraw-Hill, 2006. (Chapters 1.1 to 1.4, 2.1 to 2.5, 3.1 To 3.6, 4.1 to 4.3, 5.1, 6.1, 6.2, 8.1 to 8.3, 10.1 to 10.5, 11.1 to 11.7, 12.1 to 12.3, 13.1 to 13.5, 14.1, 14.2, 15.1, 16.1, 19.1, 19.2, 20.1 to 20.3)

Reference Books:

- 1. Alberto Leon-Garcia and Indra Widjaja: Communication Networks -Fundamental Concepts and Key architectures, 2nd Edition Tata McGraw-Hill, 2004.
- 2. William Stallings: Data and Computer Communication, 8th Edition, Pearson Education, 2007.
- Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 4th Edition, Elsevier, 2007.
- 4. Nader F. Mir: Computer and Communication Networks, Pearson Education, 2007.

DATABASE APPLICATIONS LABORATORY

Subject Code: 10CSL57	I.A. Marks : 25
Hours/Week : 03	Exam Hours: 03
Total Hours : 42	Exam Marks: 50

1. Consider the following relations:

Student (*snum:* integer, *sname:* string, *major:* string, *level:* string, *age:* integer)

Class (*name:* string, *meets at:* string, *room:* string, *d:* integer) Enrolled (*snum:* integer, *cname:* string)

Faculty (fid: integer, *fname:* string, *deptid:* integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per student-class pair such that the student is enrolled in the class. Level is a two character code with 4 different values (example: Junior: JR etc)

Write the following queries in SQL. No duplicates should be printed in any of the answers.

- i. Find the names of all Juniors (level = JR) who are enrolled in a class taught by Prof. Harshith
- ii. Find the names of all classes that either meet in room R128 or have five or more Students enrolled.
- iii. Find the names of all students who are enrolled in two classes that meet at the same time.
- iv. Find the names of faculty members who teach in every room in which some class is taught.
- v. Find the names of faculty members for whom the combined enrollment of the courses that they teach is less than five.
- 2. The following relations keep track of airline flight information: Flights (*no:* integer, *from:* string, *to:* string, *distance:* integer, *Departs:* time, *arrives:* time, *price:* real)

Aircraft (*aid:* integer, *aname:* string, *cruisingrange:* integer) Certified (*eid:* integer, *aid:* integer) Employees (*eid:* integer, *ename:* string, *salary:* integer) Note that the Employees relation describes pilots and other kinds of employees as well; Every pilot is certified for some aircraft, and only pilots are certified to fly. Write each of the following queries in SQL.

- i. Find the names of aircraft such that all pilots certified to operate them have salaries more than Rs.80, 000.
- ii. For each pilot who is certified for more than three aircrafts, find the *eid* and the maximum *cruisingrange* of the aircraft for which she or he is certified.
- iii. Find the names of pilots whose *salary* is less than the price of the cheapest route from Bengaluru to Frankfurt.
- iv. For all aircraft with *cruisingrange* over 1000 Kms, .find the name of the aircraft and the average salary of all pilots certified for this aircraft.
- v. Find the names of pilots certified for some Boeing aircraft.
- vi. Find the *aids* of all aircraft that can be used on routes from Bengaluru to New Delhi.
- 3. Consider the following database of student enrollment in courses & books adopted for each course.

STUDENT (regno: string, name: string, major: string, bdate:date)COURSE (course #:int, cname:string, dept:string)ENROLL (regno:string, course#:int, sem:int, marks:int)BOOK _ ADOPTION (course#:int, sem:int, book-ISBN:int)TEXT (book-ISBN:int, book-title:string, publisher:string, author:string)

- i. Create the above tables by properly specifying the primary keys and the foreign keys.
- ii. Enter at least five tuples for each relation.
- iii. Demonstrate how you add a new text book to the database and make this book be adopted by some department.
- iv. Produce a list of text books (include Course #, Book-ISBN, Book-title) in the alphabetical order for courses offered by the 'CS' department that use more than two books.
- v. List any department that has *all* its adopted books published by a specific publisher.
- vi. Generate suitable reports.
- vii. Create suitable front end for querying and displaying the results.
- 4. The following tables are maintained by a book dealer.

AUTHOR (<u>author-id</u>:int, name:string, city:string, country:string) PUBLISHER (<u>publisher-id</u>:int, name:string, city:string, country:string)

CATALOG (<u>book-id</u>:int, title:string, author-id:int, publisher-id:int, category-id:int, year:int, price:int)

CATEGORY (category-id:int, description:string)

ORDER-DETAILS (order-no:int, book-id:int, quantity:int)

- i. Create the above tables by properly specifying the primary keys and the foreign keys.
- ii. Enter at least five tuples for each relation.
- iii. Give the details of the authors who have 2 or more books in the catalog and the price of the books is greater than the average price of the books in the catalog and the year of publication is after 2000.
- iv. Find the author of the book which has maximum sales.
- v. Demonstrate how you increase the price of books published by a specific publisher by 10%.
- vi. Generate suitable reports.
- vii. Create suitable front end for querying and displaying the results.
- Consider the following database for a banking enterprise BRANCH(<u>branch-name</u>:string, branch-city:string, assets:real) ACCOUNT(<u>accno</u>:int, branch-name:string, balance:real) DEPOSITOR(<u>customer-name</u>:string, <u>accno</u>:int) CUSTOMER(<u>customer-name</u>:string, <u>customer-street</u>:string, customer-city:string) LOAN(<u>loan-number</u>:int, branch-name:string, amount:real)

BORROWER(customer-name:string, loan-number:int)

- i. Create the above tables by properly specifying the primary keys and the foreign keys
- ii. Enter at least five tuples for each relation
- iii. Find all the customers who have at least two accounts at the *Main* branch.
- iv. Find all the customers who have an account at *all* the branches located in a specific city.
- v. Demonstrate how you delete all account tuples at every branch located in a specific city.
- vi. Generate suitable reports.
- vii. Create suitable front end for querying and displaying the results.

Instructions:

- 1. The exercises are to be solved in an RDBMS environment like Oracle or DB2.
- 2. Suitable tuples have to be entered so that queries are executed correctly.
- 3. Front end may be created using either VB or VAJ or any other similar tool.
- 4. The student need not create the front end in the examination. The results of the queries may be displayed directly.
- 5. Relevant queries other than the ones listed along with the exercises may also be asked in the examination.
- 6. Questions must be asked based on lots.

COMPUTER NETWORKS - II

Subject Code: 10	0CS64	I.A. Marks : 25
Hours/Week : 04	4	Exam Hours: 03
Total Hours : 52	2	Exam Marks: 100

PART - A

UNIT - 1

6 Hours

Packet Switching Networks - 1: Network services and internal network operation, Packet network topology, Routing in Packet networks, Shortest path routing: Bellman-Ford algorithm.

UNIT - 2

6 Hours

Packet Switching Networks – 2: Shortest path routing (continued), Traffic management at the Packet level, Traffic management at Flow level, Traffic management at flow aggregate level.

UNIT - 3

6 Hours

8 Hours

TCP/IP-1: TCP/IP architecture, The Internet Protocol, IPv6, UDP.

UNIT - 4

UNIT - 5

TCP/IP-2: TCP, Internet Routing Protocols, Multicast Routing, DHCP, NAT and Mobile IP.

PART – B

7 Hours

Applications, Network Management, Network Security: Application layer overview, Domain Name System (DNS), Remote Login Protocols, E-mail, File Transfer and FTP, World Wide Web and HTTP, Network management, Overview of network security, Overview of security methods, Secret-key encryption protocols, Public-key encryption protocols, Authentication, Authentication and digital signature, Firewalls.

UNIT – 6

6 Hours

QoS, VPNs, Tunneling, Overlay Networks: Overview of QoS, Integrated Services QoS, Differentiated services QoS, Virtual Private Networks, MPLS, Overlay networks.

UNIT - 7

7 Hours

Multimedia Networking: Overview of data compression, Digital voice and compression, JPEG, MPEG, Limits of compression with loss, Compression methods without loss, Overview of IP Telephony, VoIP signaling protocols, Real-Time Media Transport Protocols, Stream control Transmission Protocol (SCTP)

UNIT – 8

6 Hours

Mobile AdHoc Networks and Wireless Sensor Neworks: Overview of Wireless Ad-Hoc networks, Routing in AdHOc Networks, Routing protocols for and Security of AdHoc networks, Sensor Networks and protocol structures, Communication Energy model, Clustering protocols, Routing protocols, ZigBee technology and 802.15.4.

Text Books:

- Communication Networks Fundamental Concepts & key architectures, Alberto Leon Garcia & Indra Widjaja, 2nd Edition, Tata McGraw-Hill, India (7 - excluding 7.6, 8)
- Computer & Communication Networks, Nadir F Mir, Pearson Education, India (9, 10 excluding 10.7, 12.1 to 12.3, 16, 17.1 to 17.6, 18.1 to18.3, 18.5, 19, 20)

Reference Books:

- 1. Behrouz A. Forouzan: Data Communications and Networking, 4th Edition, Tata McGraw-Hill, 2006.
- 2. William Stallings: Data and Computer Communication, 8th Edition, Pearson Education, 2007.
- Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 4th Edition, Elsevier, 2007.
- 4. Wayne Tomasi: Introduction to Data Communications and Networking, Pearson Education, 2005.

OBJECT-ORIENTED MODELING AND DESIGN

Subject Code: 10CS71	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

$\mathbf{PART} - \mathbf{A}$

UNIT – 1 Introduction, Modeling Concepts, class Me

Introduction, Modeling Concepts, class Modeling: What is Object Orientation? What is OO development? OO themes; Evidence for usefulness of OO development; OO modeling history

Modeling as Design Technique: Modeling; abstraction; The three models. Class Modeling: Object and class concepts; Link and associations concepts; Generalization and inheritance; A sample class model; Navigation of class models; Practical tips.

UNIT - 2

6 Hours

7 Hours

Advanced Class Modeling, State Modeling: Advanced object and class concepts; Association ends; N-ary associations; Aggregation; Abstract classes; Multiple inheritance; Metadata; Reification; Constraints; Derived data; Packages; Practical tips.

State Modeling: Events, States, Transitions and Conditions; State diagrams; State diagram behavior; Practical tips.

UNIT - 3

Advanced State Modeling, Interaction Modeling: Advanced State Modeling: Nested state diagrams; Nested states; Signal generalization; Concurrency; A sample state model; Relation of class and state models; Practical tips.

Interaction Modeling: Use case models; Sequence models; Activity models. Use case relationships; Procedural sequence models; Special constructs for activity models.

UNIT – 4

7 Hours

7 Hours

Process Overview, System Conception, Domain Analysis: Process Overview: Development stages; Development life cycle.

System Conception: Devising a system concept; Elaborating a concept; Preparing a problem statement.

Domain Analysis: Overview of analysis; Domain class model; Domain state model; Domain interaction model; Iterating the analysis.

PART - B

UNIT – 5

Application Analysis, System Design: Application Analysis: Application interaction model; Application class model; Application state model; Adding operations.

Overview of system design; Estimating performance; Making a reuse plan; Breaking a system in to sub-systems; Identifying concurrency; Allocation of sub-systems; Management of data storage; Handling global resources; Choosing a software control strategy; Handling boundary conditions; Setting the trade-off priorities; Common architectural styles; Architecture of the ATM system as the example.

UNIT – 6

7 Hours

Class Design, Implementation Modeling, Legacy Systems: Class Design: Overview of class design; Bridging the gap; Realizing use cases; Designing algorithms; Recursing downwards, Refactoring; Design optimization; Reification of behavior; Adjustment of inheritance; Organizing a class design; ATM example.

Implementation Modeling: Overview of implementation; Fine-tuning classes; Fine-tuning generalizations; Realizing associations; Testing.

Legacy Systems: Reverse engineering; Building the class models; Building the interaction model; Building the state model; Reverse engineering tips; Wrapping; Maintenance.

UNIT – 7

Design Patterns – 1: What is a pattern and what makes a pattern? Pattern categories; Relationships between patterns; Pattern description Communication Patterns: Forwarder-Receiver; Client-Dispatcher-Server; Publisher-Subscriber.

UNIT - 8

6 Hours

6 Hours

Design Patterns – 2, Idioms: Management Patterns: Command processor; View handler.

Idioms: Introduction; what can idioms provide? Idioms and style; Where to find idioms; Counted Pointer example

Text Books:

- Michael Blaha, James Rumbaugh: Object-Oriented Modeling and Design with UML, 2nd Edition, Pearson Education, 2005. (Chapters 1 to 17, 23)
- Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern-Oriented Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2007. (Chapters 1, 3.5, 3.6, 4)

Reference Books:

- 1. Grady Booch et al: Object-Oriented Analysis and Design with Applications, 3rd Edition, Pearson Education, 2007.
- 2. Brahma Dathan, Sarnath Ramnath: Object-Oriented Analysis, Design, and Implementation, Universities Press, 2009.

- Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado: 3. UML 2 Toolkit, Wiley- Dreamtech India, 2004.
- Simon Bennett, Steve McRobb and Ray Farmer: Object-Oriented Systems Analysis and Design Using UML, 2nd Edition, Tata McGraw-Hill, 2002.

EMBEDDED COMPUTING SYSTEMS

Sub Code: 10CS72	IA Marks :25	;
Hrs/Week: 04	Exam Hours :03	3
Total Hrs: 52	Exam Marks :10)0

PART-A

UNIT - 1

6 Hours Complex Systems and

Embedded **Computing:** Introduction, Microprocessors, Embedded Systems Design Process, Formalism for System design

Design Example: Model Train Controller.

UNIT - 2

7 Hours

Instruction Sets, CPUs: Preliminaries, ARM Processor, Programming Input and Output, Supervisor mode, Exceptions, Traps, Coprocessors, Memory Systems Mechanisms, CPU Performance, CPU Power Consumption. Design Example: Data Compressor.

UNIT - 3

Bus-Based Computer Systems: CPU Bus, Memory Devices, I/O devices, Component Interfacing, Designing with Microprocessor, Development and Debugging, System-Level Performance Analysis Design Example: Alarm Clock.

UNIT - 4

Program Design and Analysis: Components for embedded programs, Models of programs, Assembly, Linking and Loading, Basic Compilation Techniques, Program optimization, Program-Level performance analysis, Software performance optimization, Program-Level energy and power analysis, Analysis and optimization of program size, Program validation and testing. Design Example: Software modem.

PART-B

UNIT - 56 Hours Real Time Operating System (RTOS) Based Design - 1: Basics of OS, Kernel, types of OSs, tasks, processes, Threads, Multitasking and Multiprocessing, Context switching, Scheduling Policies, Task Communication, Task Synchronization.

UNIT-6

RTOS-Based Design - 2: Inter process Communication mechanisms, Evaluating OS performance, Choice of RTOS, Power Optimization. Design Example: Telephone Answering machine

UNIT - 7

7 Hours Distributed Embedded Systems: Distributed Network Architectures, Networks for Embedded Systems: I2C Bus, CAN Bus, SHARC Link Ports, Ethernet, Myrinet, Internet, Network Based Design. Design Example: Elevator Controller.

UNIT-8

7 Hours

6 Hours

Embedded Systems Development Environment: The Integrated Development Environment, Types of File generated on Cross Compilation, Dis-assembler /Decompiler, Simulators, Emulators, and Debugging, Target Hardware Debugging.

Text Books:

1. Wayne Wolf: Computers as Components, Principles of Embedded

7 Hours

Computing Systems Design, 2nd Edition, Elsevier, 2008.

Shibu K V: Introduction to Embedded Systems, Tata McGraw Hill, 2009

(Chapters 10, 13)

Reference Books:

- 1. James K. Peckol: Embedded Systems, A contemporary Design Tool, Wiley India, 2008
- 2. Tammy Neorgaard: Embedded Systems Architecture, Elsevier, 2005.

PROGRAMMING THE WEB

Subject Code: 10CS73	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

UNIT - 1

6 Hours

Fundamentals of Web, XHTML – 1: Internet, WWW, Web Browsers and Web Servers, URLs, MIME, HTTP, Security, The Web Programmers Toolbox.

XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links.

UNIT - 2

7 Hours

6 Hours

XHTML – 2, CSS: XHTML (continued): Lists, Tables, Forms, Frames CSS: Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution.

UNIT - 3

Javascript: Overview of Javascript, Object orientation and Javascript, Syntactic characteristics, Primitives, operations, and expressions, Screen output and keyboard input, Control statements, Object creation and modification, Arrays, Functions, Constructors, Pattern matching using regular expressions, Errors in scripts, Examples.

UNIT - 4

Javascript and HTML Documents, Dynamic Documents with Javascript: The Javascript execution environment, The Document Object Model, Element access in Javascript, Events and event handling, Handling events from the Body elements, Button elements, Text box and Password elements, The DOM 2 event model, The navigator object, DOM tree traversal and modification.

Introduction to dynamic documents, Positioning elements, Moving elements, Element visibility, Changing colors and fonts, Dynamic content, Stacking elements, Locating the mouse cursor, Reacting to a mouse click, Slow movement of elements, Dragging and dropping elements.

PART - B

UNIT – 5

XML: Introduction, Syntax, Document structure, Document type definitions, Namespaces, XML schemas, Displaying raw XML documents, Displaying XML documents with CSS, XSLT style sheets, XML processors, Web services.

UNIT – 6

Perl, CGI Programming: Origins and uses of Perl, Scalars and their operations, Assignment statements and simple input and output, Control statements, Fundamentals of arrays, Hashes, References, Functions, Pattern matching, File input and output; Examples.

The Common Gateway Interface; CGI linkage; Query string format; CGI.pm module; A survey example; Cookies.

Database access with Perl and MySQL

7 Hours

7 Hours

UNIT – 7

6 Hours

PHP: Origins and uses of PHP, Overview of PHP, General syntactic characteristics, Primitives, operations and expressions, Output, Control

statements, Arrays, Functions, Pattern matching, Form handling, Files, Cookies, Session tracking, Database access with PHP and MySQL.

UNIT – 8

7 Hours

Ruby, Rails: Origins and uses of Ruby, Scalar types and their operations, Simple input and output, Control statements, Arrays, Hashes, Methods, Classes, Code blocks and iterators, Pattern matching.

Overview of Rails, Document requests, Processing forms, Rails applications with Databases, Layouts.

Text Books:

1. Robert W. Sebesta: Programming the World Wide Web, 4th Edition, Pearson Education, 2008.

(Listed topics only from Chapters 1 to 9, 11 to 15)

Reference Books:

- 1. M. Deitel, P.J. Deitel, A. B. Goldberg: Internet & World Wide Web How to Program, 4th Edition, Pearson Education, 2004.
- Chris Bates: Web Programming Building Internet Applications, 3rd Edition, Wiley India, 2007.
- 3. Xue Bai et al: The web Warrior Guide to Web Programming, Cengage Learning, 2003.

Web Programming Laboratory

Subject Code: 10CSL78	I.A. Marks : 25
Hours/Week : 03	Exam Hours: 03
Total Hours : 42	Exam Marks: 50

- 1. Develop and demonstrate a XHTML file that includes Javascript script for the following problems:
 - a) Input: A number n obtained using prompt Output: The first n Fibonacci numbers
 - b) Input: A number n obtained using prompt Output: A table of numbers from 1 to n and their squares using **alert**
- a) Develop and demonstrate, using Javascript script, a XHTML document that collects the USN (the valid format is: A digit from 1 to 4 followed by two upper-case characters followed by two digits followed by two upper-case characters followed by three digits; no embedded spaces allowed) of the user. Event handler must be included for the form element that collects this information to validate the input. Messages in the alert windows must be produced when errors are detected.
 b) Modify the above program to get the current semester also (restricted

b) Modify the above program to get the current semester also (restricted to be a number from 1 to 8)

3. a) Develop and demonstrate, using Javascript script, a XHTML document that contains three short paragraphs of text, stacked on top of each other, with only enough of each showing so that the mouse cursor can be placed over some part of them. When the cursor is placed over the exposed part of any paragraph, it should rise to the top to become completely visible.

b) Modify the above document so that when a paragraph is moved from the top stacking position, it returns to its original position rather than to the bottom.

4. a) Design an XML document to store information about a student in an engineering college affiliated to VTU. The information must include

USN, Name, Name of the College, Brach, Year of Joining, and e-mail id. Make up sample data for 3 students. Create a CSS style sheet and use it to display the document.

b) Create an XSLT style sheet for one student element of the above document and use it to create a display of that element.

5. a) Write a Perl program to display various Server Information like Server Name, Server Software, Server protocol, CGI Revision etc.

b) Write a Perl program to accept UNIX command from a HTML form and to display the output of the command executed.

- 6. a) Write a Perl program to accept the User Name and display a greeting message randomly chosen from a list of 4 greeting messages. b) Write a Perl program to keep track of the number of visitors visiting the web page and to display this count of visitors, with proper headings.
- 7. Write a Perl program to display a digital clock which displays the current time of the server.
- 8. Write a Perl program to insert name and age information entered by the user into a table created using MySQL and to display the current contents of this table.
- 9 Write a PHP program to store current date-time in a COOKIE and display the 'Last visited on' date-time on the web page upon reopening of the same page.
- 10. Write a PHP program to store page views count in SESSION, to increment the count on each refresh, and to show the count on web page.
- 11. Create a XHTML form with Name, Address Line 1, Address Line 2, and E-mail text fields. On submitting, store the values in MySQL table. Retrieve and display the data based on Name.
- 12. Build a Rails application to accept book information viz. Accession number, title, authors, edition and publisher from a web page and store the information in a database and to search for a book with the title specified by the user and to display the search results with proper headings.

Note: In the examination each student picks one question from the lot of all 12 questions.

DATA WAREHOUSING AND DATA MINING

Subject Code: 10CS755	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART – A

UNIT - 1**Data Warehousing:**

Introduction, Operational Data Stores (ODS), Extraction Transformation Loading (ETL), Data Warehouses. Design Issues, Guidelines for Data Warehouse Implementation, Data Warehouse Metadata

UNIT - 2

Online Analytical Processing (OLAP): Introduction, Characteristics of OLAP systems, Multidimensional view and Data cube, Data Cube Implementations, Data Cube operations, Implementation of OLAP and overview on OLAP Softwares.

UNIT - 3

Data Mining: Introduction, Challenges, Data Mining Tasks, Types of Data, Data Preprocessing, Measures of Similarity and Dissimilarity, Data Mining Applications

UNIT - 4

Association Analysis: Basic Concepts and Algorithms: Frequent Itemset Generation, Rule Generation, Compact Representation of Frequent Itemsets, Alternative methods for generating Frequent Itemsets, FP Growth Algorithm, Evaluation of Association Patterns

PART - B

6 Hours

Classification -1: Basics, General approach to solve classification problem, Decision Trees, Rule Based Classifiers, Nearest Neighbor Classifiers.

UNIT - 6

UNIT - 5

6 Hours Classification - 2 : Bayesian Classifiers, Estimating Predictive accuracy of classification methods, Improving accuracy of clarification methods, Evaluation criteria for classification methods, Multiclass Problem.

6 Hours

6 Hours

6 Hours

UNIT – 7

8 Hours

Clustering Techniques: Overview, Features of cluster analysis, Types of Data and Computing Distance, Types of Cluster Analysis Methods, Partitional Methods, Hierarchical Methods, Density Based Methods, Quality and Validity of Cluster Analysis

UNIT - 8

6 Hours

Web Mining: Introduction, Web content mining, Text Mining, Unstructured Text, Text clustering, Mining Spatial and Temporal Databases.

Text Books:

- 1. Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Pearson Education, 2005.
- 2. G. K. Gupta: Introduction to Data Mining with Case Studies, 3rd Edition, PHI, New Delhi, 2009.

Reference Books:

- 1. Arun K Pujari: Data Mining Techniques 2nd Edition, Universities Press, 2009.
- 2. Jiawei Han and Micheline Kamber: Data Mining Concepts and Techniques, 2nd Edition, Morgan Kaufmann Publisher, 2006.
- 3. Alex Berson and Stephen J. Smith: Data Warehousing, Data Mining, and OLAP Computing, Mc GrawHill Publisher, 1997.

C# PROGRAMMING AND .NET

Subject Code: 10CS761	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART – A

UNIT – 1

6 Hours

Interfaces and Collections: Defining Interfaces Using C# Invoking Interface Members at the object Level, Exercising the Shapes Hierarchy, Understanding Explicit Interface Implementation, Interfaces As Polymorphic Agents, Building Interface Hierarchies, Implementing, Implementation, Interfaces Using VS .NET, understanding the IConvertible Interface, Building a Custom Enumerator (IEnumerable and Enumerator), Building Cloneable objects (ICloneable), Building Comparable Objects (I Comparable), Exploring the system. Collections Namespace, Building a Custom Container (Retrofitting the Cars Type).

UNIT – 2

8 Hours

Callback Interfaces, Delegates, and Events, Advanced Techniques: Understanding Callback Interfaces, Understanding the .NET Delegate Type, Members of System. Multicast Delegate, The Simplest Possible Delegate Example, , Building More a Elaborate Delegate Example, Understanding Asynchronous Delegates, Understanding (and Using)Events.

The Advances Keywords of C#, A Catalog of C# Keywords Building a Custom Indexer, A Variation of the Cars Indexer Internal Representation of Type Indexer . Using C# Indexer from VB .NET. Overloading operators, The Internal Representation of Overloading Operators, interacting with Overload Operator from Overloaded- Operator- Challenged Languages, Creating Custom Conversion Routines, Defining Implicit Conversion Routines, The Internal Representations of Customs Conversion Routines

UNIT – 3

6 Hours

Understanding .NET Assembles: Problems with Classic COM Binaries, An Overview of .NET Assembly, Building a Simple File Test Assembly, A C#. Client Application, A Visual Basic .NET Client Application, Cross Language Inheritance, Exploring the CarLibrary's, Manifest, Exploring the CarLibrary's Types, Building the Multifile Assembly ,Using Assembly, Understanding Private Assemblies, Probing for Private Assemblies (The Basics), Private A Assemblies XML Configurations Files, Probing for Private Assemblies (The Details), Understanding Shared Assembly, Understanding Shared Names,

Building a Shared Assembly, Understanding Delay Signing, Installing/Removing Shared Assembly, Using a Shared Assembly

UNIT – 4

6 Hours

Object- Oriented Programming with C#: Forms Defining of the C# Class, Definition the "Default Public Interface" of a Type, Recapping the Pillars of OOP, The First Pillars: C#'s Encapsulation Services, Pseudo- Encapsulation: Creating Read-Only Fields, The Second Pillar: C#'s Inheritance Supports, keeping Family Secrets: The "Protected" Keyword, Nested Type Definitions, The Third Pillar: C #'s Polymorphic Support, Casting Between .

PART – B

UNIT – 5

6 Hours

Exceptions and Object Lifetime: Ode to Errors, Bugs, and Exceptions, The Role of .NET Exception Handing, the System. Exception Base Class, Throwing a Generic Exception, Catching Exception, CLR System – Level Exception(System. System Exception), Custom Application-Level Exception(System. System Exception), Handling Multiple Exception, The Family Block, the Last Chance Exception Dynamically Identifying Application – and System Level Exception Debugging System Exception Using VS. NET, Understanding Object Lifetime, the CIT of "new', The Basics of Garbage Collection, Finalization a Type, The Finalization Process, Building an Ad Hoc Destruction Method, Garbage Collection Optimizations, The System. GC Type.

UNIT – 6

6 Hours

Interfaces and Collections: Defining Interfaces Using C# Invoking Interface Members at the object Level, Exercising the Shapes Hierarchy, Understanding Explicit Interface Implementation, Interfaces As Polymorphic Agents, Building Interface Hierarchies, Implementing, Implementation, Interfaces Using VS .NET, understanding the IConvertible Interface, Building a Custom Enumerator (IEnumerable and Enumerator), Building Cloneable objects (ICloneable), Building Comparable Objects (I Comparable), Exploring the system. Collections Namespace, Building a Custom Container (Retrofitting the Cars Type).

UNIT - 7

8 Hours

Callback Interfaces, Delegates, and Events, Advanced Techniques: Understanding Callback Interfaces, Understanding the .NET Delegate Type, Members of System. Multicast Delegate, The Simplest Possible Delegate Example, Building More a Elaborate Delegate Example, Understanding Asynchronous Delegates, Understanding (and Using)Events.

The Advances Keywords of C#, A Catalog of C# Keywords Building a Custom Indexer, A Variation of the Cars Indexer Internal Representation of Type Indexer . Using C# Indexer from VB .NET. Overloading operators, The Internal Representation of Overloading Operators, interacting with Overload Operator from Overloaded- Operator- Challenged Languages, Creating Custom Conversion Routines, Defining Implicit Conversion Routines, The Internal Representations of Customs Conversion Routines

UNIT – 8

6 Hours

Understanding .NET Assembles: Problems with Classic COM Binaries, An Overview of .NET Assembly, Building a Simple File Test Assembly, A C#. Client Application, A Visual Basic .NET Client Application, Cross Language Inheritance, Exploring the CarLibrary's, Manifest, Exploring the CarLibrary's Types, Building the Multifile Assembly, Using Assembly, Understanding Private Assemblies, Probing for Private Assemblies (The Basics), Private A Assemblies XML Configurations Files, Probing for Private Assemblies (The Details), Understanding Shared Assembly, Understanding Delay Signing, Installing/Removing Shared Assembly, Using a Shared Assembly

Text Books:

- 1. Andrew Troelsen: Pro C# with .NET 3.0, 4th Edition, Wiley India, 2009.
 - Chapters: 1 to 11 (up to pp.369)
- 2. E. Balagurusamy: Programming in C#, 2nd Edition, Tata McGraw

Hill, 2008.

(Programming Examples 3.7, 3.10, 5.5, 6.1, 7.2, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3, 8.5, 8.7, 8.8, 9.1, 9.2, 9.3, 9.4, 10.2, 10.4, 11.2, 11.4, 12.1, 12.4, 12.5, 12.6, 13.1, 13.2, 13.3, 13.6, 14.1, 14.2, 14.4, 15.2, 15.3, 16.1, 16.2, 16.3, 18.3, 18.5.18.6)

Reference Books:

- 1. Tom Archer: Inside C#, WP Publishers, 2001.
- 2. Herbert Schildt: C# The Complete Reference, Tata McGraw Hill, 2004.

JAVA AND J2EE

Subject Code:10CS753 Hours/Week: 4 Total Hours: 52 IA Marks: 25 Exam Marks: 100 Exam Hours: 3

PART - A

UNIT - 1

6 Hours

Introduction to Java: Java and Java applications; Java Development Kit (JDK); Java is interpreted, Byte Code, JVM; Object-oriented programming; Simple Java programs.

Data types and other tokens: Boolean variables, int, long, char, operators, arrays, white spaces, literals, assigning values; Creating and destroying objects; Access specifiers.

Operators and Expressions: Arithmetic Operators, Bitwise operators, Relational operators, The Assignment Operator, The ? Operator; Operator Precedence; Logical expression; Type casting; Strings

Control Statements: Selection statements, iteration statements, Jump Statements.

UNIT - 2

6 Hours

Classes, Inheritance, Exceptions, Applets : Classes: Classes in Java; Declaring a class; Class name; Super classes; Constructors; Creating instances of class; Inner classes.

Inheritance: Simple, multiple, and multilevel inheritance; Overriding, overloading.

Exception handling: Exception handling in Java.

The Applet Class: Two types of Applets; Applet basics; Applet Architecture; An Applet skeleton; Simple Applet display methods; Requesting repainting; Using the Status Window; The HTML APPLET tag; Passing parameters to Applets; getDocumentbase() and getCodebase(); ApletContext and showDocument(); The AudioClip Interface; The AppletStub Interface; Output to the Console.

UNIT - 3

7 Hours

Multi Threaded Programming, Event Handling: Multi Threaded Programming: What are threads? How to make the classes threadable; Extending threads; Implementing runnable; Synchronization; Changing state of the thread; Bounded buffer problems, read-write problem, producer-consumer problems.

Event Handling: Two event handling mechanisms; The delegation event model; Event classes; Sources of events; Event listener interfaces; Using the delegation event model; Adapter classes; Inner classes.

UNIT - 4

7 Hours

Swings: Swings: The origins of Swing; Two key Swing features; Components and Containers; The Swing Packages; A simple Swing Application; Create a Swing Applet; Jlabel and ImageIcon; JTextField;The Swing Buttons; JTabbedpane; JScrollPane; JList; JComboBox; JTable.

Java 2 Enterprise Edition Overview, Database Access: Overview of J2EE and J2SE

The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief Overview of the JDBC process; Database Connection; Associating the JDBC/ODBC Bridge with the Database; Statement Objects; ResultSet; Transaction Processing; Metadata, Data types; Exceptions.

UNIT – 6

7 Hours

Servlets: Background; The Life Cycle of a Servlet; Using Tomcat for Servlet Development; A simple Servlet; The Servlet API; The Javax.servlet Package; Reading Servlet Parameter; The Javax.servlet.http package; Handling HTTP Requests and Responses; Using Cookies; Session Tracking.

UNIT – 7

6 Hours

JSP, RMI: Java Server Pages (JSP): JSP, JSP Tags, Tomcat, Request String, User Sessions, Cookies, Session Objects.

Java Remote Method Invocation: Remote Method Invocation concept; Server side, Client side.

UNIT - 8

7 Hours

Enterprise Java Beans: Enterprise java Beans; Deployment Descriptors; Session Java Bean, Entity Java Bean; Message-Driven Bean; The JAR File.

Text Books:

1. Herbert Schildt: Java The Complete Reference, 7th Edition, Tata McGraw Hill, 2007.

(Chapters 1, 2, 3, 4, 5, 6, 8, 10, 11, 21, 22, 29, 30, 31)

2. Jim Keogh: J2EE - The Complete Reference, Tata McGraw Hill, 2007.

(Chapters 5, 6, 11, 12, 15)

Reference Books:

- 1. Y. Daniel Liang: Introduction to JAVA Programming, 7th Edition, Pearson Education, 2007.
- 2. Stephanie Bodoff et al: The J2EE Tutorial, 2nd Edition, Pearson Education, 2004.

SOFTWARE TESTING

Subject Code: 10CS842	I.A. Marks: 25
Hours/Week: 4	Exam Marks: 100
Total Hours: 52	Exam Hours: 3

PART – A

UNIT 1

6 Hours

7 Hours

A Perspective on Testing, Examples: Basic definitions, Test cases, Insights from a Venn diagram, Identifying test cases, Error and fault taxonomies, Levels of testing. Examples: Generalized pseudocode, The triangle problem, The NextDate function, The commission problem, The SATM (Simple Automatic Teller Machine) problem, The currency converter, Saturn windshield wiper.

UNIT 2

Boundary Value Testing, Equivalence Class Testing, Decision Table-Based Testing: Boundary value analysis, Robustness testing, Worst-case testing, Special value testing, Examples, Random testing, Equivalence classes, Equivalence test cases for the triangle problem, NextDate function, and the commission problem, Guidelines and observations. Decision tables, Test cases for the triangle problem, NextDate function, and the commission problem, Guidelines and observations.

UNIT 3

Path Testing, Data Flow Testing: DD paths, Test coverage metrics, Basis path testing, guidelines and observations. Definition-Use testing, Slice-based testing, Guidelines and observations.

Levels of Testing, Integration Testing: Traditional view of testing levels, Alternative life-cycle models, The SATM system, Separating integration and system testing. A closer look at the SATM system, Decomposition-based, call graph-based, Path-based integrations.

PART – B

UNIT 5

7 Hours

7 Hours

6 Hours

System Testing, Interaction Testing: Threads, Basic concepts for requirements specification, Finding threads, Structural strategies and functional strategies for thread testing, SATM test threads, System testing guidelines, ASF (Atomic System Functions) testing example. Context of

interaction, A taxonomy of interactions, Interaction, composition, and determinism, Client/Server Testing,.

UNIT 6

Process Framework: Validation and verification, Degrees of freedom, Varieties of software. Basic principles: Sensitivity, redundancy, restriction, partition, visibility, Feedback. The quality process, Planning and monitoring, Quality goals, Dependability properties, Analysis, Testing, Improving the process, Organizational factors.

UNIT 7

Fault-Based Testing, Test Execution: Overview, Assumptions in faultbased testing, Mutation analysis, Fault-based adequacy criteria, Variations on mutation analysis. Test Execution: Overview, from test case specifications to test cases, Scaffolding, Generic versus specific scaffolding, Test oracles, Self-checks as oracles, Capture and replay.

UNIT 8

6 Hours

Planning and Monitoring the Process, Documenting Analysis and Test: Quality and process, Test and analysis strategies and plans, Risk planning, Monitoring the process, Improving the process, The quality team, Organizing documents, Test strategy document, Analysis and test plan, Test design specifications documents, Test and analysis reports.

TEXT BOOKS:

- 1. Paul C. Jorgensen: Software Testing, A Craftsman's Approach, 3rd Edition, Auerbach Publications, 2008.
- (Listed topics only from Chapters 1, 2, 5, 6, 7, 9, 10, 12, 1314, 15) 2. Mauro Pezze, Michal Young: Software Testing and Analysis -
 - Process, Principles and Techniques, Wiley India, 2009. (Listed topics only from Chapters 2, 3, 4, 16, 17, 20, 24)

REFERENCE BOOKS:

- 1. Aditya P Mathur: Foundations of Software Testing, Pearson Education, 2008.
- Srinivasan Desikan, Gopalaswamy Ramesh: Software Testing 2. Principles and Practices, 2nd Edition, Pearson Education, 2007.
- 3. Brian Marrick: The Craft of Software Testing, Pearson Education, 1995.

INFORMATION AND NETWORK SECURITY

Subject Code: 10CS835	I.A. Marks : 25
Hours/Week: 04	Exam Hours: 03
Total Hours: 52	Exam Marks: 100

PART – A

6 Hours

UNIT 1 Planning for Security: Introduction; Information Security Policy, Standards, and Practices; The Information Security Blue Print; Contingency plan and a model for contingency plan

6 Hours

UNIT 2 Security Technology-1: Introduction; Physical design; Firewalls; Protecting **Remote Connections**

UNIT 3

Security Technology – 2: Introduction; Intrusion Detection Systems (IDS); Honey Pots, Honey Nets, and Padded cell systems; Scanning and Analysis Tools

UNIT 4

8 Hours

Cryptography: Introduction; A short History of Cryptography; Principles of Cryptography; Cryptography Tools; Attacks on Cryptosystems.

PART - B

UNIT 5 8 Hours Introduction to Network Security, Authentication Applications: Attacks, services, and Mechanisms; Security Attacks; Security Services; A model for Internetwork Security; Internet Standards and RFCs Kerberos, X.509 Directory Authentication Service.

UNIT 6

Electronic Mail Security: Pretty Good Privacy (PGP); S/MIME

UNIT 7

IP Security: IP Security Overview; IP Security Architecture; Authentication Header; Encapsulating Security Payload; Combining Security Associations; Key Management.

UNIT 8

6 Hours

Web Security: Web security requirements; Secure Socket layer (SSL) and Transport layer Security (TLS); Secure Electronic Transaction (SET)

Text Books:

- 1. Michael E. Whitman and Herbert J. Mattord: Principles of Information Security, 2nd Edition, Cengage Learning, 2005. (Chapters 5, 6, 7, 8; Exclude the topics not mentioned in the syllabus)
- 2. William Stallings: Network Security Essentials: Applications and Standards, 3rd Edition, Pearson Education, 2007. (Chapters: 1, 4, 5, 6, 7, 8)

Reference Book:

1. Behrouz A. Forouzan: Cryptography and Network Security, Special Indian Edition, Tata McGraw-Hill, 2007.

DIGITAL IMAGE PROCESSING

Subject Code: 10CS762	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART – A

UNIT - 1

6 Hours Digitized Image and its properties: Basic concepts, Image digitization, Digital image properties

UNIT - 27 Hours Image Preprocessing: Image pre-processing: Brightness and geometric transformations, local preprocessing.

UNIT - 37 Hours Segmentation – 1: Thresholding, Edge-based segmentation.

UNIT - 47 Hours Segmentation – 2: Region based segmentation, Matching.

6 Hours

6 Hours

PART – B

7 Hours

Image Enhancement: Image enhancement in the spatial domain: Background, Some basic gray level transformations, Histogram processing, Enhancement using arithmetic/ logic operations, Basics of spatial filtering, Smoothing spatial filters, Sharpening spatial filters. Image enhancement in the frequency domain: Background, Introduction to the Fourier transform and the frequency domain, Smoothing Frequency-Domain filters, Sharpening Frequency Domain filters, Homomorphic filtering.

UNIT - 6

6 Hours

Image Compression: Image compression: Fundamentals, Image compression models, Elements of information theory, Error-Free Compression, Lossy compression.

UNIT - 7

7 Hours

Shape representation: Region identification, Contour-based shape representation and description, Region based shape representation and description, Shape classes.

UNIT – 8

6 Hours

Morphology: Basic morphological concepts, Morphology principles, Binary dilation and erosion, Gray-scale dilation and erosion, Morphological segmentation and watersheds

Text Books:

1. Milan Sonka, Vaclav Hlavac and Roger Boyle: Image Processing, Analysis and Machine Vision, 2nd Edition, Thomoson Learning, 2001.

(Chapters 2, 4.1 to 4.3, 5.1 to 5.4, 6, 11.1 to 11.4, 11.7)

2. Rafel C Gonzalez and Richard E Woods: Digital Image Processing, 3rd Edition, Pearson Education, 2003.

(Chapters 3.1 to 3.7, 4.1 to 4.5, 8.1 to 8.5)

Reference Books:

- 1. Anil K Jain, "Fundamentals of Digital Image Processing", PHI, 1997, Indian Reprint 2009.
- 2. B.Chanda, D Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2002.

MULTI-CORE ARCHITECTURE AND PROGRAMMING

Subject Code: 10CS846	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT 1

Introduction The power and potential of parallelism, Examining sequential and parallel programs, Parallelism using multiple instruction streams, The Goals: Scalability and performance portability, Balancing machine specifics with portability, A look at six parallel computers: Chip multiprocessors, Symmetric multiprocessor architectures, Heterogeneous chip designs, Clusters, Supercomputers, Observations from the six parallel computers.

UNIT 2

Reasoning about Performance

Motivation and basic concepts, Sources of performance loss, Parallel structure, Performance trade-offs, Measuring performance, Scalable performance.

UNIT 3

Examples of Multi-Core Architectures

Introduction to Intel Architecture, How an Intel Architecture System works, Basic Components of the Intel Core 2 Duo Processor: The CPU, Memory Controller, I/O Controller; Intel Core i7: Architecture, The Intel Core i7

7 Hours

6 Hours

6 Hours

UNIT - 5
Processor, Intel QuickPath Interconnect, The SCH; Intel Atom Architecture.

Introduction to Texas Instruments' Multi-Core Multilayer SoC architecture for communications, infrastructure equipment

UNIT 4

Parallel Algorithm Design

Introduction, The Task / Channel model, Foster's design methodology, Examples: Boundary value problem, Finding the maximum, The n-Body problem, Adding data input.

PART – B

UNIT 5

Parallel Programming – 1 (Using OpenMP)

Designing for threads: Task decomposition, Data decomposition, Data flow decomposition, Implications of different decompositions; Challenges in decomposition, Parallel programming patters, A motivating problem: Error diffusion.

Threading and Parallel Programming Constructs: Synchronization, Critical sections, Deadlocks, Synchronization primitives: Semaphores, Locks, Condition variables; Messages, Flow Control-Based concepts: Fence, Barrier; Implementation-Dependent threading issues.

UNIT 6

Parallel Programming – 2 (Using OpenMP)

Introduction, The shared-memory model, Parallel *for* loops, Declaring private variables, Critical sections, Reductions, Performance improvements, More general data parallelism, Functional parallelism.

UNIT 7

Solutions to Common Parallel Programming Problems

Too many threads, Data races, deadlocks, and live locks, Heavily contended locks, Non-blocking algorithms, Thread-safe functions and libraries, Memory issues, Cache-related issues, Avoiding pipeline stalls, Data organization for high performance.

UNIT 8

Threading in the Processor

Single-Core Processors: Processor architecture fundamentals, Comparing Superscalar and EPIC architectures.

Multi-Core Processors: Hardware-based threading, Hyper-threading technology, Multi-Core processors, Multiple processor interactions, Power consumption, Beyond multi-core architecture.

NOTE: In order to acquire a sound understanding of the subject, it is desirable for the students to work in the laboratory using OpenMP. The

hands-on experience would reinforce the concepts learnt in theory. Problems similar to the ones solved in the Algorithms Laboratory can be solved and issues like speed-up achieved can be analyzed in depth. Several free tools are available from companies like INTEL to facilitate such a study.

Text Books:

- 1. Calvin Lin, Lawrence Snyder: Principles of Parallel Programming, Pearson Education, 2009.
 - (Listed topics only from Chapters 1, 2, 3)
- 2. Michael J. Quinn: Parallel Programming in C with MPI and OpenMP, Tata McGraw Hill, 2004.

(Listed topics only from Chapters 3, 17)

3. Shameem Akhter, Jason Roberts: Multi-Core Programming, Increasing Performance through Software Multithreading, Intel Press, 2006.

(Listed topics only from Chapters 3, 4, 7, 9, 10)

 Web resources for Example Architectures of INTEL and Texas Instruments: <u>http://download.intel.com/design/intarch/papers/321087.pdf</u>; <u>http://focus.ti.com/lit/wp/spry133/spry133.pdf</u>

7 Hours

6 Hours

7 Hours

6 Hours

7 Hours

- 1. Introduction to Parallel Computing Ananth Grama et. al., Pearson Education, 2009.
- 2. Reinders : Intel Threading Building Blocks, O'reilly 2005
- 3. David Culler et. al.: Parallel Computer Architecture: A Hardware/Software Approach, Elsevier, 2006.
- Richard Gerber, Aart J.C. Bik, Kevin B. Smith, Xinmin Tian: Software Optimization Cookbook, High-Performance Recipes for IA-32 Platforms, 2nd Edition, Intel Press, 2006.

WIRELESS NETWORKS AND MOBILE COMPUTING

Sub Code: 10CS831	IA Marks	: 25
Hrs/Week: 04	Exam Hours	:03
Total Hrs: 52	Exam Marks	: 100

PART-A

UNIT - 1

6 Hours

Mobile Computing Architecture: Types of Networks, Architecture for Mobile Computing, 3-tier Architecture, Design Considerations for Mobile Computing.

UNIT - 2

Wireless Networks – 1: GSM and SMS: Global Systems for Mobile Communication (GSM and Short Service Messages (SMS): GSM Architecture, Entities, Call routing in GSM, PLMN Interface, GSM Addresses and Identities, Network Aspects in GSM, Mobility Management, GSM Frequency allocation. Introduction to SMS, SMS Architecture, SM MT, SM MO, SMS as Information bearer, applications

UNIT - 3

Wireless Networks – 2: GPRS : GPRS and Packet Data Network, GPRS Network Architecture, GPRS Network Operations, Data Services in GPRS, Applications for GPRS, Billing and Charging in GPRS

UNIT – 4

Wireless Networks – 3: CDMA, 3G and WiMAX: Spread Spectrum technology, IS-95, CDMA versus GSM, Wireless Data, Third Generation Networks, Applications on 3G, Introduction to WiMAX.

UNIT – 5

PART - B

Mobile Client: Moving beyond desktop, Mobile handset overview, Mobile phones and their features, PDA, Design Constraints in applications for handheld devices. Mobile IP: Introduction, discovery, Registration, Tunneling, Cellular IP, Mobile IP with IPv6

UNIT – 6

Mobile OS and Computing Environment: Smart Client Architecture, The Client: User Interface, Data Storage, Performance, Data Synchronization, Messaging. The Server: Data Synchronization, Enterprise Data Source, Messaging. Mobile Operating Systems: WinCE, Palm OS, Symbian OS, Linux, Proprietary OS Client Development : The development process, Need analysis phase, Design phase, Implementation and Testing phase, Deployment phase, Development Tools, Device Emulators.

UNIT – 7

Building, Mobile Internet Applications: Thin client: Architecture, the client, Middleware, messaging Servers, Processing a Wireless request, Wireless Applications Protocol (WAP) Overview, Wireless Languages: Markup Languages, HDML, WML, HTML, cHTML, XHTML, VoiceXML.

UNIT – 8

J2ME: Introduction, CDC, CLDC, MIDP; Programming for CLDC, MIDlet model, Provisioning, MIDlet life-cycle, Creating new application, MIDlet

7 Hours

6 Hours

7 Hours

6 Hours

7 Hours

6 Hours

7 Hours

event handling, GUI in MIDP, Low level GUI Components, Multimedia APIs; Communication in MIDP, Security Considerations in MIDP.

Text Books:

- Dr. Ashok Talukder, Ms Roopa Yavagal, Mr. Hasan Ahmed: Mobile Computing, Technology, Applications and Service Creation, 2d Edition, Tata McGraw Hill, 2010
- 2. Martyn Mallik: Mobile and Wireless Design Essentials, Wiley, 2003

Reference Books:

- 1. Raj kamal: Mobile Computing, Oxford University Press, 2007.
- 2. Iti Saha Misra: Wireless Communications and Networks, 3G and Beyond, Tata McGraw Hill, 2009.

DIGITAL SIGNAL PROCESSING

Subject Code: 10CS752	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT – 1 7 Hours The Discrete Fourier Transform: Its Properties and Applications : Frequency Domain Sampling: The Discrete Fourier Transform: Frequency Domain Sampling and Reconstruction of Discrete-Time Signals, The Discrete Fourier Transform (DFT), The DFT as a Linear Transformation, Relationship of the DFT to other Transforms. Properties of the DFT: Periodicity, Linearity and Symmetry Properties, Multiplication of Two DFT's and Circular Convolution, Additional DFT Properties; Linear

Filtering Methods Based on the DFT: Use of the DFT in Linear Filtering, Filtering of Long Data Sequences; Frequency Analysis of Signals using the DFT.

UNIT - 2

7 Hours

Efficient Computation of the DFT: Fast Fourier Transform Algorithms: Efficient Computation of the DFT: FFT Algorithms : Direct Computation of the DFT, Divide-and-Conquer Approach to Computation of the DFT, Radix-2 FFT Algorithms, Radix-4 FFT Algorithms, Split-Radix FFT Algorithms, Implementation of FFT Algorithms.

Applications of FFT Algorithms: Efficient computation of the DFT of Two Real Sequences, Efficient computation of the DFT of a 2N-Point Real Sequence, Use of the FFT Algorithm in Linear filtering and Correlation.

A Linear filtering approach to Computation of the DFT: The Goertzel Algorithm, The Chirp-Z Transform Algorithm.

Quantization Effects in the Computation of the DFT: Quantization Errors in the Direct Computation of the DFT, Quantization Errors in FFT Algorithms.

UNIT – 3

6 Hours

Implementation of Discrete-Time Systems – 1: Structures for the Realization of Discrete-Time Systems

Structures for FIR Systems: Direct-Form Structures, Cascade-Form Structures, Frequency-Sampling Structures, Lattice Structure.

Structures for IIR Systems: Direct-Form Structures, Signal Flow Graphs and Transposed Structures, Cascade-Form Structures, Parallel-Form Structures, Lattice and Lattice-Ladder Structures for IIR Systems.

UNIT - 4

6 Hours

Implementation of Discrete-Time Systems – **2:** State-Space System Analysis and Structures: State-Space Descriptions of Systems Characterized by Difference Equations, Solution of the State-Space Equations, Relationships between Input-Output and State-Space Descriptions, State-Space Analysis in the Z-Domain, Additional State-Space Structures.

Representation of Numbers: Fixed-Point Representation of Numbers, Binary Floating-Point Representation of Numbers, Errors Resulting from Rounding and Truncation.

UNIT – 5

Implementation of Discrete-Time Systems – **3:** Quantization of Filter Coefficients: Analysis of Sensitivity to Quantization of Filter Coefficients, Quantization of Coefficients in FIR Filters

Round-Off Effects in Digital Filters: Limit-Cycle Oscillations in Recursive Systems, Scaling to Prevent Overflow, Statistical Characterization of Quantization effects in Fixed-Point Realizations of Digital Filters.

UNIT - 6

7 Hours

Design of Digital Filters – 1: General Considerations: Causality and its Implications, Characteristics of Practical Frequency-Selective Filters.

Design of FIR Filters: Symmetric And Antisymetric FIR Filters, Design of Linear-Phase FIR Filters Using Windows, Design of Linear-Phase FIR Filters by the Frequency-Sampling Method, Design of Optimum Equiripple Linear-Phase FIR Filters, Design of FIR Differentiators, Design of Hilbert Transformers, Comparison of Design Methods for Linear-Phase FIR filters.

UNIT - 7

6 Hours

Design of Digital Filters – **2:** Design of IIR Filters from Analog Filters: IIR Filter Design by Approximation of Derivatives, IIR Filter Design by Impulse Invariance, IIR Filter Design by the Bilinear Transformation, The Matched-Z Transformation, Characteristics of commonly used Analog Filters, Some examples of Digital Filters Designs based on the Bilinear Transformation.

UNIT – 8

7 Hours

Design of Digital Filters – **3:** Frequency Transformations: Frequency Transformations in the Analog Domain, Frequency Transformations in the Digital Domain.

Design of Digital Filters based on Least-Squares method: Padé Approximations method, Least-Square design methods, FIR least-Squares Inverse (Wiener) Filters, Design of IIR Filters in the Frequency domain.

Text Books:

 John G. Proakis and Dimitris G. Manolakis: Digital Signal Processing, 3rd Edition, Pearson Education, 2003. (Chapters 5, 6, 7 and 8)

Reference Books:

- 1. Paulo S. R. Diniz, Eduardo A. B. da Silva And Sergio L. Netto: Digital Signal Processing: System Analysis and Design, Cambridge University Press, 2002.
- 2. Sanjit K. Mitra: Digital Signal Processing: A Computer Based Approach, Tata Mcgraw-Hill, 2001.
- 3. Alan V Oppenheim and Ronald W Schafer: Digital Signal Processing, PHI, Indian Reprint, 2008.

DIGITAL SIGNAL PROCESSING

Subject Code: 10CS752	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT - 1

7 Hours

The Discrete Fourier Transform: Its Properties and Applications : Frequency Domain Sampling: The Discrete Fourier Transform: Frequency Domain Sampling and Reconstruction of Discrete-Time Signals, The Discrete Fourier Transform (DFT), The DFT as a Linear Transformation, Relationship of the DFT to other Transforms. Properties of the DFT: Periodicity, Linearity and Symmetry Properties, Multiplication of Two DFT's and Circular Convolution, Additional DFT Properties; Linear Filtering

6 Hours

Methods Based on the DFT: Use of the DFT in Linear Filtering, Filtering of Long Data Sequences; Frequency Analysis of Signals using the DFT.

UNIT - 2

7 Hours

Efficient Computation of the DFT: Fast Fourier Transform Algorithms: Efficient Computation of the DFT: FFT Algorithms : Direct Computation of the DFT, Divide-and-Conquer Approach to Computation of the DFT, Radix- 2 FFT Algorithms, Radix-4 FFT Algorithms, Split-Radix FFT Algorithms, Implementation of FFT Algorithms.

Applications of FFT Algorithms: Efficient computation of the DFT of Two Real Sequences, Efficient computation of the DFT of a 2N-Point Real Sequence, Use of the FFT Algorithm in Linear filtering and Correlation.

A Linear filtering approach to Computation of the DFT: The Goertzel Algorithm, The Chirp-Z Transform Algorithm.

Quantization Effects in the Computation of the DFT: Quantization Errors in the Direct Computation of the DFT, Quantization Errors in FFT Algorithms.

UNIT - 3

6 Hours

6 Hours

Implementation of Discrete-Time Systems - 1: Structures for the Realization of **Discrete-Time Systems**

Structures for FIR Systems: Direct-Form Structures, Cascade-Form Structures, Frequency-Sampling Structures, Lattice Structure.

Structures for IIR Systems: Direct-Form Structures, Signal Flow Graphs and Transposed Structures, Cascade-Form Structures, Parallel-Form Structures, Lattice and Lattice-Ladder Structures for IIR Systems.

UNIT - 4

Implementation of Discrete-Time Systems - 2: State-Space System Analysis and Structures: State-Space Descriptions of Systems Characterized by Difference Equations, Solution of the State-Space Equations, Relationships between Input-Output and State-Space Descriptions, State-Space Analysis in the Z-Domain, Additional State-Space Structures.

Representation of Numbers: Fixed-Point Representation of Numbers, Binary Floating-Point Representation of Numbers, Errors Resulting from Rounding and Truncation.

PART – B

UNIT - 5

6 Hours Implementation of Discrete-Time Systems - 3: Quantization of Filter Coefficients: Analysis of Sensitivity to Quantizatior of Filter Coefficients, Quantization of Coefficients in FIR Filters

Round-Off Effects in Digital Filters: Limit-Cycle Oscillations in Recursive Systems, Scaling to Prevent Overflow, Statistical Characterization of Quantization effects in Fixed-Point Realizations of Digital Filters.

UNIT - 6

7 Hours

6 Hours

Design of Digital Filters - 1: General Considerations: Causality and its Implications, Characteristics of Practical Frequency-Selective Filters.

Design of FIR Filters: Symmetric And Antisymetric FIR Filters, Design of Linear-Phase FIR Filters Using Windows, Design of Linear-Phase FIR Filters by the Frequency-Sampling Method, Design of Optimum Equiripple Linear- Phase FIR Filters, Design of FIR Differentiators, Design of Hilbert Transformers, Comparison of Design Methods for Linear-Phase FIR filters.

UNIT - 7

Design of Digital Filters - 2: Design of IIR Filters from Analog Filters: IIR Filter Design by Approximation of Derivatives, IIR Filter Design by Impulse Invariance, IIR Filter Design by the Bilinear Transformation, The Matched-Z Transformation, Characteristics of commonly used Analog Filters, Some examples of Digital Filters

Designs based on the Bilinear Transformation.

7 Hours

Design of Digital Filters – **3:** Frequency Transformations: Frequency Transformations in the Analog Domain, Frequency Transformations in the Digital Domain.

Design of Digital Filters based on Least-Squares method: Padé Approximations method, Least-Square design methods, FIR least-Squares Inverse (Wiener) Filters, Design of IIR Filters in the Frequency domain.

Text Books:

UNIT – 8

 John G. Proakis and Dimitris G. Manolakis: Digital Signal Processing, 3rd Edition, Pearson Education, 2003. (Chapters 5, 6, 7 and 8)

Reference Books:

- 4. Paulo S. R. Diniz, Eduardo A. B. da Silva And Sergio L. Netto: Digital Signal Processing: System Analysis and Design, Cambridge University Press, 2002.
- 5. Sanjit K. Mitra: Digital Signal Processing: A Computer Based Approach, Tata Mcgraw-Hill, 2001.
- 6. Alan V Oppenheim and Ronald W Schafer: Digital Signal Processing, PHI, Indian Reprint, 2008.

ADVANCED DESIGN OF RCC STRUCTURES

Subject Code	: 14CSE12	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

Objectives:

The objectives of this course is to make students to learn principles of Structural Design, To design different types of structures and to detail the structures. To evaluate performance of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Structural Design
- Design and develop analytical skills.
- Summarize the principles of Structural Design and detailing
- Understands the structural performance.
- 1. Yield line method of design of slabs. Design of flat slabs.
- 2. Design of grid floors.
- 3. Design of continuous beams with redistribution of moments
- 4. Design of Chimneys, Design of silos and bunkers.
- 5. Art of detailing earthquake resistant structures. Expansion and contraction joints

- 1. A Park and Paulay, "Reinforced Reinforced and Prestressed Concrete"
- 2. Lin TY and Burns N H, "Reinforced Concrete Design".
- 3. Kong KF and Evans T H "Design of Prestressed Concrete Structures
- 4. P.C.Varghese, "Advanced Reinforced Concrete Design", Prentice-Hall of India, New Delhi, 2005.
- 5. Dr.B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Comprehensive RCC Design"

STRUCTURAL DYNAMICS

Subject Code	: 14CSE14	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

Objectives:

The objectives of this course is to make students to learn principles of Structural Dynamics, To implement these principles through different methods and to apply the same for free and forced vibration of structures. To evaluate the dynamic characteristics of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Structural Dynamics
- Design and develop analytical skills.
- Summarize the Solution techniques for dynamics of Multi-degree freedom systems
- Understand the concepts of damping in structures.
- 1. Introduction: Introduction to Dynamic problems in Civil Engineering, Concept of degrees of freedom, D'Alembert's principle, principle of virtual displacement and energy principles Dynamics of Single-degree-of-freedom systems: Mathematical models of Single-degree-of-freedom systems system, Free vibration response of damped and undamped systems. Methods of evaluation of damping.
- 2. Response of Single-degree-of-freedom systems to harmonic loading (rotation unbalance, reciprocating unbalance) including support motion, vibration isolation, transmissibility, Numerical methods applied to Single-degree-of-freedom systems Duhamel integral, principle of vibration-measuring instruments seismometer and accelerometer.
- **3.** Dynamics of Multi-degree freedom systems: Mathematical models of multi-degree-of-freedom systems, Shear building concept, free vibration of undamped multi-degree-of-freedom systems Natural frequencies and mode shapes orthogonality property of modes.
- 4. Response of Shear buildings for harmonic loading without damping using normal mode approach. Response of Shear buildings for forced vibration for harmonic loading with damping using normal mode approach, condition of damping uncoupling.
- 5. Approximate methods: Rayleigh's method Dunkarley's method, Stodola's method. Dynamics of Continuous systems: Free longitudinal vibration of bars, flexural vibration of beams with different end conditions,- Stiffness matrix, mass matrix (lumped and consistent); equations of motion for the discretised beam in matrix form.

Books for Reference:

- 1. Dynamics of Structures Theory and Application to Earthquake Engineering"- 2nd ed., Anil K. Chopra, Pearson Education.
- 2. Earthquake Resistant Design of Building Structures, Vinod Hosur, WILEY (india)
- 3. Vibrations, structural dynamics- M. Mukhopadhaya : Oxford IBH
- 4. Structural Dynamics- Mario Paz: CBS publishers.
- 5. Structural Dynamics- Clough & Penzien : TMH
- 6. Vibration Problems in Engineering Timoshenko, S, Van-Nostrand Co.

ELECTIVE - I

SPECIAL CONCRETE

Subject Code	: 14CSE152	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of Concrete mix design, To differentiate between different types of concrrete. To characterize the high Performance concrete.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Concrete mix design
- Design and develop analytical skills.
- Summerize the Light Weight concrete, Fibre reinforced concrete and High Performance concrete:
- Understand the concepts of high Performance concrete.
- 1. Components of modern concrete and developments in the process and constituent materials : Role of constituents, Development in cements and cement replacement materials, pozzolona, fly ash, silica fume, rice husk ash, recycled aggregates, chemical admixtures. Mix proportioning of Concrete: Principles and methods.
- 2. Light Weight concrete: Introduction, classification, properties, strength and durability, mix proportioning and problems. High density concrete: Radiation shielding ability of concrete, materials for high density concrete, mix proportioning, properties in fresh and hardened state, placement methods.
- **3.** Ferro cement: Ferrocement materials, mechanical properties, cracking of ferrocement, strength and behaviour in tension, compression and flexure, Design of ferrocement in tension, ferrocement constructions, durability, and applications.
- 4. *Fibre reinforced concrete:* Fibre materials, mix proportioning, distribution and orientation, interfacial bond, properties in fresh state, strength and behavior in tension, compression and flexure of steel fibre reinforced concrete, mechanical properties, crack arrest and toughening mechanism, applications.
- **5.** High Performance concrete: constituents, mix proportioning, properties in fresh and hardened states, applications and limitations. Ready Mixed Concrete, Self Compacting Concrete, Reactive powder concrete, bacterial concrete.

- 1. Neville A.M, "Properties of Concrete" Pearson Education Asis, 2000
- 2. P. Kumar Mehta, Paul J.N.Monterio, CONCRETE, "Microstructure, Properties and Materials"- Tata McGraw Hill
- 3. A.R.Santhakumar, (2007) "Concrete Technology"-Oxford University Press, New Delhi, 2007
- 4. Gambhir "Concrete Technology" TMH.
- 5. Short A and Kinniburgh.W, "Light Weight Concrete"- Asia Publishing House, 1963
- 6. Aitcin P.C. "High performance concrete"-E and FN, Spon London 1998
- 7. Rixom.R. and Mailvaganam.N., "Chemical admixtures in concrete"- E and FN, Spon London 1999
- 8. Rudnai.G., "Light Wiehgt concrete"- Akademiaikiado, Budapest, 1963.

STRUCTURAL ENGINEERING LAB-1

Subject Code	: 14CSE16	IA Marks	: 25
No. of Lab Hrs./ Week	: 03	Exam Hrs	: 03
Total No. of Lab Hrs.	: 48	Exam Marks	:50

The objectives of this course is to make students to learn principles of design of experiments, To investigate the performance of structural elements . To evaluate the different testing methods and equipments. .

Course Outcomes: On completion of this course, students are able to

Achieve Knowledge of design and development of experimenting skills. •

- Understand the principles of design of experiments
- Design and develop analytical skills.
- Summerize the testing methods and equipments. .
- 1. Testing of beams for deflection, flexure and shear 12 Hrs 12 Hrs
- 2. Experiments on Concrete, including Mix design
- 3. Experiments on vibration of multi storey frame models for Natural frequency and modes. 12Hrs

4. Use of Non destructive testing (NDT) equipments - Rebound hammer, Ultra sonic pulse velocity meter and Profometer

12 Hrs

EARTHQUAKE RESISTANT STRUCTURES

Subject Code	: 14CSE22	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of engineering seismology, To design the reinforced concrete buildings for earthquake resistance. To evaluate the seismic response of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of engineering seismology
- Design and develop analytical skills.
- Summarize the Seismic evaluation and retrofitting of structures.
- Understand the concepts of earthquake resistance of reinforced concrete buildings.
- 1. Introduction to engineering seismology, Geological and tectonic features of India, Origin and propagation of seismic waves, characteristics of earthquake and its quantification Magnitude and Intensity scales, seismic instruments. Earthquake Hazards in India, Earthquake Risk Evaluation and Mitigation. Structural behavior under gravity and seismic loads, Lateral load resisting structural systems, Requirements of efficient earthquake resistant structural system, damping devises, base isolation systems.
- 2. The Response history and strong motion characteristics. Response Spectrum elastic and inelastic response spectra, tripartite (D-V-A) response spectrum, use of response spectrum in earthquake resistant design.Computation of seismic forces in multi-storeyed buildings using procedures (Equivalent lateral force and dynamic analysis) as per IS-1893.
- 3. Structural Configuration for earthquake resistant design, Concept of plan irregularities and vertical irregularities, Soft storey, Torsion in buildings. Design provisions for these in IS-1893. Effect of infill masonry walls on frames, modeling concepts of infill masonry walls. Behaviour of masonry buildings during earthquakes, failure patterns, strength of masonry in shear and flexure, Slenderness concept of masonry walls, concepts for earthquake resistant masonry buildings codal provisions.
- 4. Design of Reinforced concrete buildings for earthquake resistance-Load combinations, Ductility and energy absorption in buildings. confinement of concrete for ductility, design of columns and beams for ductility, ductile detailing provisions as per IS-1893. Structural behavior, design and ductile detailing of shear walls.
- 5. Seismic response control concepts Seismic demand, seismic capacity, Overview of linear and nonlinear procedures of seismic analysis. Performance Based Seismic Engineering methodology, Seismic evaluation and retrofitting of structures.

Books for Reference:

- 1. Dynamics of Structures Theory and Application to Earthquake Engineering- 2nd ed. Anil K. Chopra, Pearson Education.
- 2. Earthquake Resistant Design of Building Structures, Vinod Hosur, WILEY (india)
- 3. Earthquake Resistant Design of Structures, Duggal, Oxford University Press
- 4. Earthquake resistant design of structures Pankaj Agarwal, Manish Shrikande PHI India
- 5. IS 1893 (Part I): 2002, IS 13920: 1993, IS 4326: 1993, IS-13828: 1993
- 6. Design of Earthquake Resistant Buildings, Minoru Wakabayashi, McGraw Hill Pub.
- 7. Seismic Design of Reinforced Concrete and Masonry Buildings, T Paulay and M J N Priestley, John Wiley and Sons

FINITE ELEMENT METHOD OF ANALYSIS

Subject Code	: 14CSE23	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of Analysis of Stress and Strain, To apply the Finite Element Method for the analysis of one and two dimensional problems. To evaluate the stress and strain parameters and their inter relations of the continuum.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of stress-strain behaviour of continuum
- Design and develop analytical skills.
- Describe the state of stress in a continuum
- Understand the concepts of elasticity and plasticity.
- Basic concepts of elasticity Kinematic and Static variables for various types of structural problems approximate method of structural analysis – Rayleigh – Ritz method – Finite difference method – Finite element method. Variation method and minimization of Energy approach of element formulation.Principles of finite element method – advantages & disadvantages – Finite element procedure. Finite elements used for one, two & three dimensional problems – Element aspect ratio – mesh refinement vs. higher order elements – Numbering of nodes to minimize band width.
- 2. Nodal displacement parameters Convergence criterion Compatibility requirements Geometric invariance Shape function Polynomial form of displacement function. Generalized and Natural coordinates Lagrangian interpolation function shape functions for one, two & three dimensional elements.
- **3.** Isoparametric elements Internal nodes and higher order elements Serendipity and Lagrangian family of Finite Elements Sub parametric and Super parametric elements Condensation of internal nodes Jacobian transformation Matrix. Development of strain displacement matrix and stiffness matrix, consistent load vector, numerical integration.
- 4. Application of Finite Element Method for the analysis of one & two dimensional problems Analysis of simple beams and plane trusses Application to plane stress / strain / axisymmetric problems using CST & Quadrilateral Elements.
- **5.** Application to Plates & Shells- Choice of displacement function (C, C and C type) Techniques for Non linear Analysis.

- 1. Krishnamoorthy C S, "Finite Element Analysis"- Tata McGraw Hill
- 2. Desai C and Abel J F, "Introduction to the Finite Element Method"- East West Press Pvt. Ltd., 1972
- 3. Bathe K J, "Finite Element Procedures in Engineering Analysis" Prentice Hall
- 4. Rajasekaran. S, "Finite Element Analysis in Engineering Design"-Wheeler Publishing
- Cook R D, Malkan D S & Plesta M.E, "Concepts and Application of Finite Element Analysis" 3rd Edition, John Wiley and Sons Inc., 1989
- 6. Shames I H and Dym C J, "**Energy and Finite Element Methods in Structural Mechanics**"- McGraw Hill, New York, 1985

DESIGN CONCEPTS OF SUBSTRUCTURES

Subject Code	: 14CSE24	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of subsoil exploration, To design the sub structures. To evaluate the soil shear strength parameters.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of subsoil exploration
- Design and develop analytical skills.
- Identify and evaluate the soil shear strength parameters .
- Understand the concepts of Settlement analysis.
- 1. Introduction, Site investigation, In-situ testing of soils, Subsoil exploration, Classification of foundations systems. General requirement of foundations, Selection of foundations, Computations of Loads, Design concepts.
- 2. Concept of soil shear strength parameters, Settlement analysis of footings, Shallow foundations in clay, Shallow foundation in sand & C- Φ soils, Footings on layered soils and sloping ground, Design for Eccentric or Moment Loads.
- 3. Types of rafts, bearing capacity & settlements of raft foundation, Rigid methods, Flexible methods, soil-structure interaction, different methods of modeling the soil. Combined footings (rectangular & trapezoidal), strap footings & wall footings, Raft super structure interaction effects & general concepts of structural design, Basement slabs.
- 4. Deep Foundations: Load Transfer in Deep Foundations, Types of Deep Foundations, Ultimate bearing capacity of different types of piles in different soil conditions, Laterally loaded piles, tension piles & batter piles, Pile groups: Bearing capacity, settlement, uplift capacity, load distribution between piles, Proportioning and design concepts of piles.
- 5. Types of caissons, Analysis of well foundations, Design principles, Well construction and sinking. Foundations for tower structures: Introduction, Forces on tower foundations, Selection of foundation type, Stability and design considerations, Ring foundations general concepts.

IMPORTANT NOTE:

Only design principles of all type footings as per relevant BIS codes are to be covered, design of RC elements need not be covered

- 1. Swami Saran "Analysis & Design of Substructures"- Oxford & IBH Pub. Co. Pvt. Ltd., 1998.
- 2. Nainan P Kurian "Design of Foundation Systems" Narosa Publishing House, 1992.
- 3. R.B. Peck, W.E. Hanson & T.H. Thornburn "Foundation Engineering"- Wiley Eastern Ltd., Second Edition, 1984.
- 4. J.E. Bowles "Foundation Analysis and Design"- McGraw-Hill Int. Editions, Fifth Ed., 1996.
- 5. W.C. Teng "Foundation Design"- Prentice Hall of India Pvt. Ltd., 1983.
- 6. Bureau of Indian Standards:IS-1498, IS-1892, IS-1904, IS-6403, IS-8009, IS-2950, IS-11089, IS-11233, IS-2911 and all other relevant codes.

DESIGN OF TALL STRUCTURES

Subject Code	: 14CSE252	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of stability of tall buildings, To design the tall buildings for earthquake and wind resistance. To evaluate the performance of tall structures for strength and stability.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of strength and stability
- Design and develop analytical skills.
- Summarize the behavior of various structural systems.
- Understand the concepts of P-Delta analysis.
- 1. Design Criteria: Design philosophy, loading, sequential loading, and materials high performance concrete, fiber reinforced concrete, lightweight concrete, design mixes. Loading and Movement: Gravity loading: Dead and live load, methods of live load reduction, Impact, Gravity loading, Construction loads
- **2.** Wind loading: static and dynamic approach, Analytical and wind tunnel experimentation method. Earthquake loading: Equivalent lateral force, modal analysis, combinations of loading, working stress design, Limit state design, Plastic design.
- **3.** Behavior of Various Structural Systems: Factors affecting growth, Height and structural form; High rise behavior, Rigid frames, braced frames, in-filled frames, shear walls, coupled shear walls, wall-frames, tubular, cores, Futigger braced and hybrid mega system.
- **4. Analysis and Design:** Modeling for approximate analysis, accurate analysis and reduction techniques, analysis of building as total structural system considering overall integrity and major subsystem interaction, analysis for member forces; drift and twist, computerized general three dimensional analyses.
- **5. Stability of Tall Buildings:** Overall buckling analysis of frames, wall frames, approximate methods, second order effects of gravity of loading, P-Delta analysis, simultaneous first order and P-Delta analysis, Transnational, Torsional instability, out of plum effects, stiffness of member in stability, effect of foundation rotation. Structural elements: sectional shapes, properties and resisting capacities, design, deflection, cracking, pre-stressing, shear flow. Design for differential movement, creep and shrinkage effects, temperature effects and fire

- 1. Taranath B.S, "Structural Analysis and Design of Tall Buildings"- McGraw Hill
- 2. Wilf gang Schuller, "High rise building structures" John Wiley
- 3. Bryan Stafford Smith & Alexcoull, "Tall building structures Analysis and Design"- John Wiley
- 4. T.Y Lin & D.Stotes Burry, "Structural concepts and system for Architects and Engineers"- John Wiley
- 5. Lynn S.Beedle, "Advances in Tall Buildings"- CBS Publishers and Distributors.
- 6. Dr. Y.P. Gupta Editor, "Proceedings National Seminar on High Rise Structures- Design and Construction practices for middle level cities"- New Age International Limited.
- 7.

STRUCTURAL ENGINEERING LAB-2

Subject Code	: 14CSE26	IA Marks	: 25
No. of Lab Hrs./ Week	: 03	Exam Hrs	: 03
Total No. of Lab Hrs.	: 48	Exam Marks	:50

The objectives of this course is to make students to learn the soft wares for structural analysis and design, To investigate the performance of structures for static and dynamic forces.

Course Outcomes: On completion of this course, students are able to

• Achieve Knowledge of design and development of programming skills.

- Understand the principles of structural analysis and design
- Design and develop analytical skills.
- Summerize the performance of structures for static and dynamic forces..

1. Static and Dynamic analysis of Building structure using software (ETABS / STAADPRO)	12 Hrs
2. Design of RCC and Steel structure using software (ETABS / STAADPRO)	12 Hrs
3. Analysis of folded plates and shells using software.	12 Hrs
4. Preparation of EXCEL sheets for structural design.	12 Hrs

ANALOG ELECTRONIC CIRCUITS (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES32	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

$\mathbf{PART} - \mathbf{A}$

UNIT 1:

Diode Circuits: Diode Resistance, Diode equivalent circuits, Transition and diffusion capacitance, Reverse recovery time, Load line analysis, Rectifiers, Clippers and clampers. **6 Hours**

UNIT 2:

Transistor Biasing: Operating point, Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased, DC bias with voltage feedback, Miscellaneous bias configurations, Design operations, Transistor switching networks, PNP transistors, Bias stabilization. **6 Hours**

UNIT 3:

Transistor at Low Frequencies: BJT transistor modeling, CE Fixed biasconfiguration, Voltage divider bias, Emitter follower, CB configuration,Collector feedback configuration, Analysis of circuits r_e model; analysis ofCE configuration using h- parameter model; Relationship between h-parameter model of CE,CC and CE configuration.7 Hours

UNIT 4:

Transistor Frequency Response: General frequency considerations, low frequency response, Miller effect capacitance, High frequency response, multistage frequency effects. 7 Hours

PART – B

UNIT 5:

(a) General Amplifiers: Cascade connections, Cascode connections, Darlington connections. 3 Hours

(b) Feedback Amplifier: Feedback concept, Feedback connections type, Practical feedback circuits. Design procedures for the feedback amplifiers. 4 Hours

UNIT 6:

Power Amplifiers: Definitions and amplifier types, series fed class Aamplifier, Transformer coupled Class A amplifiers, Class B amplifieroperations, Class B amplifier circuits, Amplifier distortions. Designing ofPower amplifiers.7 Hours

UNIT 7:

Oscillators: Oscillator operation, Phase shift Oscillator, Wienbridge Oscillator, Tuned Oscillator circuits, Crystal Oscillator. (BJT Version Only) Simple design methods of Oscillators. **6 Hours**

UNIT 8:

FET Amplifiers: FET small signal model, Biasing of FET, Common drain common gate configurations, MOSFETs, FET amplifier networks.

6 Hours

TEXT BOOK:

1. **"Electronic Devices and Circuit Theory"**, Robert L. Boylestad and Louis Nashelsky, PHI/Pearson Eduication. 9TH Edition.

REFERENCE BOOKS:

- 'Integrated Electronics', Jacob Millman & Christos C. Halkias, Tata - McGraw Hill, 2nd Edition, 2010
- 2. **"Electronic Devices and Circuits",** David A. Bell, PHI, 4th Edition, 2004
- 3. "Analog Electronics Circuits: A Simplified Approach", U.B. Mahadevaswamy, Pearson/Saguine, 2007.

LOGIC DESIGN (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES33	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Principles of combinational logic-1: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables,

PART – A

UNIT 6:

Power Amplifiers: Definitions and amplifier types, series fed class Aamplifier, Transformer coupled Class A amplifiers, Class B amplifieroperations, Class B amplifier circuits, Amplifier distortions. Designing ofPower amplifiers.7 Hours

UNIT 7:

Oscillators: Oscillator operation, Phase shift Oscillator, Wienbridge Oscillator, Tuned Oscillator circuits, Crystal Oscillator. (BJT Version Only) Simple design methods of Oscillators. **6 Hours**

UNIT 8:

FET Amplifiers: FET small signal model, Biasing of FET, Common drain common gate configurations, MOSFETs, FET amplifier networks.

6 Hours

TEXT BOOK:

1. **"Electronic Devices and Circuit Theory"**, Robert L. Boylestad and Louis Nashelsky, PHI/Pearson Eduication. 9TH Edition.

REFERENCE BOOKS:

- 'Integrated Electronics', Jacob Millman & Christos C. Halkias, Tata - McGraw Hill, 2nd Edition, 2010
- 2. **"Electronic Devices and Circuits",** David A. Bell, PHI, 4th Edition, 2004
- 3. "Analog Electronics Circuits: A Simplified Approach", U.B. Mahadevaswamy, Pearson/Saguine, 2007.

LOGIC DESIGN (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES33	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Principles of combinational logic-1: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables,

PART – A

Karnaugh maps-3, 4 and 5 variables, Incompletely specified functions (Don't Care terms), Simplifying Max term equations. **6 Hours**

UNIT 2:

Principles of combinational Logic-2: Quine-McCluskey minimization technique- Quine-McCluskey using don't care terms, Reduced Prime Implicant Tables, Map entered variables. 7 Hours

UNIT 3:

Analysis and design of combinational logic - I: General approach,
Decoders-BCD decoders, Encoders.6 Hours

UNIT 4:

Analysis and design of combinational logic - II: Digital multiplexers-Using multiplexers as Boolean function generators. Adders and subtractors-Cascading full adders, Look ahead carry, Binary comparators. Design methods of building blocks of combinational logics.

7 Hours

PART – B

UNIT 5:

Sequential Circuits – 1: Basic Bistable Element, Latches, SR Latch,Application of SR Latch, A Switch Debouncer, The $\overline{S^{\Box}} \ \overline{R^{\Box}}$ Latch, The gated D Latch, The Master-Slave Flip-Flops (Pulse-TriggeredFlip-Flops): The Master-Slave SR Flip-Flops, The Master-Slave JK Flip-Flop, Edge Triggered Flip-Flop: The Positive Edge-Triggered D Flip-Flop,Negative-Edge Triggered D Flip-Flop.7 Hours

UNIT 6:

Sequential Circuits – **2:** Characteristic Equations, Registers, Counters -Binary Ripple Counters, Synchronous Binary counters, Counters based on Shift Registers, Design of a Synchronous counters, Design of a Synchronous Mod-6 Counter using clocked JK Flip-Flops Design of a Synchronous Mod-6 Counter using clocked D, T, or SR Flip-Flops **7 Hours**

UNIT 7:

Sequential Design - I: Introduction, Mealy and Moore Models, State Machine Notation, Synchronous Sequential Circuit Analysis and Design. 6 Hours

UNIT 8:

Sequential Design - II: Construction of state Diagrams, Counter Design.

6 Hours

TEXT BOOKS:

- 1. **"Digital Logic Applications and Design"**, John M Yarbrough, Thomson Learning, 2001.
- 2. **"Digital Principles and Design ",** Donald D Givone, Tata McGraw Hill Edition, 2002.

REFERENCE BOOKS:

- 1. **"Fundamentals of logic design",** Charles H Roth, Jr; Thomson Learning, 2004.
- 2. "Logic and computer design Fundamentals", Mono and Kim, Pearson, Second edition, 2001.
- 3. "Logic Design", Sudhakar Samuel, Pearson/Saguine, 2007

NETWORK ANALYSIS (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES34	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Basic Concepts: Practical sources, Source transformations, Network reduction using Star – Delta transformation, Loop and node analysis With linearly dependent and independent sources for DC and AC networks, Concepts of super node and super mesh. 7 Hours UNIT 2:

Network Topology: Graph of a network, Concept of tree and co-tree, incidence matrix, tie-set, tie-set and cut-set schedules, Formulation of equilibrium equations in matrix form, Solution of resistive networks, Principle of duality. **7 Hours**

UNIT 3:

Network Theorems – 1: Superposition, Reciprocity and Millman's theorems. 6 Hours

transform representation of discrete time signals. Sampling theorm and Nyquist rate. **7 Hours**

UNIT 7:

Z-Transforms – 1: Introduction, Z – transform, properties of ROC, properties of Z – transforms, inversion of Z – transforms.

UNIT 8:

6 Hours

Z-transforms – **2:** Transform analysis of LTI Systems, unilateral Z-Transform and its application to solve difference equations. **6 Hours**

TEXT BOOK

- 1. Simon Haykin, "Signals and Systems", John Wiley India Pvt. Ltd., 2nd Edn, 2008.
- 2. Michael Roberts, "Fundamentals of Signals & Systems", 2nd ed, Tata McGraw-Hill, 2010.

REFERENCE BOOKS:

- 1. Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson Education Asia / PHI, 2nd edition, 1997. Indian Reprint 2002.
- 2. H. P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006.
- 3. **B. P. Lathi**, "Linear Systems and Signals", Oxford University Press, 2005.
- 4. Ganesh Rao and Satish Tunga, "Signals and Systems", Pearson/Sanguine Technical Publishers, 2004.

FUNDAMENTALS OF HDL (Common to EC/TC/IT/BM/ML)

Sub Code	:	10EC45	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Introduction: Why HDL?, A Brief History of HDL, Structure of HDL Module, Operators, Data types, Types of Descriptions, simulation and synthesis, Brief comparison of VHDL and Verilog

7 Hours

UNIT 2:

Data –Flow Descriptions: Highlights of Data-Flow Descriptions, Structureof Data-Flow Description, Data Type – Vectors.6 Hours

UNIT 3:

Behavioral Descriptions: Behavioral Description highlights, structure of HDL behavioral Description, The VHDL variable –Assignment Statement, sequential statements. **6 Hours**

UNIT 4:

Structural Descriptions: Highlights of structural Description, Organization of the structural Descriptions, Binding, state Machines, Generate, Generic, and Parameter statements.

7 Hours

PART – B

UNIT 5:

Procedures, Tasks, and Functions: Highlights of Procedures, tasks, and Functions, Procedures and tasks, Functions.

Advanced HDL Descriptions: File Processing, Examples of File Processing 7 Hours

UNIT 6:

Mixed –Type Descriptions: Why Mixed-Type Description? VHDL User-Defined Types, VHDL Packages, Mixed-Type Description examples

UNIT 7:

Mixed –Language Descriptions: Highlights of Mixed-Language Description, How to invoke One language from the Other, Mixed-language Description Examples, Limitations of Mixed-Language Description.

UNIT 8:

7 Hours

6 Hours

Synthesis Basics: Highlights of Synthesis, Synthesis information from Entity and Module, Mapping Process and Always in the Hardware Domain.

6 Hours

TEXT BOOKS:

1. HDL Programming (VHDL and Verilog)- Nazeih M.Botros- John Weily India Pvt. Ltd. 2008.

REFERENCE BOOKS:

- 1. Fundamentals of HDL Cyril P.R. Pearson/Sanguin 2010.
- 2. VHDL -Douglas perry-Tata McGraw-Hill.
- 3. A Verilog HDL Primer- J.Bhaskar BS Publications
- 4. Circuit Design with VHDL-Volnei A.Pedroni-PHI.

MICROCONTROLLERS LAB (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ESL47	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

I. PROGRAMMING

- 1. Data Transfer Block move, Exchange, Sorting, Finding largest element in an array.
- 2. Arithmetic Instructions Addition/subtraction, multiplication and division, square, Cube (16 bits Arithmetic operations bit addressable).
- 3. Counters.
- 4. Boolean & Logical Instructions (Bit manipulations).
- 5. Conditional CALL & RETURN.
- 6. Code conversion: BCD ASCII; ASCII Decimal; Decimal ASCII; HEX Decimal and Decimal HEX .
- 7. Programs to generate delay, Programs using serial port and on-Chip timer / counter.

Note: Programming exercise is to be done on both 8051 & MSP430.

II. INTERFACING:

Write C programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

- 8. Simple Calculator using 6 digit seven segment displays and Hex Keyboard interface to 8051.
- 9. Alphanumeric LCD panel and Hex keypad input interface to 8051.
- 10. External ADC and Temperature control interface to 8051.
- 11. Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC interface to 8051; change the frequency and amplitude.

- 12. Stepper and DC motor control interface to 8051.
- 13. Elevator interface to 8051.

HDL LAB (Common to EC/TC/IT/BM/ML)

Sub Code	:	10ECL48	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

Note: Programming can be done using any compiler. Download the programs on a FPGA/CPLD boards such as Apex/Acex/Max/Spartan/Sinfi/TK Base or equivalent and performance testing may be done using 32 channel pattern generator and logic analyzer apart from verification by simulation with tools such as Altera/Modelsim or equivalent.

PROGRAMMING (using VHDL /Verilog)

- 1. Write HDL code to realize all the logic gates
- 2. Write a HDL program for the following combinational designs
 - a. 2 to 4 decoder
 - b. 8 to 3 (encoder without priority & with priority)
 - c. 8 to 1 multiplexer
 - d. 4 bit binary to gray converter
 - e. Multiplexer, de-multiplexer, comparator.
- 2. Write a HDL code to describe the functions of a Full Adder Using three modeling styles.

3. Write a model for 32 bit ALU using the schematic diagram shown below A (31:0) B (31:0)

- ALU should use combinational logic to calculate an output based on the four bit op-code input.
- ALU should pass the result to the out bus when enable line in high, and tri-state the out bus when the enable line is low.
- ALU should decode the 4 bit op-code according to the given in example below.

OPCODE	ALU OPERATION
1.	A + B
2.	A - B
3.	A Complement
4.	A * B
5.	A AND B
6.	A OR B
7.	A NAND B
8.	A XOR B

- 4. Develop the HDL code for the following flip-flops, SR, D, JK, T.
- 5. Design 4 bit binary, BCD counters (Synchronous reset and Asynchronous reset) and "any sequence" counters

<u>INTERFACING</u> (at least four of the following must be covered using VHDL/Verilog)

- 1. Write HDL code to display messages on the given seven segment display and LCD and accepting Hex key pad input data.
- 2. Write HDL code to control speed, direction of DC and Stepper motor.
- 3. Write HDL code to accept 8 channel Analog signal, Temperature sensors and display the data on LCD panel or Seven segment display.
- 4. Write HDL code to generate different waveforms (Sine, Square, Triangle, Ramp etc.,) using DAC change the frequency and amplitude.
- 5. Write HDL code to simulate Elevator operations
- 6. Write HDL code to control external lights using relays.

DIGITAL SIGNAL PROCESSING

Subject Code	: 10EC52	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Discrete Fourier Transforms (DFT): Frequency domain sampling and reconstruction of discrete time signals. DFT as a linear transformation, its relationship with other transforms. **6** Hours

UNIT - 2

Properties of DFT, multiplication of two DFTs- the circular convolution, additional DFT properties. **6** Hours

UNIT - 3

Use of DFT in linear filtering, overlap-save and overlap-add method. Direct computation of DFT, need for efficient computation of the DFT (FFT algorithms). 7 Hours

UNIT - 4

Radix-2 FFT algorithm for the computation of DFT and IDFT-decimationin-time and decimation-in-frequency algorithms. Goertzel algorithm, and chirp-z transform. 7 Hours

PART – B

UNIT - 5

IIR filter design: Characteristics of commonly used analog filters -Butterworth and Chebysheve filters, analog to analog frequency transformations. **6** Hours

UNIT - 6

Implementation of discrete-time systems: Structures for IIR and FIR systemsdirect form I and direct form II systems, cascade, lattice and parallel 7 Hours realization.

UNIT - 7

FIR filter design: Introduction to FIR filters, design of FIR filters using -Rectangular, Hamming, Bartlet and Kaiser windows, FIR filter design using frequency sampling technique. **6** Hours

UNIT - 8

Design of IIR filters from analog filters (Butterworth and Chebyshev) impulse invariance method. Mapping of transfer functions: Approximation of derivative (backward difference and bilinear transformation) method, Matched z transforms, Verification for stability and linearity during mapping **7 Hours**

TEXT BOOK:

 Digital signal processing – Principles Algorithms & Applications, Proakis & Monalakis, Pearson education, 4th Edition, New Delhi, 2007.

REFERENCE BOOKS:

- 1. Discrete Time Signal Processing, Oppenheim & Schaffer, PHI, 2003.
- 2. **Digital Signal Processing**, S. K. Mitra, Tata Mc-Graw Hill, 3rd Edition, 2010.
- 3. Digital Signal Processing, Lee Tan: Elsivier publications, 2007

ANALOG COMMUNICATION

Subject Code	: 10EC53	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

RANDOM PROCESS: Random variables: Several random variables. Statistical averages: Function of Random variables, moments, Mean, Correlation and Covariance function: Principles of autocorrelation function, cross – correlation functions. Central limit theorem, Properties of Gaussian process. **7 Hours**

UNIT - 2

AMPLITUDE MODULATION: Introduction, AM: Time-Domain description, Frequency – Domain description. Generation of AM wave: square law modulator, switching modulator. Detection of AM waves: square law detector, envelop detector. Double side band suppressed carrier modulation (DSBSC): Time-Domain description, Frequency-Domain representation, Generation of DSBSC waves: balanced modulator, ring modulator. Coherent detection of DSBSC modulated waves. Costas loop.

7 Hours

TEXT BOOKS:

- 1. **Communication Systems**, Simon Haykins, 5th Edition, John Willey, India Pvt. Ltd, 2009.
- 2. An Introduction to Analog and Digital Communication, Simon Haykins, John Wiley India Pvt. Ltd., 2008

REFERENCE BOOKS:

- Modern digital and analog Communication systems B. P. Lathi, Oxford University Press., 4th ed, 2010,
- 2. **Communication Systems**, Harold P.E, Stern Samy and A Mahmond, Pearson Edn, 2004.
- 3. **Communication Systems**: Singh and Sapre: Analog and digital TMH 2nd, Ed 2007.

MICROWAVES AND RADAR

Subject Code	: 10EC54	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

MICROWAVE TRANSMISSION LINES: Introduction, transmission lines equations and solutions, reflection and transmission coefficients, standing waves and SWR, line impedance and line admittance. Smith chart, impedance matching using single stubs, Microwave coaxial connectors.

7 Hours

UNIT - 2

MICROWAVE WAVEGUIDES AND COMPONENTS: Introduction, rectangular waveguides, circular waveguides, microwave cavities, microwave hybrid circuits, directional couplers, circulators and isolators.

6 Hours

UNIT - 3

MICROWAVE DIODES,

Transfer electron devices: Introduction, GUNN effect diodes – GaAs diode, RWH theory, Modes of operation, Avalanche transit time devices: READ diode, IMPATT diode, BARITT diode, Parametric amplifiers Other diodes: PIN diodes, Schottky barrier diodes. **7 Hours**

UNIT - 4

Microwave network theory and passive devices. Symmetrical Z and Y parameters, for reciprocal Networks, S matrix representation of multi port networks. 6 Hours

PART – B

UNIT - 5

Microwave passive devices, Coaxial connectors and adapters, Phase shifters, Attenuators, Waveguide Tees, Magic tees. **6 Hours**

UNIT - 6

STRIP LINES: Introduction, Microstrip lines, Parallèle strip lines, Coplanar strip lines, Shielded strip Lines. **6 Hours**

UNIT - 7

AN INTRODUCTION TO RADAR: Basic Radar, The simple form of the Radar equation, Radar block diagram, Radar frequencies, application of Radar, the origins of Radar. 7 Hours

UNIT - 8

MTI AND PULSE DOPPLER RADAR: Introduction to Doppler and MTI Radar, delay line Cancellers, digital MTI processing, Moving target detector, pulse Doppler Radar. 7 Hours

TEXT BOOKS:

- 1. Microwave Devices and circuits- Liao / Pearson Education.
- 2. Introduction to Radar systems-Merrill I Skolnik, 3rd Ed, TMH, 2001.
- 3. **Microwave Engineering** Annapurna Das, Sisir K Das TMH Publication, 2nd, 2010.

REFERENCE BOOK:

1. **Microwave Engineering** – David M Pozar, John Wiley India Pvt. Ltd., 3rd Edn, 2008.

INFORMATION THEORY AND CODING

Subject Code	: 10EC55	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

INFORMATION THEORY: Introduction, Measure of information, Average information content of symbols in long independent sequences, Average information content of symbols in long dependent sequences. Markoff statistical model for information source, Entropy and information rate of mark-off source. **7 Hours**

UNIT - 2

SOURCE CODING: Encoding of the source output, Shannon's encoding algorithm. Communication Channels, Discrete communication channels, Continuous channels. 6 Hours

UNIT - 3

FUNDAMENTALLIMITSONPERFORMANCE:Sourcecodingtheorem,Huffmancoding,DiscretememorylessChannels,Mutualinformation,Channel Capacity.7Hours

UNIT - 4

Channel coding theorem, Differential entropy and mutual information for continuous ensembles, Channel capacity Theorem. **6 Hours**

PART – B

UNIT - 5

INTRODUCTION TO ERROR CONTROL CODING: Introduction, Types of errors, examples, Types of codes Linear Block Codes: Matrix description, Error detection and correction, Standard arrays and table look up for decoding. 7 Hours

UNIT - 6

Binary Cycle Codes, Algebraic structures of cyclic codes, Encoding using an (n-k) bit shift register, Syndrome calculation. BCH codes. **6 Hours**

UNIT - 7

RS codes, Golay codes, Shortened cyclic codes, Burst error correcting codes. Burst and Random Error correcting codes. **7 Hours**

UNIT - 8

Convolution Codes, Time domain approach. Transform domain approach. 6 Hours

TEXT BOOKS:

- 1. **Digital and analog communication systems**, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 1996.
- 2. **Digital communication**, Simon Haykin, John Wiley India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **ITC and Cryptography**, Ranjan Bose, TMH, II edition, 2007
- 2. **Digital Communications** Glover and Grant; Pearson Ed. 2nd Ed 2008.

FUNDAMENTALS OF CMOS VLSI

Subject Code	: 10EC56	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	:100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

BASIC MOS TECHNOLOGY: Integrated circuit's era. Enhancement and depletion mode MOS transistors. nMOS fabrication. CMOS fabrication. Thermal aspects of processing. BiCMOS technology. Production of E-beam masks. **3 Hours**

MOS TRANSISTOR THEORY: Introduction, MOS Device Design Equations, The Complementary CMOS Inverter – DC Characteristics, Static Load MOS Inverters, The Differential Inverter, The Transmission Gate, Tristate Inverter. 4 Hours

UNIT - 8

TESTABILITY: Performance parameters. Layout issues. I/O pads. Real estate. System delays. Ground rules for design. Test and testability.

7 Hours

TEXT BOOKS:

- CMOS VLSI Design A Circuits and Systems Perspective. 3rd Edition. N.H. Weste and David Harris. Addison-Wesley, 2005. (Refer to http://www.cmosvlsi.com).
- Principles of CMOS VLSI Design: A Systems Perspective, Neil H. E. Weste, K. Eshragian, and ??? 3rd edition, Pearson Education (Asia) Pvt. Ltd., 200?. (Shift to the latest edition.).
- Basic VLSI Design Douglas A. Pucknell & Kamran Eshraghian, PHI 3rd Edition (original Edition – 1994), 2005.

REFERENCE BOOKS:

- 1. R. Jacob Baker. CMOS Circuit Design, Layout and Simulation. John Wiley India Pvt. Ltd, 2008.
- 2. Fundamentals of Semiconductor Devices, M. K. Achuthan and K. N. Bhat, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2007.
- CMOS Digital Integrated Circuits: Analysis and Design, Sung-Mo Kang & Yusuf Leblebici, 3rd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007.
- 4. **Analysis and Design of Digital Integrated Circuits** D.A Hodges, H.G Jackson and R.A Saleh. 3rd Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2007.

DIGITAL SIGNAL PROCESSING LABORATORY

Subject Code	: 10ECL57	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

A LIST OF EXPERIMENTS USING MATLAB / SCILAB / OCTAVE / WAB

- 3. Verification of Sampling theorem.
- 4. Impulse response of a given system
- 5. Linear convolution of two given sequences.
- 6. Circular convolution of two given sequences

- 7. Autocorrelation of a given sequence and verification of its properties.
- 8. Cross correlation of given sequences and verification of its properties.
- 9. Solving a given difference equation.
- 10. Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum.
- 11. Linear convolution of two sequences using DFT and IDFT.
- 12. Circular convolution of two given sequences using DFT and IDFT
- 13. Design and implementation of FIR filter to meet given specifications.
- 14. Design and implementation of IIR filter to meet given specifications.

B. LIST OF EXPERIMENTS USING DSP PROCESSOR

1.Linear convolution of two given sequences.

2. Circular convolution of two given sequences.

3.Computation of N- Point DFT of a given sequence

4.Realization of an FIR filter (any type) to meet given specifications .The input can be a signal from function generator / speech signal.

5.Audio applications such as to plot time and frequency (Spectrum) display of Microphone output plus a cosine using DSP. Read a wav file and match with their respective spectrograms

6.Noise: Add noise above 3kHz and then remove; Interference suppression using 400 Hz tone.

7.Impulse response of first order and second order system

REFERENCE BOOKS:

- 1. Digital signal processing using MATLAB Sanjeet Mitra, TMH, 2001
- 2. Digital signal processing using MATLAB J. G. Proakis & Ingale, MGH, 2000
- 3. Digital Signal Processors, B. Venkataramani and Bhaskar, TMH,2002

ANALOG COMMUNICATION LAB + LIC LAB

Subject Code	: 10ECL58	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

EXPERIMENTS USING DESCERTE COMPONENTS and LABVIEW - 2009 CAN BE USED FOR VERIFICATION AND TESTING.

- 1. Second order active LPF and HPF
- 2. Second order active BPF and BE
- 3. Schmitt Trigger Design and test a Schmitt trigger circuit for the given values of UTP and LTP

VI SEMESTER

DIGITAL COMMUNICATION

Subject Code	: 10EC61	IA Marks	: 25
No. of Lecture Hrs/Wee	k : 04	Exam Hours	: 03
Total no. of Lecture Hrs	. : 52	Exam Marks	: 100

PART – A

UNIT - 1

Basic signal processing operations in digital communication. Sampling Principles: Sampling Theorem, Quadrature sampling of Band pass signal, Practical aspects of sampling and signal recovery. **7 Hours**

UNIT - 2

PAM, TDM. Waveform Coding Techniques, PCM, Quantization noise and SNR, robust quantization. **6 Hours**

UNIT - 3

DPCM, DM, applications. Base-Band Shaping for Data Transmission, Discrete PAM signals, power spectra of discrete PAM signals. **7 Hours**

UNIT - 4

ISI, Nyquist's criterion for distortion less base-band binary transmission, correlative coding, eye pattern, base-band M-ary PAM systems, adaptive equalization for data transmission. **6 Hours**

PART - B

UNIT - 5

DIGITAL MODULATION TECHNIQUES: Digital Modulation formats, Coherent binary modulation techniques, Coherent quadrature modulation techniques. Non-coherent binary modulation techniques. **6 Hours**

UNIT - 6

Detection and estimation, Model of DCS, Gram-Schmidt Orthogonalization procedure, geometric interpretation of signals, response of bank of correlators to noisy input. **6 Hours**

UNIT - 7

Detection of known signals in noise, correlation receiver, matched filter receiver, detection of signals with unknown phase in noise. **7 Hours**

UNIT - 8

Spread Spectrum Modulation: Pseudo noise sequences, notion of spread spectrum, direct sequence spread spectrum, coherent binary PSK, frequency hop spread spectrum, applications. **7 Hours**

TEXT BOOK:

1. **Digital communications**, Simon Haykin, John Wiley India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **Digital and Analog communication systems,** Simon Haykin, John Wildy India Lts, 2008
- 2. An introduction to Analog and Digital Communication, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 2008.
- 3. Digital communications Bernard Sklar: Pearson education 2007

MICROPROCESSOR

Subject Code	: 10EC62	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

8086 PROCESSORS: Historical background, The microprocessor-based personal computer system, 8086 CPU Architecture, Machine language instructions, Instruction execution timing. **6 Hours**

UNIT - 2

INSTRUCTION SET OF 8086: Assembler instruction format, data transfer and arithmetic, branch type, loop, NOP & HALT, flag manipulation, logical and shift and rotate instructions. Illustration of these instructions with example programs, Directives and operators. **6 Hours**

UNIT - 3

BYTE AND STRING MANIPULATION: String instructions, REP Prefix, Table translation, Number format conversions, Procedures, Macros, Programming using keyboard and video display. **7 Hours**

UNIT - 4

8086 INTERRUPTS: 8086 Interrupts and interrupt responses, Hardware interrupt applications, Software interrupt applications, Interrupt examples.

7 Hours

Stability problem. Effect of feedback an amplifier poles. Stability study using Bode plots. Frequency compensation. SPICE examples. **7 Hours**

UNIT - 6

Operational Amplifiers: The two stage CMOS Op-amp, folded cascade CMOS op-amp, 741 op-amp circuit, DC analysis of the 741, small signal analysis of 741, gain, frequency response and slew rate of 741. Data Converters. A-D and D-A converters. **6 Hours**

UNIT – 7 & 8

Digital CMOS circuits. Overview. Design and performance analysis of CMOS inverter. Logic Gate Circuits. Pass-transistor logic. Dynamic Logic Circuits. SPICE examples. 12 Hours

TEXT BOOK:

1. **"Microelectronic Circuits"**, Adel Sedra and K.C. Smith, 5th Edition, Oxford University Press, Interantional Version, 2009.

REFERENCE BOOK:

- 1. "Fundamentals of Microelectronics", Behzad Razavi, John Wiley India Pvt. Ltd, 2008.
- 2. "Microelectronics Analysis and Design", Sundaram Natarajan,
- 3. Tata McGraw-Hill, 2007

ANTENNAS AND PROPAGATION

Subject Code	: 10EC64	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

ANTENNA BASICS: Introduction, basic Antenna parameters, patterns, beam area, radiation intensity, beam efficiency, diversity and gain, antenna apertures, effective height, bandwidth, radiation, efficiency, antenna temperature and antenna filed zones.

7 Hours
POINT SOURCES AND ARRAYS: Introduction, point sources, power patterns, power theorem, radiation intensity, filed patterns, phase patterns. Array of two isotropic point sources. Endfire array and Broadside array.

6 Hours

UNIT - 3

ELECTRIC DIPOLES AND THIN LINEAR ANTENNAS: Introduction, short electric dipole, fields of a short dipole(no derivation of field components), radiation resistance of short dipole, radiation resistances of lambda/2 Antenna, thin linear antenna, micro strip arrays, low side lobe arrays, long wire antenna, folded dipole antennas. **7 Hours**

UNIT - 4

LOOP, SLOT, PATCH AND HORN ANTENNA: Introduction, small loop, comparison of far fields of small loop and short dipole, loop antenna general case, far field patterns of circular loop, radiation resistance, directivity, slot antenna, Babinet's principle and complementary antennas, impedance of complementary and slot antennas, patch antennas.

8 Hours

PART – B

UNIT – 5 & 6

ANTENNA TYPES: Horn antennas, rectangular horn antennas, Helical Antenna, Yagi-Uda array, corner reflectors, parabolic reflectors, log periodic antenna, lens antenna, antenna for special applications – sleeve antenna, turnstile antenna, omni directional antennas, antennas for satellite antennas for ground penetrating radars, embedded antennas, ultra wide band antennas, plasma antenna, high-resolution data, intelligent antennas, antenna for remote sensing.

12 Hours

UNIT - 7 & 8

RADIO WAVE PROPAGATION: Introduction, Ground wave propagation, free space propagation, ground reflection, surface wave, diffraction.

TROPOSPHERE WAVE PROPAGATION:Troposcopic scatter,Ionosphere propagation, electrical properties of the ionosphere, effects of
earth's magnetic field.10 Hours

TEXT BOOKS:

- 1. Antennas and Wave Propagation, John D. Krauss, 4th Edn,McGraw-Hill International edition, 2010.
- 2. Antennas and Wave Propagation Harish and Sachidananda: Oxford Press 2007.

REFERENCE BOOKS:

- 1. Antenna Theory Analysis and Design C A Balanis, 3rd Edn, John Wiley India Pvt. Ltd, 2008.
- 2. Antennas and Propagation for Wireless Communication Systems Sineon R Saunders, John Wiley, 2003.
- 3. Antennas and wave propagation G S N Raju: Pearson Education 2005.

OPERATING SYSTEMS

Subject Code	: 10EC65	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION AND OVERVIEW OF OPERATING SYSTEMS: Operating system, Goals of an O.S, Operation of an O.S, Resource allocation and related functions, User interface related functions, Classes of operating systems, O.S and the computer system, Batch processing system, Multi programming systems, Time sharing systems, Real time operating systems, distributed operating systems. **6 Hours**

UNIT - 2

STRUCTURE OF THE OPERATING SYSTEMS: Operation of an O.S, Structure of the supervisor, Configuring and installing of the supervisor, Operating system with monolithic structure, layered design, Virtual machine operating systems, Kernel based operating systems, and Microkernel based operating systems. **7 Hours**

TEXT BOOKS:

- 1. Antennas and Wave Propagation, John D. Krauss, 4th Edn,McGraw-Hill International edition, 2010.
- 2. Antennas and Wave Propagation Harish and Sachidananda: Oxford Press 2007.

REFERENCE BOOKS:

- 1. Antenna Theory Analysis and Design C A Balanis, 3rd Edn, John Wiley India Pvt. Ltd, 2008.
- 2. Antennas and Propagation for Wireless Communication Systems Sineon R Saunders, John Wiley, 2003.
- 3. Antennas and wave propagation G S N Raju: Pearson Education 2005.

OPERATING SYSTEMS

Subject Code	: 10EC65	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION AND OVERVIEW OF OPERATING SYSTEMS: Operating system, Goals of an O.S, Operation of an O.S, Resource allocation and related functions, User interface related functions, Classes of operating systems, O.S and the computer system, Batch processing system, Multi programming systems, Time sharing systems, Real time operating systems, distributed operating systems. **6 Hours**

UNIT - 2

STRUCTURE OF THE OPERATING SYSTEMS: Operation of an O.S, Structure of the supervisor, Configuring and installing of the supervisor, Operating system with monolithic structure, layered design, Virtual machine operating systems, Kernel based operating systems, and Microkernel based operating systems. **7 Hours**

PROCESS MANAGEMENT: Process concept, Programmer view of
processes, OS view of processes, Interacting processes, Threads, Processes in
UNIX, Threads in Solaris.**6 Hours**

UNIT - 4

MEMORY MANAGEMENT: Memory allocation to programs, Memory allocation preliminaries, Contiguous and noncontiguous allocation to programs, Memory allocation for program controlled data, kernel memory allocation. 7 Hours

PART – B

UNIT - 5

VIRTUAL MEMORY: Virtual memory basics, Virtual memory using paging, Demand paging, Page replacement, Page replacement policies, Memory allocation to programs, Page sharing, UNIX virtual memory.

6 Hours

UNIT - 6

FILE SYSTEMS: File system and IOCS, Files and directories, Overview of I/O organization, Fundamental file organizations, Interface between file system and IOCS, Allocation of disk space, Implementing file access, UNIX file system. 7 Hours

UNIT - 7

SCHEDULING: Fundamentals of scheduling, Long-term scheduling, Medium and short term scheduling, Real time scheduling, Process scheduling in UNIX. 6 Hours

UNIT - 8

MESSAGE PASSING: Implementing message passing, Mailboxes, Inter process communication in UNIX. 7 Hours

TEXT BOOK:

1. **"Operating Systems - A Concept based Approach"**, D. M. Dhamdhare, TMH, 3rd Ed, 2010.

REFERENCE BOOK:

- 1. **Operating Systems Concepts**, Silberschatz and Galvin, John Wiley India Pvt. Ltd, 5th Edition, 2001.
- 2. **Operating System Internals and Design Systems**, Willaim Stalling, Pearson Education, 4th Ed, 2006.
- 3. Design of Operating Systems, Tennambhaum, TMH, 2001.

POWER ELECTRONICS

Subject Code	: 10EC73	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction, Applications of power electronics, Power semiconductor devices, Control characteristics, Types of power electronics circuits, Peripheral effects. 6 Hours

UNIT - 2

POWER TRANSISTOR: Power BJT's, Switching characteristics, Switching limits, Base derive control, Power MOSFET's, Switching characteristics, Gate drive, IGBT's, Isolation of gate and base drives.

6 Hours

7 Hours

UNIT - 3

INTRODUCTION TO THYRISTORS: Principle of operation states anode-cathode characteristics, Two transistor model. Turn-on Methods, Dynamic Turn-on and turn-off characteristics, Gate characteristics, Gate trigger circuits, di / dt and dv / dt protection, Thyristor firing circuits.

UNIT - 4

CONTROLLED RECTIFIERS: Introduction, Principles of phase controlled converter operation, 1 fully controlled converters, Duel

7 Hours

PART – B

converters, 1 ϕ semi converters (all converters with R & RL load).

UNIT - 5

Thyristor turn off methods, natural and forced commutation, self commutation, class A and class B types, Complementary commutation, auxiliary commutation, external pulse commutation, AC line commutation, numerical problems. 7 Hours

UNIT - 6

AC VOLTAGE CONTROLLERS: Introduction, Principles of on and off control, Principles of phase control, Single phase controllers with restive loads and Inductive loads, numerical problems.

6 Hours

DC CHOPPERS: Introduction, Principles of step down and step up choppers, Step down chopper with RL loads, Chopper classification, Switch mode regulators – buck, boost and buck – boost regulators. **6 Hours**

UNIT - 8

INVERTORS: Introduction, Principles of operation, Performance parameters, 1ϕ bridge inverter, voltage control of 1ϕ invertors, current source invertors, Variable DC link inverter.

7 Hours

TEXT BOOKS:

- 1. **"Power Electronics" -** M. H. Rashid 3rd edition, PHI / Pearson publisher 2004.
- 2. **"Power Electronics" -** M. D. Singh and Kanchandani K.B. TMH publisher, 2nd Ed. 2007.

REFERENCE BOOKS:

- 1. **"Power Electronics, Essentials and Applications", L Umanand, John** Wiley India Pvt. Ltd, 2009.
- 2. "Power Electronics", Daniel W. Hart, McGraw Hill, 2010.
- 3. **"Power Electronics**", V Nattarasu and R.S. Anandamurhty, **Pearson/Sanguine Pub. 2006.**

EMBEDED SYSTEM DESIGN

Subject Code	: 10EC74	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT 1:

Introduction to Embedded System: Introducing Embedded Systems, Philosophy, Embedded Systems, Embedded Design and Development Process. 5 Hours

UNIT 2:

The Hardware Side: An Introduction, The Core Level, Representing Information, Understanding Numbers, Addresses, Instructions, Registers-A

DC CHOPPERS: Introduction, Principles of step down and step up choppers, Step down chopper with RL loads, Chopper classification, Switch mode regulators – buck, boost and buck – boost regulators. **6 Hours**

UNIT - 8

INVERTORS: Introduction, Principles of operation, Performance parameters, 1ϕ bridge inverter, voltage control of 1ϕ invertors, current source invertors, Variable DC link inverter.

7 Hours

TEXT BOOKS:

- 1. **"Power Electronics" -** M. H. Rashid 3rd edition, PHI / Pearson publisher 2004.
- 2. **"Power Electronics" -** M. D. Singh and Kanchandani K.B. TMH publisher, 2nd Ed. 2007.

REFERENCE BOOKS:

- 1. **"Power Electronics, Essentials and Applications", L Umanand, John** Wiley India Pvt. Ltd, 2009.
- 2. "Power Electronics", Daniel W. Hart, McGraw Hill, 2010.
- 3. "Power Electronics", V Nattarasu and R.S. Anandamurhty, Pearson/Sanguine Pub. 2006.

EMBEDED SYSTEM DESIGN

Subject Code	: 10EC74	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT 1:

Introduction to Embedded System: Introducing Embedded Systems, Philosophy, Embedded Systems, Embedded Design and Development Process. 5 Hours

UNIT 2:

The Hardware Side: An Introduction, The Core Level, Representing Information, Understanding Numbers, Addresses, Instructions, Registers-A

First Look, Embedded Systems-An Instruction Set View, Embedded Systems-A Register View, Register View of a Microprocessor The Hardware Side: Storage Elements and Finite-State Machines (2 hour) The concepts of State and Time, The State Diagram, Finite State Machines-A Theoretical Model.

8 Hours

UNIT 3:

Memories and the Memory Subsystem: Classifying Memory, A General Memory Interface, ROM Overview, Static RAM Overview, Dynamic RAM Overview, Chip Organization, Terminology, A Memory Interface in Detail, SRAM Design, DRAM Design, DRAM Memory Interface, The Memory Map, Memory Subsystem Architecture, Basic Concepts of Caching, Designing a Cache System, Dynamic Memory Allocation.

7 Hours

UNIT 4:

Embedded Systems Design and Development : System Design and Development, Life-cycle Models, Problem Solving-Five Steps to Design, The Design Process, Identifying the Requirements, Formulating the Requirements Specification, The System Design Specification, System Specifications versus System Requirements, Partitioning and Decomposing a System, Functional Design, Architectural Design, Functional Model versus Architectural Model, Prototyping, Other Considerations, Archiving the Project. **6 Hours**

PART – B

UNIT 5 & 6:

Real-Time Kernels and Operating Systems: Tasks and Things, Programs and Processes, The CPU is a resource, Threads – Lightweight and heavyweight, Sharing Resources, Foreground/Background Systems, The operating System, The real time operating system (RTOS), OS architecture, Tasks and Task control blocks, memory management revisited.

UNIT 7 & 8:

Performance Analysis and Optimization: Performance or Efficiency Measures, Complexity Analysis, The methodology, Analyzing code, Instructions in Detail, Time, etc. – A more detailed look, Response Time, Time Loading, Memory Loading, Evaluating Performance, Thoughts on Performance Optimization, Performance Optimization, Tricks of the Trade, Hardware Accelerators, Caches and Performance.

12 Hours

12 Hours

TEXT BOOK:

1. Embedded Systems – A contemporary Design Tool, James K. Peckol, John Weily India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **Embedded Systems: Architecture and Programming,** Raj Kamal, TMH. 2008.
- Embedded Systems Architecture A Comprehensive Guide for Engineers and Programmers, Tammy Noergaard, Elsevier Publication, 2005.
- 3. **Programming for Embedded Systems**, Dreamtech Software Team, John Wiley India Pvt. Ltd, 2008.

VLSI LAB

Subject Code	: 10ECL77	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

(Wherever necessary Cadence/Synopsis/Menta Graphics tools <u>must be</u> used)

PART - A DIGITAL DESIGN

ASIC-DIGITAL DESIGN FLOW

1. Write Verilog Code for the following circuits and their Test Bench for **verification**, observe the waveform and **synthesize** the code with technological library with given Constraints*. Do the initial timing verification with gate level simulation.

- 1. An inverter
- 2. A Buffer
- 3. Transmission Gate
- 4. Basic/universal gates
- 5. Flip flop -RS, D, JK, MS, T
- 6. Serial & Parallel adder
- 7. 4-bit counter [Synchronous and Asynchronous counter]
- 8. Successive approximation register [SAR]

* An appropriate constraint should be given

VIII SEMESTER WIRELESS COMMUNICATION

Subject Code	: 10EC81	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Introduction to wireless telecommunication systems and Networks, History and Evolution Different generations of wireless cellular networks 1G, 2g,3G and 4G networks. **6 Hours**

UNIT - 2

Common Cellular System components, Common cellular network components, Hardware and software, views of cellular networks, 3G cellular systems components, Cellular component identification Call establishment.

7 Hours

UNIT - 3

Wireless network architecture and operation, Cellular concept Cell fundamentals, Capacity expansion techniques, Cellular backbone networks, Mobility management, Radio resources and power management Wireless network security. **7 Hours**

UNIT - 4

GSM and TDMA techniques, GSM system overview, GSM Network and system Architecture, GSM channel concepts, GSM identifiers

6 Hours

PART – B

UNIT - 5

GSM system operation, Traffic cases, Cal handoff, Roaming, GSM protocol architecture. TDMA systems. **6 Hours**

UNIT - 6

CDMA technology, CDMA overview, CDMA channel concept CDMA operations. **6 Hours**

UNIT - 7

Wireless Modulation techniques and Hardware, Characteristics of air interface, Path loss models, wireless coding techniques, Digital modulation

techniques, OFDM, UWB radio techniques, Diversity techniques, Typical GSM Hardware. **7 Hours**

UNIT - 8

Introduction to wireless LAN 802.11X technologies, Evolution of Wireless LAN Introduction to 802.15X technologies in PAN Application and architecture Bluetooth Introduction to Broadband wireless MAN, 802.16X technologies. **7 Hours**

TEXT BOOK:

1. Wireless Telecom Systems and networks, Mullet: Thomson Learning 2006.

REFERENCE BOOKS:

- 1. **Mobile Cellular Telecommunication**, Lee W.C.Y, MGH, 2nd, 2009.
- 2. Wireless communication D P Agrawal: 2nd Edition Thomson learning 2007.
- 3. **Fundamentals of Wireless Communication**, David Tse, Pramod Viswanath, Cambridge 2005.
- S. S. Manvi, M. S. Kakkasageri, "Wireles and Mobile Network concepts and protocols", John Wiley India Pvt. Ltd, 1st edition, 2010.
- 5. "Wireless Communication Principles & Practice", T.S. Rappaport, PHI 2001.

DIGITAL SWITCHING SYSTEMS

Subject Code	: 10EC82	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Developments of telecommunications, Network structure, Network services, terminology, Regulation, Standards. Introduction to telecommunications transmission, Power levels, Four wire circuits, Digital transmission, FDM, TDM, PDH and SDH, Transmission performance.

7 Hours

DESIGN OF RTSS – GENERAL INTRODUCTION: Introduction, Specification documentation, Preliminary design, Single-program approach, Foreground/background, Multi-tasking approach, Mutual exclusion, Monitors. 6 Hours

UNIT - 8

RTS DEVELOPMENT METHODOLOGIES: Introduction, Yourdon Methodology, Requirement definition for Drying Oven, Ward and Mellor Method, Hately and Pirbhai Method. **6 Hours**

TEXT BOOKS:

 Real - Time Computer Control- An Introduction, Stuart Bennet, 2nd Edn. Pearson Education. 2005.

REFERENCE BOOKS:

- 1. **Real-Time Systems Design and Analysis**, Phillip. A. Laplante, second edition, PHI, 2005.
- 2. Real-Time Systems Development, Rob Williams, Elsevier. 2006.
- 3. Embedded Systems, Raj Kamal, Tata Mc Graw Hill, India, 2005.

IMAGE PROCESSING

Subject Code	: 10EC763	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	:100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

DIGITAL IMAGE FUNDAMENTALS: What is Digital Image Processing. fundamental Steps in Digital Image Processing, Components of an Image processing system, elements of Visual Perception. **6 Hours**

UNIT - 2

Image Sensing and Acquisition, Image Sampling and Quantization, Some Basic Relationships between Pixels, Linear and Nonlinear Operations.

6 Hours

IMAGE TRANSFORMS: Two-dimensional orthogonal & unitary transforms, properties of unitary transforms, two dimensional discrete Fourier transform. 7 Hours

UNIT - 4

Discrete cosine transform, sine transform, Hadamard transform, Haar transform, Slant transform, KL transform. **7 Hours**

PART - B

UNIT - 5

IMAGE ENHANCEMENT: Image Enhancement in Spatial domain, SomeBasic Gray Level Trans -formations, Histogram Processing, EnhancementUsing Arithmetic/Logic Operations.7 Hours

UNIT - 6

Basics of Spatial Filtering Image enhancement in the Frequency Domain filters, Smoothing Frequency Domain filters, Sharpening Frequency Domain filters, homomorphic filtering. **6 Hours**

UNIT - 7

Model of image degradation/restoration process, noise models, Restoration in the Presence of Noise, Only-Spatial Filtering Periodic Noise Reduction by Frequency Domain Filtering, Linear Position-Invariant Degradations, inverse filtering, minimum mean square error (Weiner) Filtering,

7 Hours

UNIT - 8

Color Fundamentals. Color Models, Pseudo color Image Processing., processing basics of full color image processing

6 Hours

TEXT BOOK:

1. **"Digital Image Processing"**, Rafael C.Gonzalez, Richard E. Woods, etl, TMH, 2nd Edition 2010.

REFERENCE BOOKS:

- 1. **"Fundamentals of Digital Image Processing"**, Anil K. Jain, Pearson Education, 2001.
- 2. **"Digital Image Processing and Analysis"**, B. Chanda and D. Dutta Majumdar, PHI, 2003.

PROTOCOL PERFORMANCE TESTING: SDL based performance testing of TCP, OSPF, Interoperability testing, SDL based interoperability testing of CSMA/CD and CSMA/CA protocol using bridge, Scalability testing.

7 Hours

UNIT - 8

PROTOCOL SYNTHESIS:Synthesis methods, interactive synthesisalgorithms, automatic synthesis algorithm, automatic synthesis of SDL fromMSC protocol re synthesis.6 Hours

TEXT BOOK:

1. **Communication Protocol Engineering**, P. Venkatarm and S. S. Manvi, PHI, 2004.

REFERENCES BOOKS:

- 1. The Internet and its Protocols, Adrian Farrel, Elsevier, 2006.
- 2. **TCP/IP Protocol Stack**, B A Forouzan, TMH, 2006.

ELECTIVE –V (GROUP E) MULTIMEDIA COMMUNICATIONS

Subject Code	: 10EC841	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

MULTIMEDIA COMMUNICATIONS: Introduction, multimedia information representation, multimedia networks, multimedia applications, media types, communication modes, network types, multipoint conferencing, network QoS application QoS. 6 Hours

UNIT - 2

MULTIMEDIA INFORMATION REPRESENTATION:Introduction,digital principles, text, images, audio, video.7 Hours

UNIT - 3

TEXT AND IMAGE COMPRESSION: Introduction, compression principles, text compression, image compression.

6 Hours

AUDIO AND VIDEO COMPRESSION: Introduction, audio compression, DPCM, ADPCM, APC, LPC, video compression, video compression principles, H.261, H.263, MPEG, MPEG-1, MPEG-2, and MPEG-4.

7 Hours

PART – B

UNIT - 5

MULTIMEDIA INFORMATION NETWORKS: Introduction, LANs, Ethernet, Token ring, Bridges, FDDI High-speed LANs, LAN protocol.

6 Hours

UNIT - 6

THE INTERNET: Introduction, IP Datagrams, Fragmentation, IP Address,ARP and RARP, QoS Support, IPv8.7 Hours

UNIT - 7

BROADBAND ATM NETWORKS: Introduction, Cell format, Swith and Protocol Architecture ATM LANs. 6 Hours

UNIT - 8

TRANSPORT PROTOCOL: Introduction, TCP/IP, TCP, UDP, RTP and
RTCP.**7 Hours**

TEXT BOOK:

1. Multimedia Communications: Applications, Networks, Protocols and Standards, Fred Halsall, Pearson Education, Asia, Second Indian reprint 2002.

REFERENCE BOOKS:

- 1. **Multimedia Information Networking**, Nalin K. Sharda, PHI, 2003.
- 2. "Multimedia Fundamentals: Vol 1 Media Coding and Content Processing", Ralf Steinmetz, Klara Narstedt, Pearson Education, 2004.
- 3. **"Multimedia Systems Design"**, Prabhat K. Andleigh, Kiran Thakrar, PHI, 2004.

UNIT 6

Embedded System Components:

Firmware components, RTOS system software mechanisms, Software application components.

Debugging Components:

Execptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self test and diagnostics, External test equipment, Application-level debugging.

7 Hours

UNIT 7

Performance Tuning:

Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. **6 Hours**

UNIT 8

High availability and Reliability Design:

Reliability and Availability, Similarities and differences, Reliability, Reliable software, Available software, Design trade offs, Hierarchical applications for Fail-safe design.

Design of RTOS – PIC microcontroller. (Chap 13 of book Myke Predko) 7 Hours

REFERENCE BOOKS:

- 1. "**Real-Time Embedded Systems and Components**" Sam Siewert, Cengage Learning India Edition, 2007.
- 2. "**Programming and Customizing the PIC microcontroller**", Myke Predko, 3rd Ed, TMH, 2008

GSM

Subject Code	: 10EC843	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

GSM ARCHITECTURE AND INTERFACES: Introduction, GSM frequency bands, GSM PLMN, Objectives of a GSM PLMN, GSM PLMN Services, GSM Subsystems, GSM Subsystems entities, GSM interfaces, The radio interface (MS to BSC), A_{bits} interface (BTS to BSC), A interface (BSC

to MSC), Interfaces between other GSM entities, Mapping of GSM layers onto OSI layers. **6 Hours**

UNIT - 2

RADIO LINK FEATURES IN GSM SYSTEMS: Introduction, Radio link measurements, Radio link features of GSM, Dynamic power control, Discontinuous transmission (DTX), SFH, Future techniques to reduce interface in GSM, Channel borrowing, Smart antenna. **7 Hours**

UNIT - 3

GSM LOGICAL CHANNELS AND FRAME STRUCTURE: Introduction, GSM logical channels, Allowed logical channel combinations, TCH multi frame for TCH/H, CCH multi frame, GSM frame structure, GSM bursts, Normal burst, Synchronization burst, Frequency correction channel burst, Access burst, Data encryption in GSM, Mobility management, Location registration, Mobile identification. **7 Hours**

UNIT - 4

SPEECH CODING IN GSM: Introduction, Speech coding methods, Speech code attributes, Transmission bit rate, Delay, Complexity, Quality, LPAS, ITU-T standards, Bit rate, Waveform coding, Time domain waveform coding, Frequency domain waveform coding, Vocoders, Full-rate vocoder, Half-rate vocoder. MESSAGES, SERVICES, AND CALL FLOWS IN GSM: Introduction, GSM PLMN services.

7 Hours

PART – B

UNIT - 5

GSM messages, MS-BS interface, BS to MSC messages on the A interface, MSC to VLR and HLR, GSM call setup by an MS, Mobile-Terminated call, Call release, Handover. Data services, Introduction, Data interworking, GSM data services, Interconnection for switched data, Group 3 fax, Packet data on the signaling channel, User-to-user signaling, SMS, GSM GPRS.

6 Hours

UNIT - 6

PRIVACY AND SECURITY IN GSM: Introduction, Wireless security requirements, Privacy of communications, Authentication requirements, System lifetime requirements, Physical requirements, SIM cards, Security algorithms for GSM, Token-based authentication, Token-based registration, Token-based challenge.

UNIT - 7

6 Hours

PLANNING AND DESIGN OF A GSM WIRELESS NETWORK: Introduction, Tele traffic models, Call model, Topology model, Mobility in

cellular / PCS networks, Application of a fluid flow model, Planning of a wireless network, Radio design for a cellular / PCS network, Radio link design, Coverage planning, Design of a wireless system, Service requirements, Constraints for hardware implementation, Propagation path loss, System requirements, Spectral efficiency of a wireless system, Receiver sensitivity and link budget, Selection of modulation scheme, Design of TDMA frame, Relationship between delay spread and symbol rate, Design example for a GSM system.

7 Hours

UNIT - 8

MANAGEMENT OF GSM NETWORKS: Introduction, Traditional approaches to NM, TMN, TMN layers, TMN nodes, TMN interface, TMN management services, Management requirements for wireless networks, Management of radio resources, Personal mobility management, Terminal mobility, Service mobility management, Platform-centered management, SNMP, OSI systems management, NM interface and functionality, NMS functionality, OMC functionality, Management of GSM network, TMN applications, GSM information model, GSM containment tree, Future work items.

TEXT BOOK:

7 Hours

1. **"Principles of Applications of GSM"**, Vijay K. Garg & Joseph E. Wilkes, Pearson education/ PHI, 1999.

REFERENCE BOOKS:

- 1. **GSM: Evolution towards 3rd Generation Systems**, (Editor), Z. Zvonar Peter Jung, Karl Kammerlander Springer; 1st edition 1998
- 2. **GSM & UMTS: The Creation of Global Mobile Communication,** Friedhelm Hillebrand, John Wiley & Sons; 2001.

ADHOC WIRELESS NETWORKS

Subject Code	: 10EC844	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

AD HOC NETWORKS: Introduction, Issues in Ad hoc wireless networks, Ad hoc wireless internet. 6 Hours

10EE35 ELECTRICAL and ELECTRONIC MEASUREMENTS and INSTRUMENTATION

Subject Code	:	10EE35	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

1-(a) Units and Dimensions: Review of fundamental and derived units. S.I. units. Dimensional equations, problems. **3 Hours**

1-(b) Measurement of Resistance: Wheatstone's bridge, sensitivity, limitations. Kelvin's double bridge. Earth resistance, measurement by fall of potential method and by using Megger. 3 Hours

UNIT 2:

Measurement of Inductance and Capacitance: Sources and detectors, Maxwell's inductance bridge, Maxwell's inductance &capacitance bridge, Hay's bridge, Anderson's bridge, Desauty's bridge, Schering bridge. Shielding of bridges. Problems. 07 Hours

UNIT 3:

Extension of Instrument Ranges: Shunts and multipliers. Construction and theory of instrument transformers, Equations for ratio and phase angle errors of C.T. and P.T (derivations excluded). Turns compensation, illustrative examples (excluding problems on turns compensation), Silsbees's method of testing CT. 07 Hours **UNIT 4:**

Measurement of Power and Energy: Dynamometer wattmeter. UPF and LPF wattmeters, Measurement of real and reactive power in three-phase circuits. Induction type energy meter — construction, theory, errors, adjustments and calibration. Principle of working of electronic energy meter. 06 Hours

PART – B

UNIT 5:

(a) Construction and operation of electro-dynamometer single-phase power factor meter. Weston frequency meter and phase sequence indicator. 04 Hours

(b) Electronic Instruments: Introduction. True RMS responding voltmeter. Electronic multimeters. Digital voltmeters. Q meter. 04 Hours

UNIT 6:

Dual trace oscilloscope — front panel details of a typical dual trace oscilloscope. Method of measuring voltage, current, phase, frequency and period. Use of Lissajous patterns. Working of a digital storage oscilloscope. Brief note on current probes. 06 Hours

UNIT 7:

Transducers: Classification and selection of transducers. Strain gauges, LVDT. Measurement of temperature and pressure. Photo-conductive and photo-voltaic cells.

UNIT 8:

(a) Interfacing resistive transducers to electronic circuits. Introduction to data acquisition systems. 2 Hours

(b) Display Devices and Signal Generators: X-Y recorders. Nixie tubes. LCD and LED display. Signal generators and function generators. 04 Hours

Text Books

- 1. Electrical and Electronic Measurements and Instrumentation, A. K. Sawhney, Dhanpatrai and Sons. New Delhi.
- 2. Modern Electronic Instrumentation and Measuring Techniques, Cooper D. and A.D. Heifrick, PHI, 2009 Edition.

References

- 1. Electronic Instrumentation and Measurement, David A. Bell, oxford Publication ,2nd Edition, 2009.
- 2. Electrical Measurements and Measuring Instruments, Golding and Widdies, Pitman

06 Hours

10EE36 ELECTRIC POWER GENERATION

Subject Code	:	10EE36	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Sources of Electrical Power: Wind, solar, fuel cell, tidal, geo-thermal, hydro-electric, thermal-steam, diesel, gas, nuclear power plants (block diagram approach only). Concept of co-generation. Combined heat and power distributed generation. 06 **Hours**

UNIT 2:

Diesel electric plants. Gas turbine plants. Mini, micro, and bio generation. Concept of distributed generation. 06 Hours

UNIT 3:

(a) Hydro Power Generation: Selection of site. Classification of hydro-electric plants. General arrangement and operation. Hydroelectric plant power station structure and control. 5 Hours

(b) Thermal Power Generation: Introduction. Main parts of a thermal power plant. Working. Plant layout.
3 Hours

UNIT 4:

Nuclear Power Station: Introduction. Pros and cons of nuclear power generation. Selection of site, cost, components of reactors. Description of fuel sources. Safety of nuclear power reactor. 6 Hours

PART – B

UNIT 5 and 6:

(a) **Economics Aspects:** Introduction. Terms commonly used in system operation. Diversity factor, load factor, plant capacity factor, plant use factor, plant utilization factor and loss factor, load duration curve. Cost of generating station, factors influencing the rate of tariff designing, tariff, types of tariff. Power factor improvement.

(b) Substations: Introduction, types, Bus bar arrangement schemes, Location of substation equipment. Reactors and capacitors. Interconnection of power stations. 14 Hours

UNIT 7 and 8 :

Grounding Systems: Introduction, grounding systems. Neutral grounding. Ungrounded system. Resonant grounding. Solid grounding, reactance grounding, resistance grounding. Earthing transformer. Neutral grounding transformer. 12 Hours

Text Books

1. **Power System Engineering,** A. Chakrabarti, M. L. Soni, and P.V. Gupta, Dhanpat Rai and Co.,NewDelhi.

2. Electric Power Generation, Transmission and Distribution, S. N. Singh, PHI, 2nd Edition, 2009.

References

1. Elements of Electrical Power System Design, M. V. Deshpande, PHI,2010

10ES42 MICROCONTROLLERS

(Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES42	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Microprocessors and microcontroller. Introduction, Microprocessors and Microcontrollers, RISC & CISC CPU Architectures, Harvard & Von-Neumann CPU architecture, Computer software. The 8051 Architecture: Introduction, Architecture of 8051, Pin diagram of 8051, Memory organization, External Memory interfacing, Stacks.

UNIT 2:

Addressing Modes: Introduction, Instruction syntax, Data types, Subroutines, Addressing modes: Immediate addressing, Register addressing, Direct addressing, Indirect addressing, relative addressing, Absolute addressing, Long addressing, Indexed addressing, Bit inherent addressing, bit direct addressing.

Instruction set: Instruction timings, 8051 instructions: Data transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction.

6Hours

6 Hours

6 Hours

UNIT 4:

8051 Interfacing and Applications: Basics of I/O concepts, I/O Port Operation, Interfacing 8051 to LCD, Keyboard, parallel and serial ADC, DAC, Stepper motor interfacing and DC motor interfacing and programming

UNIT 5:

8051 Interrupts and Timers/counters: Basics of interrupts, 8051 interrupt structure, Timers and Counters, 8051 timers/counters, programming 8051 timers in assembly and C.

UNIT 6:

8051 Serial Communication: Data communication, Basics of Serial Data Communication, 8051 Serial Communication, connections to RS-232, Serial communication Programming in assembly and C.8255A Programmable Peripheral Interface:, Architecture of 8255A, I/O addressing,, I/O devices interfacing with 8051 using 8255A.

Course Aim – The MSP430 microcontroller is ideally suited for development of low-power embedded systems that must run on batteries for many years. There are also applications where MSP430 microcontroller must operate on energy harvested from the environment. This is possible due to the ultra- low power operation of MSP430 and the fact that it provides a complete system solution including a RISC CPU, flash memory, on-chip data converters and on-chip peripherals.

UNIT 7:

Motivation for MSP430microcontrollers – Low Power embedded systems, On-chip peripherals (analog and digital), low-power RF capabilities. Target applications (Single-chip, low cost, low power, high performance system design).

2 Hours

MSP430 RISC CPU architecture, Compiler-friendly features, Instruction set, Clock system, Memory subsystem. Key differentiating factors between different MSP430 families.

2 Hours

Introduction to Code Composer Studio (CCS v4). Understanding how to use CCS for Assembly, C, Assembly+C projects for MSP430 microcontrollers. Interrupt programming.

UNIT 3: 8051 programming: Assembler directives, Assembly language programs and Time delay calculations.

6 Hours

6 Hours

2 Digital I/O – I/O ports programming using C and assembly, Understanding the muxing scheme of the MSP430 pins. 2 Hours

UNIT 8:

On-chip peripherals. Watchdog Timer, Comparator, Op-Amp, Basic Timer, Real Time Clock (RTC), ADC, DAC, SD16, LCD, DMA.

Using the Low-power features of MSP430. Clock system, low-power modes, Clock request feature, Low-power programming and Interrupt.

Interfacing LED, LCD, External memory. Seven segment LED modules interfacing. Example – Real-time clock.

Case Studies of applications of MSP430 - Data acquisition system, Wired Sensor network, Wireless sensor network with Chipcon RF interfaces.

3 Hours

2 Hours

2 Hours

2 Hours

TEXT BOOKS:

- 1. "The 8051 Microcontroller and Embedded Systems using assembly and C "-, Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; PHI, 2006 / Pearson, 2006
- 2. "MSP430 Microcontroller Basics", John Davies, Elsevier, 2010

REFERENCE BOOKS:

- 1. "The 8051 Microcontroller Architecture, Programming & Applications", 2e Kenneth J. Ayala ;, Penram International, 1996 / Thomson Learning 2005.
- 2. "The 8051 Microcontroller", V.Udayashankar and MalikarjunaSwamy, TMH, 2009
- 3. MSP430 Teaching CD-ROM, Texas Instruments, 2008 (can be requested http://www.uniti.in)
- 4. Microcontrollers: Architecture, Programming, Interfacing and System Design", Raj Kamal, "Pearson Education, 2005

10EE45 POWER ELECTRONICS

Subject Code	:	10EE45	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Power Semiconductor Devices:

Introduction to semiconductors, Power Electronics, Power semiconductor devices, Control Characteristics. Types of power electronic converters and industrial applications-Drives, Electrolysis, Heating, Welding, Static Compensators, SMPS, HVDC power transmission, Thyristorized tap changers and Circuit breakers.

UNIT 2:

Power Transistors: Power BJT's – switching characteristics, switching limits, base drive control. Power MOSFET's and IGBT's –characteristics, gate drive , di/dt and dv/dt limitations. Isolation of gate and base drives. **6 Hours**

UNIT 3:

Thyristors

Introduction, Two Transistor Model, characteristics-static and dynamic. di/dt and dv/dt protection. Ratings of thyristors. Thyristor types. Series and parallel operation of Thyristors. Thyristor firing circuits. Design of firing circuits using UJT, R, R-C circuits. Analysis of firing circuits using operational amplifiers and digital IC's. **7 Hours**

UNIT 4:

UNIT 5:

Commutation Techniques: Introduction. Natural Commutation. Forced commutation- self-commutation, impulse commutation and complementary commutation. 6 Hours

PART – B

Controlled Rectifiers: Introduction. Principle of phase controlled converter operation. Single- phase semiconverters. Full converters. Three-phase half-wave converters. Three-phase full-wave converters. **7 Hours**

UNIT 6:

Choppers: Introduction. Principle of step-down and step-up chopper with R-L load. Performance parameters. Chopper classification. Analysis of impulse commutated thyristor chopper (only qualitative analysis) **6 Hours**

UNIT 7:

Inverters: Introduction. Principle of operation. Performance parameters. Single-phase bridge inverters. Threephase inverters. Voltage control of single-phase inverters – single pulse width, multiple pulse width, and sinusoidal pulse width modulation. Current source inverters. **7 Hours**

UNIT 8:

(a) AC Voltage Controllers: Introduction. Principle of ON-OFF and phase control. Single-phase, bidirectional controllers with resistive and R-L loads.

(b) Electromagnetic Compatibility: Introduction, effect of power electronic converters and remedial measures.

6 Hours

Text Book:

1. Power Electronics, M.H.Rashid, , Pearson, 3rd Edition, 2006.

2. Power Electronics, M.D. Singh and Khanchandani K.B., T.M.H., 2nd Edition,2001

References

- 1. Power Electronics Essentials and Applications, L. Umanand, Wiley India Pvt Ltd, Reprint, 2010
- 2. Thyristorised Power Controllers, G.K. Dubey, S.R. Doradla, A. Joshi and R.M.K. Sinha, New Age International Publishers.
- 3. **Power Electronics Converters, Applications and Design,** Ned Mohan, Tore M. Undeland, and William P. Robins, Third Edition, John Wiley and Sons,2008.
- 4. **Power Electronics: A Simplified Approach,** R.S. Ananda Murthy and V. Nattarasu, pearson/Sanguine Technical Publishers.

7 hours

MICROCONTROLLERS LAB

(Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ESL47	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

I. PROGRAMMING

1. Data Transfer - Block move, Exchange, Sorting, Finding largest element in an array.

- 2. Arithmetic Instructions Addition/subtraction, multiplication and division, square, Cube (16 bits Arithmetic operations bit addressable).
- 3. Counters.
- 4. Boolean & Logical Instructions (Bit manipulations).
- 5. Conditional CALL & RETURN.
- 6. Code conversion: BCD ASCII; ASCII Decimal; Decimal ASCII; HEX Decimal and Decimal HEX .

7. Programs to generate delay, Programs using serial port and on-Chip timer / counter.

Note: Programming exercise is to be done on both 8051 & MSP430.

II. INTERFACING:

Write C programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

8. Simple Calculator using 6 digit seven segment displays and Hex Keyboard interface to 8051.

- 9. Alphanumeric LCD panel and Hex keypad input interface to 8051.
- 10. External ADC and Temperature control interface to 8051.
- 11. Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC interface to 8051; change the frequency and amplitude.
- 12. Stepper and DC motor control interface to 8051.
- 13. Elevator interface to 8051.

10EEL48 POWER ELECTRONICS LAB

Subject Code	:	10EEL48	IA Marks	:	25
No. of Practical Hrs./ Week	:	03	Exam Hours	:	03
Total No. of Practical Hrs.	:	42	Exam Marks	:	50

1. Static characteristics of SCR.

2. Static characteristics of MOSFET and IGBT.

- 3. SCR turn-on circuit using synchronized UJT relaxation oscillator.
- 4. SCR Digital triggering circuit for a single-phase controlled rectifier and A.C. voltage controller.
- 5. Single-phase controlled full-wave rectifier with *R* and *R*-*L* loads.
- 6. A.C. voltage controller using TRIAC and DIAC combination connected to *R* and *R*-*L* loads.
- 7. Speed control of a separately excited D.C. motor using an IGBT or MOSFET chopper.
- 8. Speed control of D.C. motor using single semi converter
- Speed control of a stepper motor.
 Speed control of universal motor using A.C. voltage controller.
- 11. MOSFET OR IGBT based single-phase full-bridge inverter connected to R load.
- 12. Study of commutation using LC circuits and auxiliary circuits.

10EEL57 MEASUREMENTS AND CIRCUIT SIMULATION LABORATORY

Subject Code	:	10EEL57	IA Marks	:	25
No. of Practical Hrs./ Week	:	03	Exam Hours	:	03
Total No. of Practical Hrs.	:	42	Exam Marks	:	50

- 1. Measurement of low resistance using Kelvin's double bridge.
- 2. Measurement of cable insulation and earth resistance using Meggar
- 3. Measurement of inductance using Maxwell Inductance-Capacitance bridge & determination of Qfactor
- 4. Measurement of capacitance using De-Sauty's bridge & determination of dissipation factor.
- 5. M easurement of active and reactive power in balanced 3-phase circuit using two-watt meter method.
- 6. Adjustment & calibration of 1-phase energy meter
- 7. Determination of ratio & phase angle error in CT.
- 8. a) Inverting, non-inverting & scale changing of signals using op -amps
- b) RC phase shift oscillator using op amps (Both using simulation package)
- 9. RC coupled amplifier-frequency response for variation of bias & coupling using simulation package
- 10. Rectifier circuits-Bridge rectifier, diode clipping & clamping circuits using simulation package.
- 11. Schmitt -trigger- inverting and non-inverting.
 12 Signal generator- triangular, saw tooth and rectangular wave generation
 Note: All experiments, except 5,6 and 7, are to be carried out by using components and verify the result by using a simulation package.

10EE61 POWER SYSTEM ANALYSIS AND STABILITY

Subject Code	:	10EE61	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

REPRESENTATION OF POWER SYSTEM COMPONENTS: Circuit models of Transmission line, Synchronous machines, Transformers and load. Single line diagram, impedance and reactance diagrams. Per unit system, per unit impedance diagram of power system. UNIT - 2

SYMMETRICAL 3 - PHASE FAULTS: Analysis of Synchronous machines and Power system. Transients on a transmission line, Short-Circuit currents and the reactance of synchronous machines with and without load . 6 Hours

UNIT - 3 & 4

SYMMETRICAL COMPONENTS: Introduction, analysis of unbalanced load against balanced Threephase supply, neutral shift. Resolution of unbalanced phasors into their symmetrical components, Phase shift of symmetrical components in star-delta transformer bank, Power in terms of symmetrical components, Analysis of balanced and unbalanced loads against unbalanced 3 phase supply, Sequence impedances and networks of power system elements (alternator, transformer and transmission line) Sequence networks of power systems. Measurement of sequence impedance of synchronous generator.

12 Hours

Part - B

UNIT - 5 & 6

UNSYMMETRICAL FAULTS: L-G, L-L, L-L-G faults on an unbalanced alternator with and without fault impedance. Unsymmetrical faults on a power system with and without fault impedance. Open conductor faults in power system. 14 Hours

UNIT - 7

STABILITY STUDIES: Introduction, Steady state and transient stability. Rotor dynamics and the swing equation. Equal area criterion for transient stability evaluation and its applications. **8 Hours**

UNIT – 8

UNBALANCED OPERATION OF THREE PHASE INDUCTION MOTRORS: Analysis of three phase induction motor with one line open., Analysis of three phase induction motor with unbalanced voltage. 4 Hours

TEXT BOOKS:

- 1. Elements of Power System Analysis, W.D.Stevenson, TMH,4th Edition
- 2. Modern Power System Analysis, I. J. Nagrath and D.P.Kothari-TMH, 3rd Edition, 2003.
- 3. Symmetrical Components and Short Circuit Studies, Dr.P.N.Reddy, Khanna Publishers

REFERENCE BOOKS:

- 1. **Power System Analysis**, Hadi Sadat, TMH,2nd Edition.
- 2. Power system Analysis, <u>R.</u>Bergen, and Vijay Vittal, Pearson publications, 2nd edition, 2006.
- 3. Computer Aided Power system analysis, G.L., Kusic, PHI.Indian Edition, 2010 .
- 4. Power System Analysis, W.D. Stevenson & Grainger, TMH, First Edition, 2003.

PART -	A
--------	---

SWITCHES AND FUSES: Introduction, energy management of power system, definition of switchgear, switches - isolating, load breaking and earthing. Introduction to fuse, fuse law, cut -off characteristics,: Time current characteristics, fuse material, HRC fuse, liquid fuse, Application of fuse

UNIT - 2

PRINCIPLES OF CIRCUIT BREAKERS: Introduction, requirement of a circuit breakers, difference between an isolator and circuit breaker, basic principle of operation of a circuit breaker, phenomena of arc, properties of arc, initiation and maintenance of arc, arc interruption theories - slepian's theory and energy balance theory, Restriking voltage, recovery voltage, Rate of rise of Restriking voltage, DC circuit breaking, AC circuit breaking, current chopping, capacitance switching, resistance switching, Rating of Circuit breakers.

UNIT - 3 & 4 CIRCUITS BREAKERS: Air Circuit breakers – Air break and Air blast Circuit breakers, oil Circuit breakers - Single break, double break, minimum OCB, SF₆ breaker - Preparation of SF₆ gas, Puffer and non Puffer type of SF₆ breakers. Vacuum circuit breakers - principle of operation and constructional details. Advantages and disadvantages of different types of Circuit breakers, Testing of Circuit breakers, Unit testing, synthetic testing, substitution test, compensation test and capacitance test.

LIGHTNING ARRESTERS: Causes of over voltages – internal and external, lightning, working principle of different types of lightning arresters. Shield wires.

PART - B

UNIT - 5

UNIT - 1

PROTECTIVE RELAYING: Requirement of Protective Relaying, Zones of protection, primary and backup protection, Essential qualities of Protective Relaying, Classification of Protective Relays

UNIT - 6

INDUCTION TYPE RELAY: Non-directional and directional over current relays, IDMT and Directional characteristics. Differential relay – Principle of operation, percentage differential relay, bias characteristics, distance relay – Three stepped distance protection, Impedance relay, Reactance relay, Mho relay, Buchholz relay, Negative Sequence relay, Microprocessor based over current relay – block diagram approach.

UNIT - 7 & 8

PROTECTION SCHEMES: Generator Protection - Merz price protection, prime mover faults, stator and rotor faults, protection against abnormal conditions – unbalanced loading, loss of excitation, over speeding. Transformer Protection - Differential protection, differential relay with harmonic restraint, Inter turn faults Induction motor protection - protection against electrical faults such as phase fault, ground fault, and abnormal operating conditions such as single phasing, phase reversal, over load. **12 Hours**

TEXT BOOKS:

- 1. Switchgear & Protection Sunil S.Rao,,Khanna Publishers,13th Edition,2008.
- 2. Power System Protection & Switchgear, Badriram & Viswa Kharma, TMH, 1st edition, 2001.
- 3. Fundamentals of Power System protection, Y G. Painthankar and S R Bhide, PHI, 2009.

REFERENCE BOOKS:

- 1. A Course in Electrical Power, Soni, Gupta & Bhatnagar, Dhanapatirai.
- 2. Power System Protection & Switchgear, Ravindarnath & Chandra -New age Publications.
- **3** Electrical Power, Dr S. L. Uppal, Khanna Publishers.
- 4. Handbook of Switchgears, BHEL, TMH, 5th reprint, 2008.

10EE62 SWITCHGEAR & PROTECTION

Subject Code	:	10EE62	IA Marks	:	25				
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03				
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100				

10 Hours

4 Hours

12 Hours

4 Hours

4 Hours

10 Hours

10EE664 OBJECT ORIENTED PROGRAMMING USING C ++

Subject Code	:	10EE664	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

PRINCIPLES OF OBJECT-ORIENTED PROGRAMMING: Review of Procedure OrientedProgramming, Basic concepts of Object Oriented Programming – Object, Class, Encapsulation,Inheritance, Polymorphism; Benefits of OOPs, Applications of OOP's.**4 Hours**

UNIT - 2

THE BASIC LANGUAGE C++: A comparison of C and C++, Structure of C++ program with Class, Preprocessor directives, C++ Statements – Input/Output, Comments, Tokens, Keywords, Identifiers, Constants, Data types – string, pointer, reference, boole, enumeration, array, complex number; typedef names, type compatibility, type conversion, qualifier – const, volatile; Operators in C++, Operator Precedence and Operator Overloading; C++ expressions – New and Delete. **6 Hours**

UNIT - 3

FUNCTIONS IN C++: Introduction, The main() function, Function prototype, Call by reference, Return by reference, Inline functions, Default arguments, const Arguments, Function Overloading, Friend and Virtual functions, pointer to functions. **8 hours**

UNIT - 4

CLASSES AND OBJECTS: Introduction – declaration and definition of a Class, defining member functions, C++ program with a Class, Making an outside function Inline, Nesting of member functions, Arrays within a class, Static data members, static member functions, Objects – global & local objects, scope & lifetime, memory allocation for objects, dynamically allocated objects, pointers to objects, arrays of objects, function arguments with objects, returning objects; const member functions. **8 Hours**

PART - B

UNIT - 5

CONSTRUCTORS AND DESTRUCTORS: Introduction, Constructors, Parameterized Constructors, Multiple constructors in a class, Constructors with default arguments, Dynamic initialization of objects, Copy constructor, Constructing two-dimensional arrays, const Objects, Destructors. **4 Hours**

UNIT - 6

OPERATOR OVERLOADING AND TYPE CONVERSION: Introduction, Defining operator overloading, Overloading unary operators, Overloading binary operators, Overloading binary operators using Friends, Rules for overloading operators, overloading a comma operator, overloading the output operator, Type conversion. **7 Hours**

UNIT - 7

INHERITANCE: Introduction, Defining derived classes, Single inheritance, Making a private member Inheritable, Multilevel inheritance, Multiple inheritance, Hierarchical inheritance, Hybrid inheritance, Virtual base classes, Abstract classes, Constructors & Destructors in base & derived classes. **6 Hours**

UNIT - 8

POINTER, VIRTUAL FUNCTIONS AND POLYMORPHISM: Introduction, Pointers, Pointers to Objects, this pointer, Pointers to derived classes, type-checking pointers, pointers to members, Virtual functions, Pure virtual functions.

MANAGING CONSOLE I/O AND FILE I/O: C++ streams, C++ stream classes, examples of formatted and unformatted I/O operations, Classes for file stream operations, Methods of Opening and Closing a File, Examples of Opening file using constructor open(), file modes (simple programming exercises). **9 Hours**

TEXT BOOKS:

1. **Object Oriented Programming with C++-** Balagurusamy, E, TMH,4th edition, 2008.

2. C++, The Complete Reference -Herbert Schildt, , TMH, 4th edition

3. Object Oriented Programming with C++, Farrell, Cengage Learning, First Edition, 2008. **REFERENCE BOOKS:**

1. The C++ programming language,Bjarne Stroustrup, Pearson Education, 3rd edition,2006.

2. Objected oriented programming with C++, Bhave, Pearson Education, First Edition, 2006.

10EE72 ELECTRICAL POWER UTILIZATION

Subject Code	:	10EE72	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

HEATING AND WELDING: Advantages and methods of electric of heating, resistance ovens, induction heating, dielectric heating, the arc furnace, heating of building. Electric welding, resistance and arc welding, control devices and welding equipment. **10 Hours**

UNIT - 2

ELECTROLYTIC PROCESS: Fundamental principles, extraction, refining of metals and electroplating. Factors affecting electro deposition process, power supply for electrolytic process. **6 Hours**

UNIT - 3 & 4

ILLUMINATION: Laws of illumination, lighting calculation, factory lighting, flood lighting, street lighting, different types of lamps-incandescent, fluorescent, vapor, CFL and LED lamps and their working, comparision, Glare and its remedy. **10 Hours**

PART - B

UNIT - 5, 6 & 7

ELECTRIC TRACTION: Introduction, requirements of an ideal traction, systems of traction, speed time curve, tractive effort, co-efficient of adhesion, selection of traction motors, method of speed control, energy saving by series parallel control, ac traction equipment. AC series motor, characteristics, regenerative braking, linear induction motor and their use. AC traction, diesel electric equipment, trains lighting system, specific energy, factors affecting specific energy consumption. **20 Hours**

UNIT - 8

INTRODUCTION TO ELECTRIC AND HYBRID VEHICLES: Configuration and performance of electrical vehicles, traction motor characteristics, tractive effort, transmission requirement, vehicle performance and energy consumption. **6 Hours**

TEXT BOOKS:

- 1. Utilization Of Electric Energy, E Openshaw Taylor, 12th Impression, 2009, Universities Press.
- 2. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad, Ehsani, Yimin Gao, Sabastien. E. Gay, Ali Emadi- CRC Press.

REFERENCE BOOKS:

- 1. A Course in Electrical Power, Soni Gupta and Bhatnager-Dhanapat Rai & sons.
- 3. Electrical Power, Dr. S.L.Uppal, Khanna Publications

10EE73 HIGH VOLTAGE ENGINEERING

Subject Code	:	10EE73	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

INTRODUCTION: Introduction to HV technology, need for generating high voltages in laboratory. Industrial applications of high voltage, Electrostatic precipitation, separation, painting and printing.

6Hours

UNIT - 2 & 3

BREAKDOWN PHENOMENA: Classification of HV insulating media. Properties of important HV insulating media under each category. Gaseous dielectrics, Ionization: primary and secondary ionization processes. Criteria for gaseous insulation breakdown based on Townsend's theory. Limitations of Townsend's theory. Streamer's theory breakdown in non uniform fields. Corona discharges. Breakdown in electro negative gases. Paschen's law and its significance. Time lags of Breakdown. Breakdown in solid dielectrics: Intrinsic Breakdown, avalanche breakdown, thermal breakdown, and electro mechanic breakdown. Breakdown of liquid dielectrics: Suspended particle theory, electronic Breakdown, cavity breakdown (bubble's theory), electro convection breakdown. **12 Hours**

UNIT - 4

GENERATION OF HV AC AND DC VOLTAGE: HV AC-HV transformer; Need for cascade connection and working of transformers units connected in cascade. Series resonant circuit- principle of operation and advantages. Tesla coil. HV DC- voltage doubler circuit, cock croft- Walton type high voltage DC set. Calculation of high voltage regulation, ripple and optimum number of stages for minimum voltage drop. **8 Hours**

Part - B

UNIT - 5

GENERATION OF IMPULSE VOLTAGE AND CURRENT: Introduction to standard lightning and switching impulse voltages. Analysis of single stage impulse generator-expression for Output impulse voltage. Multistage impulse generator working of Marx impulse. Rating of impulse generator. Components of multistage impulse generator. Triggering of impulse generator by three electrode gap arrangement. Trigatron gap and oscillograph time sweep circuits. Generation of switching impulse voltage. Generation of high impulse current.

UNIT - 6

MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation. Chubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV DC measurements. Standard sphere gap measurements of HV AC, HV DC, and impulse voltages; Factors affecting the measurements. Potential dividers-resistance dividers capacitance dividers mixed RC potential dividers. Measurement of high impulse currents-Rogogowsky coil and Magnetic Links. **10 Hours**

NON-DESTRUCTIVE INSULATION TESTING TECHNIQUES: Dielectric loss and loss angle measurements using Schering Bridge, Transformer ratio Arms Bridge. Need for discharge detection and PD measurements aspects. Factor affecting the discharge detection. Discharge detection methods-straight and balanced methods. 6 Hours

UNIT - 8

HIGH VOLTAGE TESTS ON ELECTRICAL APPARATUS: Definitions of terminologies, tests on
isolators, circuit breakers, cables insulators and transformers.4 Hours

TEXT BOOKS:

- 1. High Voltage Engineering, M.S.Naidu and Kamaraju- 4th Edition, THM, 2008.
- 2. High Voltage Engineering Fundamentals, E.Kuffel and W.S. Zaengl, 2nd Edition, Elsevier Press, 2005.
- 3. High Voltage Engineering ,C.L.Wadhwa, New Age International Private limited, 1995.

REFERENCE BOOKS:

1.High Voltage Engineering Theory and Practice, Mazen Abdel-Salam, Hussein Anis, Ahdab El-Morshedy, Roshdy Radwan, 2nd Edn(Revised & Expanded) Marcel-Dekker Publishers(Special Indian Edn.).

10EE752 PROGRAMMABLE LOGIC CONTROLLERS

Subject Code	:	10EE752	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

INTRODUTION: Introduction to Programmable logic controller (PLC), role in automation (SCADA), advantages and disadvantages, hardware, internal architecture, sourcing and sinking, characteristics of I/O devices, list of input and output devices, examples of applications. I/O processing, input/output units, signal conditioning, remote connections, networks, processing inputs I/O addresses. **7 Hours**

UNIT - 2

ROGRAMMING: Ladder programming- ladder diagrams, logic functions, latching, multiple outputs, entering programs, functional blocks, programme examples like location of stop and emergency switches

8 Hours

UNIT - 3 & 4

PROGRAMMING LANGUAGES: Instruction list, sequential functions charts & structured text, jump and call subroutines. 10 Hours

PART - B

UNIT - 5

INTERNAL RELAYS: ladder programmes, battery- backed relays, one - shot operation, set and reset, master control relay. 5 Hours

UNIT - 6 & 7

Timers and counters: Types of timers, programming timers, ON and OFF- delay timers, pulse timers, forms of counter, programming, up and down counters, timers with counters, sequencer. 12 Hours UNIT - 8

Shift register and data handling: shift registers, ladder programs, registers and bits, data handling, arithmetic functions, temperature control and bottle packing applications. 10 Hours Note: Programming is to be with reference to only Mitsubhish PLC

TEXT BOOKS:

- 1. Programmable Logic controllers-W Bolton, 5th edition, Elsevier- newness, 2009.
- 2. **Programmable logic controllers principles and applications**"-John W Webb, Ronald A Reis, Pearson education, 5th edition, 2nd impression, 2007.

REFERENCE BOOKS:

- 1. **Programmable Controller Theory and Applications**, L. A Bryan, E. A Bryan, An industrial text company publication, 2nd edition, 1997.
- 2. Programmable Controllers, An Engineers Guide-E. A Paar, newness, 3rd edition, 2003.

Subject Code	:	10EE836	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

10EE836 RENEWABLE ENERGY SOURCES

UNIT - 1

ENERGY SOURCES: Introduction, Importance of Energy Consumption as Measure of Prosperity, Per Capita Energy Consumption, Classification of Energy Resources; Conventional Energy Resources -Availability and their limitations; Non-Conventional Energy Resources – Classification, Advantages, Limitations; Comparison of Conventional and Non-Conventional Energy Resources; World Energy Scenario; Indian Energy Scenario. 4 Hours

UNIT - 2

SOLAR ENERGY BASICS: Introduction, Solar Constant, Basic Sun-Earth Angles – definitions and their representation, Solar Radiation Geometry (numerical problems), Estimation of Solar Radiation of Horizontal and Tilted Surfaces (numerical problems); Measurement of Solar Radiation Data – Pyranometer and Pyrheliometer. **6 Hours**

UNIT - 3

SOLAR THERMAL SYSTEMS: Principle of Conversion of Solar Radiation into Heat, Solar WaterHeaters (Flat Plate Collectors), Solar Cookers – Box type, concentrating dish type, Solar driers, Solar Still,Solar Furnaces, Solar Green Houses.6 Hours

UNIT - 4

SOLAR ELECTRIC SYSTEMS: Solar Thermal Electric Power Generation – Solar Pond and Concentrating Solar Collector (parabolic trough, parabolic dish, Central Tower Collector). Advantages and Disadvantages; Solar Photovoltaic – Solar Cell fundamentals, characteristics, classification, construction of module, panel and array. Solar PV Systems – stand-alone and grid connected; Applications – Street lighting, Domestic lighting and Solar Water pumping systems. **7 Hours**

ENERGY STORAGE: Introduction, Necessity of Energy Storage, and Methods of Energy Storage (classification and brief description using block diagram representation only). **3 Hours**

PART - B

UNIT - 5

WIND ENERGY: Introduction, Wind and its Properties, History of Wind Energy, Wind Energy Scenario – World and India. Basic principles of Wind Energy Conversion Systems (WECS), Classification of WECS, Parts of WECS, Derivation for Power in the wind, Electrical Power Output and Capacity Factor of WECS, Wind site selection consideration, Advantages and Disadvantages of WECS. **8 Hours**

UNIT - 6

BIOMASS ENERGY: Introduction, Photosynthesis process, Biomass fuels, Biomass conversion technologies, Urban waste to Energy Conversion, Biomass Gasification, Biomass to Ethanol Production, Biogas production from waste biomass, factors affecting biogas generation, types of biogas plants – KVIC and Janata model; Biomass program in India. **6 Hours**

UNIT - 7

ENERGY FROM OCEAN: Tidal Energy – Principle of Tidal Power, Components of Tidal Power Plant (TPP), Classification of Tidal Power Plants, Estimation of Energy – Single basin and Double basin type TPP (no derivations. Simple numerical problems), Advantages and Limitations of TPP. Ocean Thermal Energy Conversion (OTEC): Principle of OTEC system, Methods of OTEC power generation – Open Cycle (Claude cycle), Closed Cycle (Anderson cycle) and Hybrid cycle (block diagram description of OTEC); Siteselection criteria, Biofouling, Advantages & Limitations of OTEC. **6 Hours**

UNIT - 8

EMERGING TECHNOLOGIES: Fuel Cell, Small Hydro Resources, Hydrogen Energy, and Wave Energy. (Principle of Energy generation using block diagrams, advantages and limitations). **6 Hours**

TEXT BOOKS:

- 1. Non-Conventional Sources of Energy, Rai, G. D, Khanna Publishers, 4th Edition, 2007
- 2. Non-Conventional Energy Resources, Khan, B. H., TMH, 2nd Edition.

REFERENCE BOOK:

1. **Fundamentals of Renewable Energy Systems,** Mukherjee, D and Chakrabarti, S., New Age International Publishers, 2005.

MATERIAL SCIENCE AND METALLURGY

Subject Code	: 10ME32A /42A	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Crystal Structure: BCC, FCC and HCP Structures, coordination number and atomic packing factors, crystal imperfections -point line and surface imperfections. Atomic Diffusion: Phenomenon, Ficks laws of diffusion, factors affecting diffusion.

06 Hours

UNIT - 2

Mechanical Behaviour: Stress-strain diagram showing ductile and brittle behaviour of materials, linear and non linear elastic behaviour and properties, mechanical properties in plastic range, yield strength offset yield strength, ductility, ultimate tensile strength, toughness. Plastic deformation of single crystal by slip and twinning.

06 Hours
Fracture: Type I, Type II and Type III.

Creep: Description of the phenomenon with examples. three stages of creep, creep properties, stress relaxation.

Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, fatigue properties, fatigue testing and S-N diagram.

07 Hours

UNIT - 4

Solidification: Mechanism of solidification, Homogenous and Heterogeneous nucleation, crystal growth, cast metal structures. Phase Diagram I: Solid solutions Hume Rothary rule substitutional, and interstitial solid solutions, intermediate phases, Gibbs phase rule.

07 Hours

PART - B

UNIT - 5

Phase Diagram II: Construction of equilibrium diagrams involving complete and partial solubility, lever rule. Iron carbon equilibrium diagram description of phases, solidification of steels and cast irons, invariant reactions.

06 Hours

UNIT - 6

Heat treating of metals: TTT curves, continuous cooling curves, annealing and its types. normalizing, hardening, tempering, martempering, austempering, hardenability, surface hardening methods like carburizing, cyaniding, nitriding, flame hardening and induction hardening, age hardening of aluminium-copper alloys.

07 Hours

UNIT - 7

Ferrous and non ferrous materials: Properties, Composition and uses of

- Grey cast iron, malleable iron, SG iron and steel
- Copper alloys-brasses and bronzes. Aluminium alloys-Al-Cu,Al-Si,Al-Zn alloys.

06 Hours

Composite Materials: Definition, classification, types of matrix materials & reinforcements, fundamentals of production of FRP's and MMC's advantages and application of composites.

07 Hours

TEXT BOOKS:

- 1. Foundations of Materials Science and Engineering, Smith, 4th Edition McGraw Hill, 2009
- 2. Materials Science, Shackleford., & M. K. Muralidhara, Pearson Publication 2007.

REFERENCE BOOKS:

- 1. An Introduction to Metallurgy; Alan Cottrell, Universities Press India Oriental Longman Pvt. Ltd., 1974.
- 2 Engineering Materials Science, W.C.Richards, PHI, 1965
- 3. Physical Metallurgy; Lakhtin, Mir Publications
- 4. Materials Science and Engineering, V.Raghavan, PHI, 2002
- 5. Elements of Materials Science and Engineering, H. VanVlack, Addison-Wesley Edn., 1998
- Materials Science and Engineering, William D. Callister Jr., John Wiley & Sons. Inc, 5th Edition, 2001.
- 7. **The Science and Engineering of Materials,** Donald R. Askland and Pradeep.P. Phule, Cengage Learning, 4^{lh} Ed., 2003.

MECHANICAL MEASUREMENTS AND METROLOGY

Subject Code	: 10ME32B /42B	IA Marks	: 25
Hours/Week	:04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT-1

Standards of measurement: Definition and Objectives of metrology, Standards of length-International prototype meter, Imperial standard yard, Wave length standard, subdivision of standards, line and

end standard, calibration of end bars (Numerical), Slip gauges, Wringing phenomena, Indian Standards (M-81, M-12), Numerical problems on building of slip gauges.

06 Hours

UNIT-2

System of Limits, Fits, Tolerance and Gauging: Definition of tolerance, Specification in assembly, Principle of interchangeability and selective assembly limits of size, Indian standards, concept of limits of size and tolerances, compound tolerances, accumulation of tolerances, definition of fits, types of fits and their designation (IS 919-1963), geometrical tolerance, positional-tolerances, hole basis system, shaft basis system, classification of gauges, brief concept of design of gauges (Taylor's principles), Wear allowance on gauges, Types of gauges-plain plug gauge, ring gauge, snap gauge, limit gauge and gauge materials.

07 Hours

UNIT-3

Comparators and Angular measurement: Introduction to comparators, characteristics, classification of comparators, mechanical comparators-Johnson Mikrokator, sigma comparators, dial indicator, optical comparators-principles, Zeiss ultra optimeter, electric and electronic comparators-principles, LVDT, pneumatic comparators, back pressure gauges, solex comparators. Angular measurements, bevel protractor, sine principle and use of sine bars, sine centre, use of angle gauges (numericals on building of angles), clinometers.

07 Hours

UNIT-4:

Interferometer and screw thread, gear measurement: Interferometer, interferometry, autocollimator. Optical flats. Terminology of screw threads, measurement of major diameter, minor diameter, pitch, angle and effective diameter of screw threads by 2 - wire and 3 -wire methods, best size wire. Tool maker's microscope, gear tooth terminology, use of gear tooth vernier caliper and micrometer.

06 Hours

UNIT-5:

Measurements and measurement systems: Definition, significance of measurement, generalized measurement system, definitions and concept of accuracy, precision, calibration, threshold, sensitivity, hysterisis, repeatability, linearity, loading effect, system response-times delay. Errors in measurement, classification of errors. Transducers, transfer efficiency, primary and secondary transducers, electrical, mechanical, electronic transducers, advantages of each type transducers.

07 Hours

UNIT-6

Intermediate modifying and terminating devices: Mechanical systems, inherent problems, electrical intermediate modifying devices, input circuitry, ballast circuit, electronic amplifiers and telemetry. Terminating devices, mechanical, cathode ray oscilloscope, oscillographs, X-Y plotters.

06 Hours

UNIT-7

Measurement of force, torque and pressure: Principle, analytical balance, platform balance, proving ring. Torque measurement, Prony brake, hydraulic dynamometer. Pressure measurements, principle, use of elastic members, Bridgeman gauge, McLeod gauge, Pirani gauge. 06 Hours

UNIT-8

Temperature and strain measurement: Resistance thermometers, thermocouple, law of thermo couple, materials used for construction, pyrometer, optical pyrometer. Strain measurements, strain gauge, preparation and mounting of strain gauges, gauge factor, methods of strain measurement.

07 Hours

TEXT BOOKS:

- Mechanical Measurements, Beckwith Marangoni and Lienhard, Pearson Education, 6th Ed., 2006.
- 2. Engineering Metrology, R.K. Jain, Khanna Publishers, 1994.

REFERENCE BOOKS:

- 1. **Engineering Metrology,** I.C. Gupta, Dhanpat Rai Publications, Delhi.
- 2. Mechanical Measurements, R.K. Jain Khanna Publishers, 1994
- 3. **Industrial Instrumentation,** Alsutko, Jerry. D. Faulk, Cengage Asia Pvt. Ltd. 2002.
- Measurement Systems Applications and Design, Ernest O. Doebelin, 5th Ed., McGraw Hill Book Co.
- 5. **Metrology & Measurement,** Anand K. Bewoor & Vinay A. Kulkarni, Tata McGraw Hill Pvt. Ltd., New-Delhi

MANUFACTURING PROCESS – I (FUNDAMENTALS OF FOUNDRY & WELDING)

Subject Code	: 10ME35	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART – A

CASTING PROCESS

UNIT - 1

Introduction: Concept of Manufacturing process, its importance. Classification of Manufacturing processes. Introduction to Casting process & steps involved. Varieties of components produced by casting process. Advantages & Limitations of casting process.

Patterns: Definition, functions, Materials used for pattern, various pattern allowances and their importance. Classification of patterns, BIS color coding of Patterns.

Binder: Definition, Types of binder used in moulding sand.

Additives: Need, Types of additives used and their properties..

06 Hours

UNIT - 2

Sand Moulding : Types of base sand, requirement of base sand. Moulding sand mixture ingredients for different sand mixtures. Method used for sand moulding, such as Green sand, dry sand and skin dried moulds.

Cores: Definition, Need, Types. Method of making cores, Binders used, core sand moulding.

Concept of Gating & Risers. Principle and types.

Fettling and cleaning of castings. Basic steps, Casting defects, Causes, features and remedies.

Moulding Machines : Jolt type, Squeeze type, Jolt & Squeeze type and Sand slinger.

07 Hours

Special moulding Process: Study of important moulding processes, No bake moulds, Flaskless moulds, Sweep mould, CO_2 mould, Shell mould, Investment mould.

Metal moulds: Gravity die-casting, Pressure die casting, Centrifugal casting, Squeeze Casting, Slush casting, Thixo-casting and Continuous Casting Processes.

07 Hours

UNIT - 4

Melting Furnaces: Classification of furnaces. Constructional features & working principle of coke fired, oil fired and Gas fired pit furnace, Resistance furnace, Coreless Induction furnace, Electric Arc Furnace, Cupola furnace.

06 Hours

PART – B

WELDING

UNIT - 5

Welding process: Definition, Principles, Classification, Application, Advantages & limitations of welding.

Arc Welding: Principle, Metal Arc welding (**MAW**), Flux Shielded Metal Arc Welding (**FSMAW**), Inert Gas Welding (**TIG & MIG**) Submerged Arc Welding (**SAW**) and Atomic Hydrogen Welding processes. (**AHW**)

Gas Welding: Principle, Oxy – Acetylene welding, Chemical Reaction in Gas welding, Flame characteristics. Gas torch construction & working. Forward and backward welding.

07 Hours

UNIT - 6

Special types of welding: Resistance welding - principles, Seam welding, Butt welding, Spot welding and projection welding.

Friction welding, Explosive welding, Thermit welding, Laser welding and Electron beam welding.

07 Hours

Metallurgical aspect, in welding : Structure of welds, Formation of different zones during welding. Heat affected zone (HAZ). Parameters affecting HAZ. Effect of carbon content on structure and properties of steel. Shrinkage in welds & Residual stresses.

Concept of electrodes, Filler rod and fluxes. Welding defects – Detection causes & remedy.

06 Hours

UNIT - 8

Principles of soldering & brazing: Parameters involved & Mechanism. Different Types of Soldering & Brazing Methods.

Inspection Methods – Methods used for Inspection of casting and welding. Visual, Magnetic particle, Fluorescent particle, Ultrasonic, Radiography, Eddy current, Holography methods of Inspection.

06 Hours

TEXT BOOKS:

- "Manufacturing Process-I", Dr.K.Radhakrishna, Sapna Book House, 5th Revised Edition 2009.
- "Manufacturing & Technology: Foundry Forming and Welding", P.N.Rao, 3rd Ed., Tata McGraw Hill, 2003.

REFERENCE BOOKS:

- 1. **"Process and Materials of Manufacturing**", Roy A Lindberg, 4th Ed. Pearson Edu. 2006.
- "Manufacturing Technology", Serope Kalpakjian, Steuen. R. Sechmid, Pearson Education Asia, 5th Ed. 2006.

COMPUTER AIDED MACHINE DRAWING

Subject Code	:10ME36A/10ME46A	IA Marks	25
Hours/Week	: 04(1 Hrs. Theory &	Exam Hours	03
	3 Hrs Practical)		
Total Hours	: 52	Exam Marks	100

Introduction:

Review of graphic interface of the software. Review of basic sketching commands and navigational commands. Starting a new drawing sheet. Sheet sizes. Naming a drawing, Drawing units, grid and snap.

02 Hours

PART-A

UNIT - 1

Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones and Cylinders resting only on their bases (No problems on axis inclinations, spheres and hollow solids). True shape of sections.

Orthographic Views: Conversion of pictorial views into orthographic projections. of <u>simple machine parts</u> with or without section. (Bureau of Indian Standards conventions are to be followed for the drawings) Hidden line conventions. Precedence of lines.

08 Hours

UNIT - 2

Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External) BSW (Internal & External) square and Acme. Sellers thread, American Standard thread.

Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper and split pin for locking, counter sunk head screw, grub screw, Allen screw.

08 Hours

PART-B

UNIT - 3
Keys & Joints :
Parallel key, Taper key, Feather key, Gibhead key and Woodruff key
Riveted Joints: Single and double riveted lap joints, butt joints with single/double cover straps (Chain and Zigzag, using snap head rivets). cotter joint (socket and spigot), knuckle joint (pin joint) for two rods.

08 Hours

UNIT - 4 Couplings:

Split Muff coupling, Protected type flanged coupling, pin (bush) type flexible coupling, Oldham's coupling and universal coupling (Hooks' Joint)

08 Hours

PART - C

Assembly Drawings (Part drawings should be given)

- 1. Plummer block (Pedestal Bearing)
- 2. Rams Bottom Safety Valve
- 3. I.C. Engine connecting rod
- 4. Screw jack (Bottle type)
- 5. Tailstock of lathe
- 6. Machine vice
- 7. Tool Head of a shaper

18 Hours

TEXT BOOKS:

- 1. 'A Primer on Computer Aided Machine Drawing-2007', Published by VTU, Belgaum.
- 2. 'Machine Drawing', N.D.Bhat & V.M.Panchal

REFERENCE BOOKS:

- 1. **'A Text Book of Computer Aided Machine Drawing'**, S. Trymbaka Murthy, CBS Publishers, New Delhi, 2007
- 2. 'Machine Drawing', K.R. Gopala Krishna, Subhash Publication.

- 3. **'Machine Drawing with Auto CAD**', Goutam Pohit & Goutham Ghosh, 1st Indian print Pearson Education, 2005
- 4. **'Auto CAD 2006, for engineers and designers'**, Sham Tickoo. Dream tech 2005
- 5. **'Machine Drawing'**, N. Siddeshwar, P. Kanniah, V.V.S. Sastri, published by Tata McGraw Hill,2006

NOTE:

Internal assessment: 25 Marks

All the sheets should be drawn in the class using software. Sheet sizes should be A3/A4. All sheets must be submitted at the end of the class by taking printouts.

Scheme of Examination:

Two questions to be set from each Part-A, Part-B and Part-C Student has to answer one question each from Part-A and Part-B for 20 marks each. And one question from Part-C for 60 marks.

> i.e. PART-A 1 x 20 = 20 Marks PART-B 1 x 20 = 20 Marks PART-C 1 x 60 = 60 Marks

> > Total = 100 Marks

FLUID MECHANICS

Subject Code	: 10ME36B / 46B	IA Marks	25
Hours/Week	: 04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT-1

Properties of Fluids: Introduction, Types of fluid, Properties of fluids, viscosity, thermodynamic properties, surface tension, capillarity, vapour pressure and cavitation

06 Hours

Fluid Statistics: Fluid pressure at a point, Pascal's law, pressure variation in a static fluid, absolute, gauge, atmospheric and vacuum pressures, simple manometers and differential manometers. Total pressure and center of pressure on submerged plane surfaces; horizontal, vertical and inclined plane surfaces, curved surface submerged in liquid.

UNIT-3

Buoyancy and Fluid Kinematics:

Buoyancy, center of buoyancy, metacentre and metacentric height, conditions of equilibrium of floating and submerged bodies, determination of Metacentric height experimentally and theoretically.

<u>Kinematics</u>: Types of fluid flow, continuity equation in 2D and 3D (Cartesian Co-ordinates only), velocity and acceleration, velocity potential function and stream function.

07 Hours

UNIT-4

Fluid Dynamics: Introduction equation of motion, Euler's equation of motion, Bernoulli's equation from first principles and also from Euler's equation, limitations of Bernoulli's equation.

06 Hours

PART-B

UNIT-5

Fluid Flow Measurements : Venturimeter, orificemeter, pitot-tube, vertical orifice, V-Notch and rectangular notches.

<u>Dimensional Analysis</u> : Introduction, derived quantities, dimensions of physical quantities, dimensional homogeneity, Rayleigh's method, Buckingham π theorem, dimensionless numbers, similitude, types of similitudes.

07 Hours

UNIT-6

Flow through pipes : Minor losses through pipes. Darey's and Chezy's equation for loss of head due to friction in pipes. HGL and TEL.

06 Hours

Laminar flow and viscous effects : Reyonold's number, critical Reynold's number, laminar flow through circular pipe-Hagen Poiseille's equation, laminar flow between parallel and stationary plates.

06 Hours

UNIT-8

Flow past immersed bodies : Drag, Lift, expression for lift and drag, boundary layer concept, displacement, momentum and energy thickness. <u>Introduction to compressible flow</u> : Velocity of sound in a fluid, Mach number, Mach cone, propagation of pressure waves in a compressible fluid. 07 Hours

TEXT BOOKS:

- Fluid Mechanics, Oijush.K.Kundu, IRAM COCHEN, ELSEVIER, 3rd Ed. 2005.
- 2. Fluid Mechanics, Dr. Bansal, R.K.Lakshmi Publications, 2004.

REFERENCE BOOKS:

- 1. Fluid Mechanics and hydraulics, Dr.Jagadishlal: Metropolitan Book Co-Ltd., 1997.
- Fluid Mechanics (SI Units), Yunus A. Cengel John M.Oimbala, 2nd Ed., Tata McGraw Hill, 2006.
- 3. **Fluid Mechanics,** John F.Douglas, Janul and M.Gasiosek and john A.Swaffield, Pearson Education Asia, 5th ed., 2006
- 4. Fluid Mechanics and Fluid Power Engineering, Kumar.D.S, Kataria and Sons., 2004
- 5. Fluid Mechanics -. Merle C. Potter, Elaine P.Scott. Cengage learning

Subject Code	: 10MEL37A / 47A	IA Marks	: 25
Hours/Week	: 03	Exam Hours	: 03
Total Hours	: 48	Exam Marks	: 50

PART – A

- 1. Preparation of specimen for Metallograpic examination of different engineering materials. Identification of microstructures of plain carbon steel, tool steel, gray C.I, SG iron, Brass, Bronze & composites.
- 2. Heat treatment: Annealing, normalizing, hardening and tempering of steel. Hardness studies of heat-treated samples.
- 3. To study the wear characteristics of ferrous, non-ferrous and composite materials for different parameters.
- 4. Non-destructive test experiments like,
 - (a). Ultrasonic flaw detection
 - (b). Magnetic crack detection

(c). Dye penetration testing. To study the defects of Cast and Welded specimens

PART - B

- 1. Tensile, shear and compression tests of metallic and non metallic specimens using Universal Testing Machine
- 2. Torsion Test
- 3. Bending Test on metallic and nonmetallic specimens.
- 4. Izod and Charpy Tests on M.S, C.I Specimen.
- 5. Brinell, Rockwell and Vickers's Hardness test.
- 6. Fatigue Test.

Scheme of Examination:

ONE	question	from	part	-A:	20	Marks
ONE	question	from	part	-B:	20	Marks
Viva -	Voice:				10	Marks

Total: 50 Marks

MECHANICAL MEASUREMENTS AND METROLOGY LABORATORY

Subject Code	: 10MEL37B / 47B	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 48	Exam Marks	: 50

PART-A: MECHANICAL MEASUREMENTS

- 1. Calibration of Pressure Gauge
- 2. Calibration of Thermocouple
- 3. Calibration of LVDT
- 4. Calibration of Load cell
- 5. Determination of modulus of elasticity of a mild steel specimen using strain gauges.

PART-B: METROLOGY

- 1. Measurements using Optical Projector / Toolmaker Microscope.
- 2. Measurement of angle using Sine Center / Sine bar / bevel protractor
- 3. Measurement of alignment using Autocollimator / Roller set
- 4. Measurement of cutting tool forces using
 - a) Lathe tool Dynamometer
 - b) Drill tool Dynamometer.
- 5. Measurement of Screw thread Parameters using Two wire or Three-wire method.
- 6. Measurements of Surface roughness, Using Tally Surf/Mechanical Comparator
- 7. Measurement of gear tooth profile using gear tooth vernier /Geartooth micrometer
- 8. Calibration of Micrometer using slip gauges
- 9. Measurement using Optical Flats

Scheme of Examination:

ONE	question	from	part	-A:	20	Marks
ONE	question	from	part	-B:	20	Marks
Viva -	Voice:				10	Marks

Total: 50 Marks

FOUNDRY AND FORGING LABORATORY

Subject Code	: 10MEL38A / 48A	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 48	Exam Marks	: 50

PART – A

1. Testing of Moulding sand and Core sand

Preparation of sand specimens and conduction of the following tests:

- 1 Compression, Shear and Tensile tests on Universal Sand Testing Machine.
- 2 Permeability test

3 Core hardness & Mould hardness tests.

- 4 Sieve Analysis to find Grain Fineness number of Base Sand
- 5 Clay content determination in Base Sand

PART – B

2. Foundry Practice

Use of foundry tools and other equipments.

Preparation of moulds using two moulding boxes using patterns or without patterns. (Split pattern, Match plate pattern and Core boxes). Preparation of one casting (Aluminum or cast iron-Demonstration only)

PART - C

3. Forging Operations :

- Calculation of length of the raw material required to do the model.
- Preparing minimum three forged models involving upsetting, drawing and bending operations.
- Out of these three models, at least one model is to be prepared by using Power Hammer.

Scheme of Examination:

_

One question is to be set from Part-A:10 marksOne question is to be set from either70 marksPart-B or Part-C:30 marksCalculation part in case of forging is made compulsory

(Forging) Viva-Voce	Model .	10 marks	
Calculation	+ Forging =	= 05 + 25 = 30 Marks	
(Forging)	Model		
Calculation	+ Foundry =	= 05 + 25 = 30 Marks	

MACHINE SHOP

Subject Code	: 10MEL38B / 48B	IA Marks	: 25
Hours/Week	: 03	Exam Hours	: 03
Total Hours	: 48	Exam Marks	: 50

PART – A

Preparation of three models on lathe involving Plain turning, Taper turning, Step turning, Thread cutting, Facing, Knurling, Drilling, Boring, Internal Thread cutting and Eccentric turning.

PART – B

Cutting of V Groove/ dovetail / Rectangular groove using a shaper. Cutting of Gear Teeth using Milling Machine.

Scheme of Examination:

ONE question from part -A:30 MarksONE question from part -B:10 MarksViva -Voice:10 Marks

Total: 50 Marks

APPLIED THERMODYNAMICS

Subject Code	: 10ME43	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT - 1

Combustion thermodynamics: Theoretical (Stoichiometric) air and excess air for combustion of fuels. Mass balance, actual combustion. Exhaust gas analysis. A./ F ratio, Energy balance for a chemical reaction, enthalpy of formation, enthalpy and internal energy of combustion, Combustion efficiency, adiabatic flow temperature.

07 Hours

UNIT-2

Gas power cycle: Air Standard cycles: Carnot, Otto, Diesel, Dual and Stirling cycles, P-V and T-S diagrams, description, efficiencies and mean effective pressures, Comparison of Otto, Diesel and dual cycles.

06 Hours

I.C. Engine: Testing of two stroke and four stroke SI and CI engines for performance Related numerical problems, heat balance, Motoring Method, Willian's line method, swinging field dynamometer, Morse test.

06 Hours

UNIT - 4

Vapour Power Cycles: Carnot vapour power cycles, drawbacks as a reference cycle, Simple Rankine cycle, description, T- S diagram, analysis for performance, comparison of Carnot and Rankine cycles. Effects of pressure and temperature on Rankine cycle performance. Actual vapour power cycles. Ideal and practical regenerative Rankine cycle, open and closed feed water heaters, Reheat Rankine cycle.

07 Hours

PART-B

UNIT - 5

Reciprocating Compressors: Operation of a single stage reciprocating compressors, work input through P-V diagram and steady state steady flow analysis. Effect of clearance and volumetric efficiency. Adiabatic, isothermal and mechanical efficiencies. Multistage compressor, saving in work, optimum intermediate pressure, inter- cooling, minimum work for compression.

06 Hours

UNIT - 6

Gas turbine and Jet propulsion: Classification of Gas turbines, Analysis of open cycle gas turbine cycle. Advantages and disadvantages of closed cycle. Methods to improve thermal efficiency, Jet propulsion and Rocket propulsion.

07 Hours

UNIT - 7

Refrigeration: Vapour compression refrigeration system ; description, analysis, refrigerating effect, capacity, power required, units of refrigeration, COP, Refrigerants and their desirable properties. Air cycle refrigeration;

reversed Carnot cycle, reversed Brayton cycle, Vapour absorption refrigeration system, steam jet refrigeration.

06 Hours

UNIT - 8

Psychometry: Atmospheric air and psychometric properties; Dry bulb temperature, wet bulb temperature, dew point temperature; partial pressures, specific and relative humidities and the relation between the two enthalpy and adiabatic saturation temperature. Construction and use of psychometric chart . Analysis of various processes; heating, cooling , dehumidifying and humidifying. Adiabatic mixing of moist air. Summer and winter air conditioning.

07 Hours

Data Hand Book :

- 1. Thermodynamic data hand book, B.T. Nijaguna.
- 2. **Properties of Refrigerant & Psychometric** (tables & Charts in SI Units), Dr. S.S. Banwait, Dr. S.C. Laroiya, Birla Pub. Pvt. Ltd., Delhi, 2008

TEXT BOOKS:

- 1. **Basic and applied Thermodynamics**, P.K. Nag, 2nd Ed., Tata McGraw Hill Pub.Co,2002
- 2. Applied Thermodynamics, Rajput, Laxmi Publication
- 3. **Applied Thermodynamics**, B.K. Venkanna, Swati B. Wadavadagi, PHI, New Delhi, 2010

REFERENCE BOOKS:

- Thermodynamics, An engineering approach, Yunus, A. Cengel and Michael A.Boies, 6th Ed., Tata McGraw Hill pub. Co., 2002,
- 2. **Fundamental of Classical Thermodynamics,** G.J. Van Wylen and R.E. Sontang Wiley eastern.

KINEMATICS OF MACHINES

Subject Code	: 10ME44	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

$\boldsymbol{P}\boldsymbol{A}\boldsymbol{R}\boldsymbol{T}-\boldsymbol{A}$

UNIT - 1

Introduction: Definitions Link or element, kinematic pairs, Degrees of freedom, Grubler's criterion (without derivation), Kinematic chain, Mechanism, Structure, Mobility of Mechanism, Inversion, Machine.

Kinematic Chains and Inversions: Inversions of Four bar chain; Single slider crank chain and Double slider crank chain.

07 Hours

UNIT - 2

Mechanisms: Quick return motion mechanisms-Drag link mechanism, Whitworth mechanism and Crank and slotted lever Mechanism.

Straight line motion mechanisms Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisms -Geneva wheel mechanism and Ratchet and Pawl mechanism. Toggle mechanism, Pantograph, Ackerman steering gear mechanism.

06 Hours

UNIT - 3

Velocity and Acceleration Analysis of Mechanisms (Graphical Methods) Velocity and acceleration analysis of Four Bar mechanism, slider crank mechanism and Simple Mechanisms by vector polygons: Relative velocity and acceleration of particles in a common link, relative velocity and accelerations of coincident Particles on separate links- Coriolis component of acceleration. Angular velocity and angular acceleration of links, velocity of rubbing.

07 Hours

Velocity Analysis by Instantaneous Center Method: Definition, Kennedy's Theorem, Determination of linear and angular velocity using instantaneous center method

Klein's Construction: Analysis of velocity and acceleration of single slider crank mechanism.

06 Hours

PART – B

UNIT - 5

Velocity and Acceleration Analysis of Mechanisms (Analytical Methods): Analysis of four bar chain and slider crank chain using analytical expressions. (Use of complex algebra and vector algebra)

06 Hours

UNIT - 6

Spur Gears: Gear terminology, law of gearing, Characteristics of involute action, Path of contact. Arc of contact, Contact ratio of spur, helical, bevel and worm gears, Interference in involute gears. Methods of avoiding interference, Back lash. Comparison of involute and cycloidal teeth. Profile Modification.

07 Hours

UNIT - 7

Gear Trains: Simple gear trains, Compound gear trains for large speed. reduction, Epicyclic gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load and torque calculations in epicyclic gear trains.

07 Hours

UNIT - 8

Cams: Types of cams, Types of followers. Displacement, Velocity and, Acceleration time curves for cam profiles. Disc cam with reciprocating follower having knife-edge, roller and flat-face follower, Disc cam with oscillating roller follower. Follower motions including SHM, Uniform velocity, uniform acceleration and retardation and Cycloidal motion.

06 Hours

TEXT BOOKS:

- 1. **"Theory of Machines"**, Rattan S.S, Tata McGraw-Hill Publishing Company Ltd., New Delhi, and 3rd edition -2009.
- 2. **"Theory of Machines",** Sadhu Singh, Pearson Education (Singapore) Pvt. Ltd, Indian Branch New Delhi, 2nd Edi. 2006

REFERENCE BOOKS:

- 1. **"Theory of Machines & Mechanisms**", J.J. Uicker, , G.R. Pennock, J.E. Shigley. OXFORD 3rd Ed. 2009.
- 2. Mechanism and Machine theory, Ambekar, PHI, 2007

Graphical Solutions may be obtained either on the Graph Sheets or on the Answer Book itself.

MANUFACTURING PROCESS – II (Metal Removing Process)

Subject Code	: 10ME45	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Theory of Metal Cutting: Single point cutting tool nomenclature, geometry. Mechanics of Chip Formation, Types of Chips. Merchants circle diagram and analysis, Ernst Merchant's solution, shear angle relationship, problems of Merchant's analysis. Tool Wear and Tool failure, tool life. Effects of cutting parameters on tool life. Tool Failure Criteria, Taylor's Tool Life equation. Problems on tool life evaluation.

07 Hours

UNIT - 2

Cutting Tool Materials: Desired properties and types of cutting tool materials – HSS, carbides coated carbides, ceramics. Cutting fluids. Desired properties, types and selection. Heat generation in metal cutting, factors

affecting heat generation. Heat distribution in tool and work piece and chip. Measurement of tool tip temperature.

07 Hours

UNIT - 3

Turning (Lathe), Shaping and Planing Machines: Classification, constructional features of Turret and Capstan Lathe. Tool Layout, shaping Machine, Planing Machine, Driving mechanisms of lathe, shaping and planing machines, Different operations on lathe, shaping machine and planing machine. Simple problems on machining time calculations

07 Hours

UNIT - 4

Drilling machines: Classification, constructional features, drilling & related operations. Types of drill & drill bit nomenclature, drill materials. Introduction to CNC machines- Principles of operation. Axes of NC machine-Coordinate systems. Basics of Manual part programming methods.

06 Hours

PART - B

UNIT - 5

Milling machines: Classification, constructional features, milling cutters nomenclature, milling operations, up milling and down milling concepts. Various milling operations.

Indexing: Simple, compound, differential and angular indexing calculations. Simple problems on simple and compound indexing.

06 Hours

UNIT - 6

Grinding machines: Types of abrasives, Grain size, bonding process, grade and structure of grinding wheels, grinding wheel types. Classification, constructional features of grinding machines (Centerless, cylindrical and surface grinding). Selection of grinding wheel. Grinding process parameters. Dressing and truing of grinding wheels.

07 Hours

UNIT - 7:

Broaching process - Principle of broaching. Details of a broach. Types of broaching machines-constructional details. Applications. Advantages and Limitations.

Finishing and other Processes Lapping and Honing operations – Principles, arrangement of set up and application. Super finishing process, polishing, buffing operation and application.

06 Hours

UNIT - 8

Non-traditional machining processes: Need for non traditional machining, Principle, equipment & operation of Laser Beam, Plasma Arc Machining, Electro Chemical Machining, Ultrasonic Machining, Abrasive Jet Machining, Water Jet Machining, Electron Beam Machining, Electron Discharge Machining and Plasma Arc Machining.

06 Hours

TEXT BOOKS:

- 1. Workshop Technology, Hazara Choudhry, Vol-II, Media Promoters & Publishers Pvt. Ltd. 2004
- 2. Production Technology, R.K.Jain, Khanna Publications, 2003.
- 3. Production Technology, HMT, Tata Mc Graw Hill, 2001.

REFERENCE BOOKS:

- 1. **Manufacturing Science**, Amitabha Ghosh and Mallik, affiliated East West Press, 2003.
- 2. Fundamentals of Metal Machining and Machine Tools, G. Boothroyd, McGraw Hill, 2000.

DESIGN OF MACHINE ELEMENTS-I

Subject Code	: 10ME52	IA Marks	25
Hours/Week	:04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT-1

Introduction: Definitions: normal, shear, biaxial and tri axial stresses, Stress tensor, Principal Stresses. Engineering Materials and their mechanical properties, Stress-Strain diagrams, Stress Analysis, Design considerations: Codes and Standards.

05 Hours

06 Hours

08 Hours

07 Hours

PART – B

UNIT - 5

Design Of Shafts: Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for power transmission shafting, shafts under fluctuating loads and combined loads.

07 Hours

UNIT - 6

Cotter And Knuckle Joints, Keys And Couplings: Design of Cotter and Knuckle joints, Keys: Types of keys, Design of keys, Couplings: Rigid and flexible couplings, Flange coupling, Bush and Pin type coupling and Oldham's coupling.

07 Hours

48

Design For Static & Impact Strength:

Static Strength: Static loads and factor of safety, Theories of failure: Maximum normal stress theory, Maximum shear stress theory, Maximum strain theory, Strain energy theory, Distortion energy theory. Failure of brittle and ductile materials, Stress concentration, Determination of Stress concentration factor.

Impact Strength: Introduction, Impact stresses due to axial, bending and torsional loads, effect of inertia.

UNIT - 3

UNIT-2

Design For Fatigue Strength: Introduction- S-N Diagram, Low cycle fatigue, High cycle fatigue, Endurance limit, Modifying factors: size effect, surface effect, Stress concentration effects, Fluctuating stresses, Goodman and Soderberg relationship, stresses due to combined loading, cumulative fatigue damage.

UNIT - 4

Threaded Fasteners: Stresses in threaded fasteners, Effect of initial tension, Design of threaded fasteners under static, dynamic and impact loads, Design of eccentrically loaded bolted joints.

Riveted and Welded Joints – Types, rivet materials, failures of riveted joints, Joint Efficiency, Boiler Joints, Lozanze Joints, Riveted Brackets. Welded Joints – Types, Strength of butt and fillet welds, eccentrically loaded welded joints.

07 Hours

UNIT - 8

Power Screws: Mechanics of power screw, Stresses in power screws, efficiency and self-locking, Design of Power Screw, Design of Screw Jack: (Complete Design).

05 Hours

TEXT BOOKS:

- 1. Mechanical Engineering Design, Joseph E Shigley and Charles R. Mischke. McGraw Hill International edition, 6th Edition 2009.
- **2. Design of Machine Elements,** V.B. Bhandari, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2nd Edition 2007.

DESIGN DATA HANDBOOK:

- 1. **Design Data Hand Book,** K. Lingaiah, McGraw Hill, 2nd Ed.
- 2. **Data Hand Book,** K. Mahadevan and Balaveera Reddy, CBS Publication
- 3. **Design Data Hand Book,** H.G. Patil, I. K. International Publisher, 2010.

REFERENCE BOOKS:

- 1. Machine Design, Robert L. Norton, Pearson Education Asia, 2001.
- Design of Machine Elements, M. F. Spotts, T. E. Shoup, L. E. Hornberger, S. R. Jayram and C. V. Venkatesh, Pearson Education, 2006.
- Machine Design, Hall, Holowenko, Laughlin (Schaum's Outlines series) Adapted by S.K. Somani, Tata McGraw Hill Publishing Company Ltd., New Delhi, Special Indian Edition, 2008.
- Fundamentals of Machine Component Design, Robert C. Juvinall and Kurt M Marshek, Wiley India Pvt. Ltd., New Delhi, 3rd Edition, 2007.

Subject Code	: 10ME53	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Steam Power Plant: Different Types of Fuels used for steam generation, Equipment for burning coal in lump form, strokers, different types, Oil burners, Advantages and Disadvantages of using pulverized fuel, Equipment for preparation and burning of pulverized coal, unit system and bin system. Pulverized fuel furnaces, cyclone furnace, Coal and ash handling, Generation of steam using forced circulation, high and supercritical pressures.

07 Hours

UNIT - 2

A Brief Account Of Benson, Velox Schmidt Steam Generators. Chimneys: Natural, forced, induced and balanced draft, Calculations and numericals involving height of chimney to produce a given draft. Cooling towers and Ponds. Accessories for the Steam generators such as Superheaters, De-superheater, control of superheaters, Economizers, Air preheaters and re-heaters.

07 Hours

UNIT - 3

Diesel Engine Power Plant: Applications of Diesel Engines in Power field. Method of starting Diesel engines. Auxiliaries like cooling and lubrication system, filters, centrifuges, Oil heaters, intake and exhaust system, Layout of diesel power plant.

06 Hours

UNIT - 4

Hydro-Electric Plants: Hydrographs, flow duration and mass curves, unit hydrograph and numericals. Storage and pondage, pumped storage plants,

low, medium and high head plants, Penstock, water hammer, surge tanks, gates and valves. General layout of hydel power plants.

06 Hours

PART - B

UNIT - 5

Nuclear Power Plant: Principles of release of nuclear energy; Fusion and fission reactions. Nuclear fuels used in the reactors. Multiplication and thermal utilization factors. Elements of the nuclear reactor; moderator, control rod, fuel rods, coolants. Brief description of reactors of the following types-Pressurized water reactor, Boiling water reactor, Sodium graphite reactor, Fast Breeder reactor, Homogeneous graphite reactor and gas cooled reactor, Radiation hazards, Shieldings, Radio active waste disposal.

06 Hours

UNIT - 6

Solar Energy: Solar Extra terrestrial radiation and radiation at the earth surface, radiation-measuring instruments, working principles of solar flat plate collectors, solar pond and photovoltaic conversion (Numerical Examples).

Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, coefficient of performance of a wind mill rotor (Numerical Examples).

08 Hours

UNIT - 7

Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations.

Ocean Thermal Energy Conversion: Principle of working, Rankine cycle, problems associated with OTEC.

Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, problems associated with geothermal conversion, scope of geothermal energy.

06 Hours

Energy From Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation.

Bio Chemical Route: Biogas production from organic wastes by anaerobic fermentation, classification of bio gas plants, factors affecting bio gas generation.

Thermo Chemical Route: Thermo chemical conversion on bio mass, types of gasifiers.

06 Hours

TEXT BOOKS:

- 1. **Power Plant Engineering**, P. K. Nag Tata McGraw Hill 2nd edn 2001.
- 2. Power Plant Engineering, Domakundawar, Dhanpath Rai sons. 2003

REFERENCE BOOKS:

- 1. **Power Plant Engineering,** R. K. Rajput, Laxmi publication, New Delhi.
- 2. Principles of Energy conversion, A. W. Culp Jr., McGraw Hill. 1996
- 3. Non conventional Energy sources, G D Rai Khanna Publishers.
- 4. Non conventional resources, B H Khan TMH 2007

1.

MANUFACTURING PROCESS - III

(METAL FORMING PROCESS)

Subject Code	: 10ME55	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction And Concepts: Classification of metal working processes, characteristics of wrought products, advantages and limitations of metal working processes.Concepts of true stress, true strain, triaxial & biaxial

stresses. Determination of flow stress. Principal stresses, Tresca & Von-Mises yield criteria, concepts of plane stress & plane strain.

06 Hours

UNIT - 2

Effects Of Parameters: Temperature, strain rate, friction and lubrication, hydrostatic pressure in metalworking, Deformation zone geometry, workability of materials, Residual stresses in wrought products.

06 Hours

UNIT - 3

Forging: Classification of forging processes. Forging machines & equipment. Expressions for forging pressures & load in open die forging and closed die forging by slab analysis, concepts of friction hill and factors affecting it. Die-design parameters. Material flow lines in forging. Forging defects, Residual stresses in forging. Simple problems.

07 Hours

UNIT - 4

Rolling: Classification of Rolling processes. Types of rolling mills, expression for Rolling load. Roll separating force. Frictional losses in bearing, power required in rolling, Effects of front & back tensions, friction, friction hill. Maximum possible reduction. Defects in rolled products. Rolling variables, simple problems.

06 Hours

PART - B

UNIT - 5

Drawing: Drawing equipment & dies, expression for drawing load by slab analysis, power requirement. Redundant work and its estimation, optimal cone angle & dead zone formation, drawing variables, Tube drawing, classification of tube drawing, simple problems.

07 Hours

UNIT - 6

Extrusion: Types of extrusion processes, extrusion equipment & dies, deformation, lubrication & defects in extrusion. Extrusion dies, Extrusion of seamless tubes. Extrusion variables, simple problem

06 Hours

Sheet & Metal Forming: Forming methods, dies & punches, progressive die, compound die, combination die. Rubber forming. Open back inclinable press (OBI press), piercing, blanking, bending, deep drawing, LDR in drawing, Forming limit criterion, defects of drawn products, stretch forming. Roll bending & contouring, Simple problems

06 Hours

UNIT - 8

High Energy Rate Forming Methods: Principles, advantages and applications, explosive forming, electro hydraulic forming, Electromagnetic forming.

Powder Metallurgy: Basic steps in Powder metallurgy brief description of methods of production of metal powders, conditioning and blending powders, compaction and sintering application of powder metallurgy components, advantages and limitations.

07 Hours

TEXT BOOKS:

- 1. **Mechanical metallurgy (SI units),** G.E. Dieter, Mc Graw Hill pub.2001
- Manufacturing Process III, Dr. K.Radhakrishna, Sapna Book House, 2009.

REFERENCE BOOKS:

- 1. **Materials and Processes in Manufacturing,** E.paul, Degramo, J.T. Black, Ronald, A.K. Prentice -hall of India 2002
- 2. **Principles of Industrial metal working process,** G.W. Rowe, CBSpub. 2002
- Manufacturing Science, Amitabha Ghosh & A.K. Malik East -Westpress 2001
- 4. Technology of Metal Forming Process, Surendra kumar, PHI 2008

FLUID MECHANICS AND MACHINES LABORATORY

Subject Code	: 10MEL57	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

1. Determination of coefficient of friction of flow in a pipe.

2. Determination of minor losses in flow through pipes.

3. Determination of force developed by impact of jets on vanes.

4. Calibration of flow measuring devices

- a. Orifice Plate meter
- b. Nozzle
- c. Venturimeter
- d. V-notch

18 Hours

24 Hours

PART - B

5. Performance testing of Turbines

- a. Pelton wheel
- b. Francis Turbine
- c. Kaplan Turbines

6. Performance testing of Pumps

- a. Single stage / Multi stage centrifugal pumps
- b. Reciprocating pump
- 7. Performance test of a two stage Reciprocating Air Compressor
- 8. Performance test on an Air Blower

Scheme for Examination:

One Question from Part A	-	15 Marks (05 Writeup + 10)
One Question from Part B	-	25 Marks (05 Writeup + 20)
Viva-Voce	-	10 Marks

Total

50 Marks

ENERGY CONVERSION ENGINEERING LABORATORY

Subject Code	: 10MEL58	IA Marks	: 25
Hours/Week	:03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

1. Determination of Flash point and Fire point of lubricating oil using Abel Pensky and Marten's (closed) / Cleavland's (Open Cup) Apparatus.

- 2. Determination of Calorific value of solid, liquid and gaseous fuels.
- 3. Determination of Viscosity of a lubricating oil using Redwoods, Saybolt and Torsion Viscometers.
- 4. Valve Timing/port opening diagram of an I.C. engine (4 stroke/2 stroke).
- 5. Use of planimeter

21 Hours

PART - B

- 1. Performance Tests on I.C. Engines, Calculations of IP, BP, Thermal efficiencies, Volumetric efficiency, Mechanical efficiency, SFC, FP, A:F Ratio heat balance sheet for
 - (a) Four stroke Diesel Engine
 - (b) Four stroke Petrol Engine
 - (c) Multi Cylinder Diesel/Petrol Engine, (Morse test)
 - (d) Two stroke Petrol Engine
 - (e) Variable Compression Ratio I.C. Engine.

21 Hours

Scheme for Examination:

Total		50 Marks
Viva-Voce	-	10 Marks
One Question from Part B	-	25 Marks (05 Writeup+20)
One Question from Part A	-	15 Marks (05 Writeup+10)
COMPUTER INTEGRATED MANUFACTURING

Subject Code	: 10ME61	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT - 1

Computer Integrated Manufacturing Systems: Introduction, Automation definition, Types of automation, CIM, processing in manufacturing, Production concepts, Mathematical Models-Manufacturing lead time, production rate, components of operation time, capacity, Utilization and availability, Work-in-process, WIP ratio, TIP ratio, Problems using mathematical model equations.

8 Hours

UNIT - 2

High Volume Production System: Introduction Automated flow linesymbols, objectives, Work part transport-continuous, Intermittent, synchronous, Pallet fixtures, Transfer Mechanism-Linear-Walking beam,. roller chain drive, Rotary-rack and pinion, Rachet & Pawl, Geneva wheel, Buffer storage, control functions-sequence, safety, Quality, Automation for machining operation.

6 Hours

UNIT - 3

Analysis Of Automated Flow Line & Line Balancing: General terminology and analysis, Analysis of Tranfer Line without storage upper bound approach, lower bound approach and problems, Analysis of Transfer lines with storage buffer, Effect of storage, buffer capacity with simple problem, Partial automation-with numerical problems, flow lines with more than two stages, Manual Assembly lines, line balancing problem.

6 Hours

Minimum Rational Work Element: Work station process time, Cycle time, precedence constraints. Precedence diagram, Balance delay methods of line balancing-largest Candidate rule, Kilbridge and Westers method, Ranked positional weight method, Numerical problems covering all above methods and computerized line balancing.

6 Hours

PART-B

UNIT - 5

Automated Assembly Systems: Design for automated assembly systems, types of automated assembly system, Parts feeding devices-elements of parts delivery system-hopper, part feeder, Selectors, feed back, escapement and placement analysis of Multistation Assembly Machine analysis of single station assembly. Automated Guided Vehicle System: Introduction, Vehicle guidance and routing, System management, Quantitative analysis of AGV's with numerical problems and application.

8 Hours

UNIT - 6

Computerized Manufacturing Planning System: Introduction, Computer Aided Process Planning, Retrieval types of process planning, Generative type of process planning, Material requirement planning, Fundamental concepts of MRP inputs to MRP, Capacity planning.

6 Hours

UNIT - 7

Cnc Machining Centers: Introduction to CNC, elements of CNC, CNC machining centers, part programming, fundamental steps involved in development of part programming for milling and turning.

6 Hours

UNIT - 8

Robotics: Introduction to Robot configuration, Robot motion, programming of Robots end effectors, Robot sensors and Robot applications.

6 Hours

TEXT BOOKS:

- 2. Automation, Production system & Computer Integrated manufacturing, M. P. Groover Person India, 2007 2nd edition.
- 3. **Principles of Computer Integrated Manufacturing**, S. Kant Vajpayee, Prentice Hall India.

REFERENCE BOOKS:

- 1. **Computer Integrated Manufacturing**, J. A. Rehg & Henry. W. Kraebber.
- 2. CADICAM by Zeid, Tata McGraw Hill.

S

DESIGN OF MACHINE ELEMENTS – II

Total Hours	: 52	Exam Marks	100
Hours/Week	: 04	Exam Hours	03
Subject Code	: 10ME62	IA Marks	25

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Curved Beams: Stresses in curved beams of standard cross sections used in crane hook, punching presses & clamps, closed rings and links **Cylinders & Cylinder Heads**: Review of Lame's Equations; compound cylinders, stresses due to different types of fits, cylinder heads, flats.

08 Hours

UNIT - 2

Belts Ropes and Chains: Flat belts: Length & cross section, Selection of V-belts, ropes and chains for different applications.

05 Hours

UNIT - 3

Springs: Types of springs - stresses in Helical coil springs of circular and non-circular cross sections. Tension and compression springs, springs under fluctuating loads, Leaf Springs: Stresses in leaf springs.

Equalized stresses, Energy stored in springs, Torsion, Belleville and Rubber springs.

08 Hours

UNIT - 4

Spur & Helical Gears: Spur Gears: Definitions, stresses in gear tooth: Lewis equation and form factor, Design for strength, Dynamic load and wear load. Helical Gears: Definitions, formative number of teeth, Design based on strength, dynamic and wear loads.

07 Hours

PART – B

UNIT - 5

Bevel and Worm Gears: Bevel Gears: Definitions, formative number of teeth, Design based on strength, dynamic and wear loads. Worm Gears: Definitions, Design based on strength, dynamic, wear loads and efficiency of worm gear drives.

07 Hours

UNIT - 6

Clutches & Brakes: Design of Clutches: Single plate, multi plate and cone clutches. Design of Brakes: Block and Band brakes: Self locking of brakes: Heat generation in Brakes.

05 Hours

UNIT - 7

Lubrication and Bearings: Lubricants and their properties, Mechanisms of Lubrication bearing modulus, coefficient of friction, minimum oil film thickness, Heat Generated, Heat dissipated, Bearing Materials, Examples of journal bearing and thrust bearing design.

07 Hours

UNIT - 8

IC Engine Parts: Design of piston, connecting rod and crank shaft.

05 Hours

DESIGN DATA HANDBOOK:

- 1. **Design Data Hand Book**, K. Lingaiah, McGraw Hill, 2nd Ed.
- 2. **Data Hand Book,** K. Mahadevan and Balaveera Reddy, CBS Publication
- 3. **Design Data Hand Book,** H.G. Patil, I. K. International Publisher, 2010.

TEXT BOOKS:

- 1. Mechanical Engineering Design, Joseph E Shigley and Charles R. Mischke. McGraw Hill International edition, 6th Edition 2003.
- 2. Design of Machine Elements, V. B Bhandari, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2nd Edition 2007

REFERNCE BOOKS:

- 1. Machine Design, Robert L. Norton, Pearson Education Asia, 2001.
- Design of Machine Elements, M. F. Spotts, T. E. Shoup, L. E. Hornberger, S. R. Jayram and C. V. Venkatesh, Pearson Education, 2006.
- 3. Machine Design, Hall, Holowenko, Laughlin (Schaum's Outlines series) Adapted by S.K. Somani, Tata McGraw Hill Publishing Company Ltd., New Delhi, Special Indian Edition, 2008.
- 4. Machine Design, A CAD Approach: Andrew D DIMAROGONAS, John Wiley Sons, Inc, 2001.

HEAT AND MASS TRANSFER

Subject Code	: 10ME63	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Introductory Concepts And Definitions: Modes of heat transfer: Basic laws governing conduction, convection, and radiation heat transfer; Thermal conductivity; convective heat transfer coefficient; radiation heat transfer;

combined heat transfer mechanism. Boundary conditions of $1^{\,\rm st},\,2^{nd}$ and 3^{rd} kind

Conduction: Derivation of general three dimensional conduction equation in Cartesian coordinate, special cases, discussion on 3-D conduction in cylindrical and spherical coordinate systems (No derivation). One dimensional conduction equations in rectangular, cylindrical and spherical coordinates for plane and composite walls. Overall heat transfer coefficient. Thermal contact resistance.

07 Hours

UNIT - 2

Variable Thermal Conductivity: Derivation for heat flow and temperature distribution in plane wall. Critical thickness of insulation without heat generation, Thermal resistance concept & its importance. Heat transfer in extended surfaces of uniform cross-section without heat generation, Long fin, short fin with insulated tip and without insulated tip and fin connected between two heat sources. Fin efficiency and effectiveness. Numerical problems.

06 Hours

UNIT - 3

One-Dimensional Transient Conduction: Conduction in solids with negligible internal temperature gradient (Lumped system analysis), Use of Transient temperature charts (Heisler's charts) for transient conduction in slab, long cylinder and sphere; use of transient temperature charts for transient conduction in semi-infinite solids. Numerical Problems.

06 Hours

UNIT - 4

Concepts And Basic Relations In Boundary Layers: Flow over a body velocity boundary layer; critical Reynolds number; general expressions for drag coefficient and drag force; thermal boundary layer; general expression for local heat transfer coefficient; Average heat transfer coefficient; Nusselt number. Flow inside a duct- velocity boundary layer, hydrodynamic entrance length and hydro dynamically developed flow; flow through tubes (internal flow discussion only). Numericals based on empirical relation given in data handbook.

Free Or Natural Convection: Application of dimensional analysis for free convection- physical significance of Grashoff number; use of correlations of free convection in vertical, horizontal and inclined flat plates, vertical and horizontal cylinders and spheres, Numerical problems.

07 Hours

PART – B

UNIT - 5

Forced Convections: Applications of dimensional analysis for forced convection. Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. Use of various correlations for hydro dynamically and thermally developed flows inside a duct, use of correlations for flow over a flat plate, over a cylinder and sphere. Numerical problems.

06 Hours

UNIT - 6

Heat Exchangers: Classification of heat exchangers; overall heat transfer coefficient, fouling and fouling factor; LMTD, Effectiveness-NTU methods of analysis of heat exchangers. Numerical problems.

06 Hours

UNIT - 7

Condensation And Boiling: Types of condensation (discussion only) Nusselt's theory for laminar condensation on a vertical flat surface; use of correlations for condensation on vertical flat surfaces, horizontal tube and horizontal tube banks; Reynolds number for condensate flow; regimes of pool boiling, pool boiling correlations. Numerical problems. Mass transfer definition and terms used in mass transfer analysis, Ficks First law of diffusion (no numericals).

07 Hours

UNIT - 8

Radiation Heat Transfer: Thermal radiation; definitions of various terms used in radiation heat transfer; Stefan-Boltzman law, Kirchoff's law, Planck's law and Wein's displacement law. Radiation heat exchange between two parallel infinite black surfaces, between two parallel infinite gray surfaces; effect of radiation shield; intensity of radiation and solid angle;

Lambert's law; radiation heat exchange between two finite surfacesconfiguration factor or view factor. Numerical problems.

07 Hours

TEXT BOOKS:

- 1. Heat & Mass transfer, Tirumaleshwar, Pearson education 2006
- 2. Heat transfer-A basic approach, Ozisik, Tata McGraw Hill 2002

REFERENCE BOOKS:

- 1. **Heat transfer, a practical approach,** Yunus A- Cengel Tata Mc Graw Hill
- 2. Principles of heat transfer, Kreith Thomas Learning 2001
- 3. **Fundamentals of heat and mass transfer,** Frenk P. Incropera and David P. Dewitt, John Wiley and son's.
- 4. Heat transfer, P.K. Nag, Tata McGraw Hill 2002.

FINITE ELEMENT METHODS

Subject Code	: 10ME64	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT-1

Introduction: Equilibrium equations in elasticity subjected to body force, traction forces, and stress-strain relations for plane stress and plane strains. General description of Finite Element Method, Application and limitations. Types of elements based on geometry. Node numbering, Half band width.

07 Hours

UNIT-2

Basic Procedure: Euler - Lagrange equation for bar, beam (cantilever / simply supported fixed) Principle of virtual work, principle of minimum potential energy, Raleigh's Ritz method. Direct approach for stiffness matrix formulation of bar element. Galerkin's method.

07 Hours

Interpolation Models: Interpolation polynomials- Linear, quadratic and cubic. Simplex complex and multiplex elements. 2D PASCAL's triangle. CST elements-Shape functions and Nodal load vector, Strain displacement matrix and Jacobian for triangular and rectangular element.

07 Hours

UNIT-4

Solution of 1-D Bars: Solutions of bars and stepped bars for displacements, reactions and stresses by using penalty approach and elimination approach. Guass-elimination technique.

06 Hours

PART-B

UNIT-5

Higher Order Elements: Langrange's interpolation, Higher order one dimensional elements-Quadratic and cubic element and their shape functions. Shape function of 2-D quadrilateral element-linear, quadric element Isoparametric, Sub parametric and Super parametric elements. numerical integration : 1, 2 and 3 gauge point for 1D and 2D cases.

06 Hours

UNIT-6

Trusses: Stiffness matrix of Truss element. Numerical problems.

06 Hours

UNIT-7

Beams: Hermite shape functions for beam element, Derivation of stiffness matrix. Numerical problems of beams carrying concentrated, UDL and linearly varying loads.

06 Hours

UNIT-8

Heat Transfer: Steady state heat transfer, 1D heat conduction governing equations. Functional approach for heat conduction. Galerkin's approach for heat conduction. 1D heat transfer in thin fins.

07 Hours

TEXT BOOKS:

- 1. **Finite Elements in Engineering**, T.R.Chandrupatla, A.D Belegunde, 3rd Ed PHI.
- 2. **Finite Element Method in Engineering**, S.S. Rao, 4th Edition, Elsevier, 2006.

REFERENCE BOOKS:

- 1. **"Finite Element Methods for Engineers"** U.S. Dixit, Cengage Learning, 2009
- 2. Concepts and applications of Finite Element Analysis, R.D. Cook D.S Maltus, M.E Plesha, R.J.Witt, Wiley 4th Ed, 2009
- 3. **Finite Element Methods**, Daryl. L. Logon, Thomson Learning 3rd edition, 2001.
- 4. **Finite Element Method**, J.N.Reddy, McGraw -Hill International Edition.

MECHATRONICS & MICROPROCESSOR

Subject Code	: 10ME65	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Introduction to Mechatronic Systems: Measurement and control systems Their elements and functions, Microprocessor based controllers.

06 Hours

UNIT - 2

Review of Transducers and Sensors: Definition and classification of transducers. Definition and classification of sensors. Principle of working and applications of light sensors, proximity sensors and Hall effect sensors.

07 Hours

Electrical Actuation Systems: Electrical systems, Mechanical switches, solid-state switches, solenoids, DC & AC motors, Stepper motors and their merits and demerits.

06 Hours

UNIT - 4

Signal Conditioning: Introduction to signal conditioning. The operational amplifier, Protection, Filtering, Wheatstone bridge, Digital signals Multiplexers, Data acquisition, Introduction to Digital system. Processing Pulse-modulation.

07 Hours

PART – B

UNIT - 5

Introduction to Microprocessors: Evolution of Microprocessor, Organization of Microprocessors (Preliminary concepts), basic concepts of programming of microprocessors.

Review of concepts - Boolean algebra, Logic Gates and Gate Networks, Binary & Decimal number systems, memory representation of positive and negative integers, maximum and minimum integers. Conversion of real, numbers, floating point notation, representation of floating point numbers, accuracy and range in floating point representation, overflow and underflow, addition of floating point numbers, character representation.

07 Hours

UNIT - 6

Logic Function: Data word representation. Basic elements of control systems 8085A processor architecture terminology such as CPU, memory and address, ALU, assembler data registers, Fetch cycle, write cycle, state, bus, interrupts. Micro Controllers. Difference between microprocessor and micro controllers. Requirements for control and their implementation in microcontrollers. Classification of micro controllers.

UNIT - 7

07 Hours

Organization & Programming of Microprocessors: Introduction to organization of INTEL 8085-Data and Address buses, Instruction set of 8085, programming the 8085, assembly language programming.

06 Hours

Central Processing Unit of Microprocessors: Introduction, timing and control unit basic concepts, Instruction and data flow, system timing, examples of INTEL 8085 and INTEL 4004 register organization.

06 Hours

TEXT BOOKS:

- 1. **Mechatronics,** W.Bolton, Longman, 2Ed, Pearson Publications, 2007.
- 2. Microprocessor Architecture, Programming And Applications With 8085/8085A, R.S. Ganokar, Wiley Eastern.

REFERENCE BOOKS:

- 1. **Mechatronics and Microprocessors,** K.P.Ramchandran, G.K.Vijayraghavan, M.S.Balasundran, Wiley, 1st Ed, 2009
- 2. Mechatronics Principles, Concepts and applications Nitaigour and Premchand Mahilik Tata McGraw Hill- 2003.
- 3. Mechatronics Principles & applications, Godfrey C. Onwubolu, Elsevier..
- 4. **Introduction Mechatronics & Measurement systems**, David.G. Aliciatore & Michael. B. Bihistaned, Tata McGraw Hill, 2000.

HEAT & MASS TRANSFER LABORATORY

Subject Code	: 10MEL67	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

- 1. Determination of Thermal Conductivity of a Metal Rod.
- 2. Determination of Overall Heat Transfer Coefficient of a Composite wall.
- 3. Determination of Effectiveness on a Metallic fin.
- 4. Determination of Heat Transfer Coefficient in a free Convection on a vertical tube.

- 5. Determination of Heat Transfer Coefficient in a Forced Convention Flow through a Pipe.
- 6. Determination of Emissivity of a Surface.

21 Hours

PART - B

- 1. Determination of Steffan Boltzman Constant.
- 2. Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchangers
- 3. Experiments on Boiling of Liquid and Condensation of Vapour
- 4. Performance Test on a Vapour Compression Refrigeration.
- 5. Performance Test on a Vapour Compression Air Conditioner
- 6. Experiment on Transient Conduction Heat Transfer

21 Hours

Scheme for Examination:		
One Question from Part A	-	20 Marks (05 Write up +15)
One Question from Part B	-	20 Marks (05 Write up +15)
Viva-Voce	-	10 Marks
Total		50 Marks

COMPUTER AIDED MODELING AND ANALYSIS LABORATORY

Subject Code	: 10MEL68	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

Study of a FEA package and modeling stress analysis of

a. Bars of constant cross section area, tapered cross section area and stepped bar

6 Hours

b. Trusses – (Minimum 2 exercises)

3 Hours

c. Beams – Simply supported, cantilever, beams with UDL, beams with varying load etc (Minimum 6 exercises)

12 Hours

PART - B

a)	Stress an	nalysis of a rectangular plate with a circular hole
		3 Hours
b)	Therma	Analysis – 1D & 2D problem with conduction and
	convecti	on boundary conditions(Minimum 4 exercises)
		9 Hours
c)	Dynami	c Analysis
	1)	Fixed – fixed beam for natural frequency determination
	2)	Bar subjected to forcing function
	3)	Fixed - fixed beam subjected to forcing function

9 Hours

REFERENCE BOOKS:

- 1. **A first course in the Finite element method,** Daryl L Logan, Thomason, Third Edition
- 2. Fundaments of FEM, Hutton McGraw Hill, 2004
- 3. Finite Element Analysis, George R. Buchanan, Schaum Series

Scheme for Examination:

Total		50 Marks
Viva-Voce	-	10 Marks
One Question from Part B	-	20 Marks (05 Write up +15)
One Question from Part A	-	20 Marks (05 Write up +15)

HYDRAULICS AND PNEUMATICS

Subject Code	: 10ME73	IA Marks	25
Hours/Week	: 04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT -1

Introduction to Hydraulic Power: Definition of hydraulic system, advantages, limitations, applications, Pascal's law, structure of hydraulic control system, problems on Pascal's law.

The source of Hydraulic Power: Pumps Classification of pumps, Pumping theory of positive displacement pumps, construction and working of Gear pumps, Vane pumps, Piston pumps, fixed and variable displacement pumps, Pump performance characteristics, pump Selection factors, problems on pumps.

07 Hours

UNIT -2

Hydraulic Actuators and Motors: Classification cylinder and hydraulic motors, Linear Hydraulic Actuators [cylinders], single and double acting cylinder, Mechanics of Hydraulic Cylinder Loading, mounting arrangements, cushioning, special types of cylinders, problems on cylinders, construction and working of rotary actuators such as gear, vane, piston motors, Hydraulic Motor Theoretical Torque, Power and Flow Rate, Hydraulic Motor

Performance, problems, symbolic representation of hydraulic actuators (cylinders and motors).

06 Hours

UNIT - 3

Control Components in Hydraulic Systems: Classification of control valves, Directional Control Valves- Symbolic representation, constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, check valves, Pressure control valves - types, direct operated types and pilot operated types. Flow Control Valves - compensated and non-compensated FCV, needle valve, temperature compensated, pressure compensated, pressure and temperature compensated FCV, symbolic representation.

07 Hours

UNIT - 4

Hydraulic Circuit Design And Analysis: Control of Single and Double -Acting Hydraulic Cylinder, Regenerative circuit, Pump Unloading Circuit, Double Pump Hydraulic System, Counter balance Valve Application, Hydraulic Cylinder Sequencing Circuits, Automatic cylinder reciprocating system, Locked Cylinder using Pilot check Valve, Cylinder synchronizing circuit using different methods, factors affecting synchronization, Hydraulic circuit for force multiplication, Speed Control of Hydraulic Cylinder, Speed Control of Hydraulic Motors, Safety circuit, Accumulators, types, construction and applications with circuits.

06 Hours

PART - B

UNIT - 5

Maintenance of Hydraulic System: Hydraulic Oils - Desirable properties, general type of Fluids, Sealing Devices, Reservoir System, Filters and Strainers, wear of Moving Parts due to solid -particle Contamination, temperature control (heat exchangers), Pressure switches, trouble shooting.

06 Hours

Introduction to Pneumatic Control: Definition of pneumatic system, advantages, limitations, applications, Choice of working medium. Characteristic of compressed air. Structure of Pneumatic control System, fluid conditioners and FRL unit.

Pneumatic Actuators: Linear cylinder - Types, Conventional type of cylinder- working, End position cushioning, seals, mounting arrangements-Applications. Rod - Less cylinders types, working, advantages, Rotary cylinders- types construction and application, symbols.

07 Hours

UNIT-7

Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction, use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols. Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, speed control of cylinders - supply air throttling and Exhaust air throttling and Exhaust air throttling. **Signal Processing Elements:** Use of Logic gates - OR and AND gates in

pneumatic applications. Practical Examples involving the use of logic gates, Pressure dependant controls- types - construction - practical applications, Time dependent controls principle. Construction, practical applications.

07 Hours

UNIT-8

Multi- Cylinder Application: Coordinated and sequential motion control, Motion and control diagrams. Signal elimination methods, Cascading method- principle, Practical application examples (up to two cylinders) using cascading method (using reversing valves).

Electro- Pneumatic Control: Principles - signal input and out put, pilot assisted solenoid control of directional control valves, Use of relay and contactors. Control circuitry for simple signal cylinder application.

Compressed Air: Production of compressed air- Compressors Preparation of compressed air-Driers, Filters, Regulators, Lubricators, Distribution of compressed air Piping layout.

06 Hours

TEXT BOOKS:

- 1. **"Fluid Power with Applications"**, Anthony Esposito, Sixth edition, Pearson Education, Inc, 2000.
- 2. 'Pneumatics and Hydraulics', Andrew Parr, Jaico Publishing Co

REFERENCE BOOKS:

- 1. 'Oil Hydraulic systems', Principles and Maintenance S. R. Majurr, Tata McGraw Hill Publishing Company Ltd. - 2001
- 2. **'Industrial Hydraulics', Pippenger, Hicks''** McGraw Hill, New York
- 3. 'Hydraulic & Pneumatic Power for Production', Harry L. Stewart
- 4. **'Pneumatic Systems',** S. R. Majumdar, Tata McGraw Hill Publish 1995
- 5. Power Hydraulics' Michael J Pinches & John G Ashby, Prentice Hall

OPERATION RESEARCH

Subject Code	: 10ME74	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART- A

UNIT -1

Introduction: Evolution of OR, definition of OR, scope of OR, application areas of OR, steps (phases) in OR study, characteristics and limitations of OR, models used in OR, linear programming (LP) problem-formulation and solution by graphical method.

04 Hours

UNIT -2

Solution Of Linear Programming Problems: The simplex methodcanonical and standard form of an LP problem, slack, surplus and artificial variables, big M method and concept of duality, dual simplex method.

08 Hours

Transportation Problem: Formulation of transportation problem, types, initial basic feasible solution using different methods, optimal solution by MODI method, degeneracy in transportation problems, application of transportation problem concept for maximization cases. Assignment Problem-formulation, types, application to maximization cases and travelling salesman problem.

08 Hours

UNIT -4

Integer Programming: Pure and mixed integer programming problems, solution of Integer programming problems-Gomory's all integer cutting plane method and mixed integer method, branch and bound method, Zero-One programming.

06 Hours

PART-B

UNIT -5

Pert-CPM Techniques: Introduction, network construction - rules, Fulkerson's rule for numbering the events, AON and AOA diagrams; Critical path method to find the expected completion time of a project, floats; PERT for finding expected duration of an activity and project, determining the probability of completing a project, predicting the completion time of project; crashing of simple projects.

08 Hours

UNIT -6

Queuing Theory: Queuing systems and their characteristics, Pure-birth and Pure-death models (only equations), empirical queuing models - M/M/1 and M/M/C models and their steady state performance analysis.

06 Hours

UNIT -7

Game Theory: Formulation of games, types, solution of games with saddle point, graphical method of solving mixed strategy games, dominance rule for solving mixed strategy games.

06 Hours

Sequencing: Basic assumptions, sequencing 'n' jobs on single machine using priority rules, sequencing using Johnson's rule-'n' jobs on 2 machines, 'n' jobs on 3 machines, 'n' jobs on 'm' machines. Sequencing 2 jobs on 'm' machines using graphical method.

06 Hours

TEXT BOOKS:

- 1. **Operations Research**, P K Gupta and D S Hira, Chand Publications, New Delhi 2007
- 2. Operations Research, Taha H A, Pearson Education

REFERNCE BOOKS:

- 1. Operations Research, A P Verma, S K Kataria & Sons, 2008
- 2. Operations Research, Paneerselvan, PHI
- 3. **Operations Research,** A M Natarajan, P Balasubramani, Pearson Education, 2005
- 4. **Introduction to Operations Research,** Hillier and Liberman,8th Ed., McGraw Hill
- 5. **Operations Research** S.D. Sharma, Ledarnath Ramanath & Co, 2002

NON-CONVENTIONAL ENERGY SOURCES

Subject Code	: 10ME754	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART A

UNIT - 1

Introduction : Energy source, India's production and reserves of commercial energy sources, need for non-conventional energy sources, energy alternatives, solar, thermal, photovoltaic. Water power, wind biomass, ocean temperature difference, tidal and waves, geothermal, tarsands and oil shale, nuclear (Brief descriptions); advantages and disadvantages, comparison (Qualitative and Quantitative).

6 Hours

Solar Radiation : Extra-Terrestrial radiation, spectral distribution of extra terrestrial radiation, solar constant, solar radiation at the earth's surface, beam, diffuse and global radiation, solar radiation data.

Measurement of Solar Radiation : Pyrometer, shading ring pyrheliometer, sunshine recorder, schematic diagrams and principle of working.

Solar Radiation Geometry : Flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, zenith angle, solar altitude angle expression for the angle between the incident beam and the normal to a plane surface (No derivation) local apparent time. Apparent motion of sum, day length, numerical examples.

9 Hours

UNIT - 3

Radiation Flux on a Tilted Surface : Beam, diffuse and reflected radiation, expression for flux on a tilted surface (no derivations) numerical examples.

Solar Thermal Conversion : Collection and storage, thermal collection devices, liquid flat plate collectors, solar air heaters concentrating collectors (cylindrical, parabolic, paraboloid) (Quantitative analysis); sensible heat storage, latent heat storage, application of solar energy water heating. Space heating and cooling, active and passive systems, power generation, refrigeration. Distillation (Qualitative analysis) solar pond, principle of working, operational problems.

9 Hours

UNIT - 4

Performance Analysis of Liquid Flat Plate Collectors : General description, collector geometry, selective surface (qualitative discussion) basic energy-balance equation, stagnation temperature, transmissivity of the cover system, transmissivity – absorptivity product, numerical examples. The overall loss coefficient, correlation for the top loss coefficient, bottom and side loss coefficient, problems (all correlations to be provided). Temperature distribution between the collector tubes, collector heat removal factor, collector efficiency factor and collector flow factor, mean plate temperature, instantaneous efficiency (all expressions to be provided). Effect of various parameters on the collector performance; collector orientation, selective surface, fluid inlet temperature, number covers, dust.

4 Hours

UNIT – 5

Photovoltaic Conversion : Description, principle of working and characteristics, applications.

Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, elementary design principles; coefficient of performance of a wind mill rotor, aerodynamic considerations of wind mill design, numerical examples.

8 Hours

UNIT – 6

Tidal Power : Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations.

Ocean Thermal Energy Conversion : Principle of working, Rankine cycle, OTEC power stations in the world, problems associated with OTEC.

Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, geothermal plants in the world, problems associated with geothermal conversion, scope of geothermal energy.

7 Hours

UNIT - 7

Energy from Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation, bio gas production from organic wastes by anaerobic fermentation, description of bio-gas plants, transportation of bio-gas, problems involved with bio-gas production, application of bio-gas, application of bio-gas in engines, advantages.

4 Hours

UNIT – 8

Hydrogen Energy : Properties of Hydrogen with respected to its utilization as a renewable form of energy, sources of hydrogen, production of hydrogen, electrolysis of water, thermal decomposition of water, thermo chemical production bio-chemical production.

Storage & Transportation Methods : Gaseous, cryogenic and metal hydrides, application of hydrogen, domestic and industrial safe burning of hydrogen.

5 Hours

TEXT BOOKS:

- 1. Non-Conventional Energy Sources by *G.D. Rai K*, Khanna Publishers, 2003.
- 2. Solar energy, by *Subhas P Sukhatme* Tata McGraw Hill, 2nd Edition, 1996.

REFERENCE BOOKS:

- 1. Renewable Energy Sources and Conversion Technology by *N.K.Bansal, Manfred Kleeman & Mechael Meliss*, Tata McGraw Hill, 2001.
- 2. Renewable Energy Resources, *John W.Twidell Anthony D. Weir El*, BG 2001.
- 3. Solar Power Engineering, P.K.Nag, Tata McGraw Hill, 2003.

CONTROL ENGINEERING

Subject Code	: 10ME82	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction: Concept of automatic controls, Open loop and closed loop systems, Concepts of feedback, requirements of an ideal control system, Types of controllers- Proportional, Integral Proportional Integral, Proportional Integral Differential controllers.

06 Hours

UNIT-2

Mathematical Models: Transfer function models, models of mechanical systems, models of electrical circuits, DC and AC motors in control systems, models of thermal systems, models of hydraulic systems, pneumatic system, Analogous systems: Force voltage, Force current.

06 Hours

UNIT - 3

Block Diagrams and Signal Flow Graphs: Transfer Functions definition, function, block representation of systems elements, reduction of block diagrams, Signal flow graphs: Mason's gain formula.

Hours

Transient and Steady State Response Analysis: Introduction, first order and second order system response to step, ramp and impulse inputs, concepts of time constant and its importance in speed of response. System stability: Routh's-Hurwitz Criterion.

06 Hours

PART - B

UNIT - 5

Frequency Response Analysis: Polar plots, Nyquist stability criterion, Stability analysis, Relative stability concepts, Gain margin and phase margin, M&N circles.

06 Hours

UNIT - 6

Frequency Response Analysis Using Bode Plots: Bode attenuation diagrams, Stability analysis using Bode plots, Simplified Bode Diagrams.

07 Hours

UNIT - 7

Root Locus Plots: Definition of root loci, General rules for constructing root loci, Analysis using root locus plots.

06 Hours

UNIT 8

System Compensation and State Variable Characteristics of Linear Systems: Series and feedback compensation, Introduction to state concepts, state equation of linear continuous data system. Matrix representation of state equations, controllability and observability, Kalman and Gilberts test.

07 Hours

TEXT BOOKS :

- 1. **Modern Control Engineering,** Katsuhiko Ogatta, Pearson Education, 2004.
- 2. **Control Systems Principles and Design,** M.Gopal, 3rd Ed., TMH,2000.

REFERENCE BOOKS :

- 1. **Modern Control Systems**, Richard.C.Dorf and Robert.H.Bishop, Addison Wesley,1999
- 2. **System dynamics & control**, Eronini-Umez, Thomson Asia pte Ltd. singapore, 2002.
- 3. Feedback Control System, Schaum's series. 2001.

ELECTIVE-IV (GROUP - D)

TRIBOLOGY

Subject Code	: 10ME831	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction To Tribology: Properties of oils and equation of flow: Viscosity, Newton's Law of viscosity, Hagen-Poiseuille Law, Flow between parallel stationary planes, viscosity measuring apparatus. Lubrication principles, classification of lubricants.

06 Hours

UNIT - 2

Hydrodynamic Lubrication: Friction forces and power loss in lightly loaded bearing, Petroff's law, Tower's experiments, mechanism of pressure development in an oil film, Reynold's investigation and Reynold's equation in 2D.

06 Hours

UNIT - 3

Idealized Journal Bearing: Introduction to idealized journal bearing, load carrying capacity, condition for equilibrium, Sommerfeld's numbers and significance of it; Partial bearings, end leakages in journal bearing, numerical problems.

07 Hours

Slider / Pad Bearing With A Fixed And Pivoted Shoe: Pressure distribution, Load carrying capacity, coefficient of friction, frictional resistance in a pivoted shoe bearing, numerical examples.

07 Hours

PART – B

UNIT - 5

Oil Flow And Thermal Equilibrium Of Journal Bearing: Oil flow through bearings, self-contained journal bearings, bearings lubricated under pressure, thermal equilibrium of journal bearings.

06 Hours

UNIT - 6

Hydrostatic Lubrication: Introduction to hydrostatic lubrication, hydrostatic step bearings, load carrying capacity and oil flow through the hydrostatic step bearing.

06 Hours

UNIT - 7

Bearing Materials: Commonly used bearings materials, properties of typical bearing materials. Advantages and disadvantages of bearing materials.

07 Hours

UNIT - 8

Behavior Of Tribological Components: Selection, friction, Wear of ceramic materials, wear measurements, effects of speed, temperature and pressure. Tribological measures, Material selection, improved design, surface engineering

07 Hours

TEXT BOOKS:

- 1. **Fundamentals of Tribology**, Basu S K., Sengupta A N., Ahuja B. B., , PHI 2006
- 2. Introduction to Tribology Bearings, Mujumdar B. C., S. Chand company pvt. Ltd 2008.

REFERENEC BOOKS:

- 1. **Theory and Practice of Lubrication for Engineers,** Fuller, D., New York company 1998
- 2. **Principles and Applications of Tribology,** Moore, Pergamaon press 1998
- 3. **Tribology in Industries,** Srivastava S., S Chand and Company limited, Delhi 2002
- 4. Lubrication of bearings Theoretical Principles and Design, Redzimovskay E I., Oxford press company 2000

AUTOMOTIVE ENGINEERING

Subject Code	: 10ME844	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Engine Components And Cooling & Lubrication Systems: Spark Ignition (SI) & Compression Ignition (CI) engines, cylinder – arrangements and their relatives merits, Liners, Piston, connecting rod, crankshaft, valves, valve actuating mechanisms, valve and port timing diagrams, Types of combustion chambers for S.I.Engine and C.I.Engines, Compression ratio, methods of a Swirl generation, choice of materials for different engine components, engine positioning, cooling requirements, methods of cooling, thermostat valves, different lubrication arrangements.

07 Hours

UNIT - 2

Fuels, Fuel Supply Systems For Si And Ci Engines: Conventional fuels, alternative fuels, normal and abnormal combustion, cetane and octane numbers, Fuel mixture requirements for SI engines, types of carburetors, C.D.& C.C. carburetors, multi point and single point fuel injection systems, fuel transfer pumps, Fuel filters, fuel injection pumps and injectors.

07 Hours

UNIT - 3

Superchargers And Turbochargers: Naturally aspirated engines, Forced Induction, Types pf superchargers, Turbocharger construction and operation, Intercooler, Turbocharger lag.

06 Hours

UNIT - 4

Ignition Systems: Battery Ignition systems, magneto Ignition system, Transistor assist contacts. Electronic Ignition, Automatic Ignition advance systems.

06 Hours

Power Trains: General arrangement of clutch, Principle of friction clutches, Torque transmitted, Constructional details, Fluid flywheel, Single plate, multi-plate and centrifugal clutches.

Gear box: Necessity for gear ratios in transmission, synchromesh gear boxes, 3, 4 and 5 speed gear boxes. Free wheeling mechanism, planetary gears systems, over drives, fluid coupling and torque converters, Epicyclic gear box, principle of automatic transmission, calculation of gear ratios, Numerical calculations for torque transmission by clutches.

08 Hours

UNIT - 6

Drive To Wheels: Propeller shaft and universal joints, Hotchkiss and torque tube drives, differential, rear axle, different arrangements of fixing the wheels to rear axle, steering geometry, camber, king pin inclination, included angle, castor, toe in & toe out, condition for exact steering, steering gears, power steering, general arrangements of links and stub axle, over steer, under steer and neutral steer, numerical problems, types of chassis frames.

06 Hours

UNIT - 7

Suspension, Springs And Brakes: Requirements, Torsion bar suspension systems, leaf spring, coil spring, independent suspension for front wheel and rear wheel. Air suspension system.

Types of brakes, mechanical compressed air, vacuum and hydraulic braking systems, construction and working of master and wheel cylinder, brake shoe arrangements, Disk brakes, drum brakes, Antilock –Braking systems, purpose and operation of antilock-braking system, ABS Hydraulic Unit, Rear-wheel antilock & Numerical Problems

06 Hours

UNIT - 8

Automotive Emission Control Systems: Automotive emission controls, Controlling crankcase emissions, Controlling evaporative emissions, Cleaning the exhaust gas, Controlling the air-fuel mixture, Controlling the combustion process, Exhaust gas recirculation, Treating the exhaust gas, Airinjection system, Air-aspirator system, Catalytic converter, Emission standards- Euro I, II, III and IV norms, Bharat Stage II, III norms.

6 Hours

TEXT BOOKS:

- Automotive mechanics, William H Crouse & Donald L Anglin, 10th Edition Tata McGraw Hill Publishing Company Ltd., 2007
 Automotive Mechanics, S. Srinivasan, 2nd Ed., Tata McGraw Hill
- Automotive Mechanics, S. Srinivasan, 2nd Ed., Tata McGraw Hill 2003.

REFERENCE BOOKS:

- 1. **Automotive mechanics: Principles and Practices**, Joseph Heitner, D Van Nostrand Company, Inc
- 2. **Fundamentals of Automobile Engineering,** K.K.Ramalingam, Scitech Publications (India) Pvt. Ltd.
- Automobile Engineering, R. B. Gupta, Satya Prakashan, 4th edn. 1984.
- 4. Automobile engineering, Kirpal Singh. Vol I and II 2002.

MANAGEMENT & ORGANIZATIONAL BEHAVIOR

Subject Code	: 14MBA11	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To make students understand fundamental concepts and principles of management, including the basic roles, skills, and functions of management
- 2. To make students knowledgeable of historical development, theoretical aspects and practice application of managerialprocess
- 3. To understand the basic concepts and theories underlying individual behavior besides developing better insights into one's ownself
- 4. To make students aware of Individual behavior in groups, dynamics of groups and team building besides developing a better awareness of how they can be better facilitators for building effective teams as leadersthemselves

Part A- Principles of Management

Module1:

Introduction: Management: Introduction, definition of management, nature, purpose and functions, levels and types of managers, managerial roles, skills for managers, evolution of management thought, Fayol's fourteen principles of management and recent trends in management.

Module2:

Planning and Organizing:

Planning: Nature of planning, planning process, objectives, MBO, strategies, level of strategies, policies, methods and programs, planning premises, decision making, process of decision making, types of decisions, techniques in decision making.

Organizing: Organization structure, formal and informal organizations, principles of organizations-chain of command, span of control, delegation, decentralization, and empowerment. Functional, divisional, geographical, customer based and matrix organizations, tram based structures, virtual organizations, boundary lessorganizations.

Module3:

Controlling: Controlling, importance of controlling, controlling process, types of control, factors influencing control effectiveness.

RECOMMENDED BOOKS

- 1. Essentials of Management-Koontz, 8/e, McGraw Hill
- 2. Management: Text and Cases-VSP Rao, ExcelBOOKS
- 3. MGMT, An Innovative approach to teaching and learning Principles of Management, Chuck Williams, Cengage Publications, 2010
- 4. Principles and practices of Management, Kiran Nerkar, Vilas Chopde, Dreamtech Press,2011

(4 Hours)

(6 Hours)

(12 Hours)

5. Management Theory & practice – Chandan J. S, Vikas PublishingHouse.

6. Management Theory & Practice Text & Cases - Subba Rao P & HimaBindu, Himalaya Publication.

Part B- Organizational Behaviour

Module4:

Introduction: Organizational Behaviour: Introduction, definition, historical development, fundamental principles of OB, contributing disciplines, challenges and opportunities.

Module5:

Foundations of Individual Behaviour: Individual behaviour: Foundations of individual behaviour. Ability: Intellectual abilities, Physical ability, the role of disabilities.

Personality: Meaning, formation, determinants, traits of personality, big five and MBTI, personality attributes influencing OB.

Attitude: Formation, components of attitudes, relation between attitude and behaviour. Perception: Process of perception, factors influencing perception, link between perception and individual decision making.

Emotions: Affect, mood and emotion and their significance, basic emotions, emotional intelligence, self-awareness, self-management, social awareness, relationship management.

Module6:

Motivation and Leadership:

Motivation: Meaning, theories of motivation-needs theory, two factor theory, Theory X and Y, application of motivational theories.

Leadership: Meaning, styles of leadership, leadership theories, trait theory, behavioural theories, managerial grid, situational theories-Fiedler's model, SLT, transactional and transformation leadership.

Module7:

Group Behaviour: Definition, types, formation of groups, building effective teams. Conflict: Meaning, nature, types, process of conflict, conflict resolution.

Power and politics: Basis of power, effectiveness of power tactics. The ethics of behaving politically.

Practical Component

- 1. Studying organizational structures of any 10 companies and classifying them into different types of organizations which are studied in Module 2 and justifying why such structures are chosen by those organizations.
- 2. Preparing the leadership profiles of any 5 business leaders and studying their leadership qualities and behaviours with respects to the trait, behavioural and contingency theoriesstudied.
- 3. Identifying any five job profiles and listing the various types abilities required for those jobs and also the personality traits/attributes required for the jobsidentified.

Note: Faculty can either identify the organizations/ leaders/jobs or students can be allowed to choose the same.

RECOMMENDED BOOKS:

(4 Hours)

(10 Hours)

(4 hours)

(16 Hours)

- 1. Organizational behaviour, Stephen P Robbins, Timothy A. Judge, Neharika Vohra, Pearson, 14th Edition,2012.
- 2. Introduction to OrganisationalBehaviour Michael Butler, Jaico PublishingHouse,
- 3. Organization Behaviour Ashwathappa, Himalaya PublicationHouse
- 4. ORGB Nelson, Quick, Khanelwal, 2/e, Cengage Learning, 2012.
- 5. Organizational Behaviour Anada Das Gupta, Biztantra, 2011.
- 6. Organizational Behaviour: A modern approach Arun Kumar and Meenakshi, Vikas Publishing House, 2011.
- 7. Organizational Behaviour Rao V. S. P, Excel BOOKS, 2009.

REFERENCE BOOKS:

- 1. Organizational Behaviour Fred Luthans, 12/e, McGraw Hill International, 2011.
- 2. Management and Organizational Behaviour Laurie J Mullins, Pearsoneducation
- 3. Fundamentals of Organizational Behaviour Slocum/Hillriegel.CengeneLearning
- 4. Organizational Behaviour Aquinas P. G, ExcelBOOKS.

ACCOUNTING FOR MANAGERS

Objectives:

- 1. Explain fundamental accounting concepts, the elements of financial statements, and basic accountingvocabulary
- 2. Explain and use the accounting equation in basic financial analysis and explain how the equation is related to the financial statements.
- 3. Prepare basic entries for business transactions and present the data in an accurate and meaningfulmanner
- 4. Prepare basic financial statements and explain the articulation between the basic statements.
- 5. To analyze a company's financial statements and come to a reasoned conclusion about the financial situation of the company.

Module1:

Introduction to Accounting: Need and Types of Accounting, Users of Accounting, concepts and conventions of Accounting, Accounting Equation (problems on accounting equation).

Module2:

Preparation of books of Accounts: Journals, Subsidiary books, three column cash book, ledgers and trial balance. Depreciation- Straight line and Written down Value Methods.

Module3:

Preparation of Financial Statements: Preparation of final accounts of sole traders. Preparation of final accounts / statement of companies-both horizontal & vertical form of financial statements. (Basic problems on Final accounts of companies)

Module4:

Analysis of Financial Statements: Comparative, common size and trend analysis, Ratio Analysis, Preparation of financial statements using ratios, Preparation of Cash flow Statement (only indirect method).

Module5:

Accounting Standards and IFRS: Need for accounting standards. IFRS and proposed changes in Indian Accounting Standards.

Module6:

Emerging issues in Accounting: Corporate Governance and clause 49 of the listing agreement, Human Resource Accounting, Forensic Accounting, Window Dressing-Sustainability Reporting

(12 Hours)

(14 Hours)

(10 Hours)

(6 Hours)

(4 Hours)

(4 Hours)

Module7:

Fundamentals of Taxation: Overview of Heads of Income, deductions u/s 80C, Income Tax Rates and Returns – For Individuals only (Only Theory)

Practical Components:

- 1. Collecting Annual reports of the companies and analyzing the financial statements using different techniques and presenting the same in the lass.
- 2. Analyzing the companies' cash flow statements and presenting the same in the class.
- 3. Exposing the students to usage of accounting software's (PreferablyTally)
- 4. Filling up of ITRforms
- 5. Identify the sustainability report of a company and study thecontents.

RECOMMENDED BOOKS:

- 1. Narayanaswamy R Financial Accounting: A Managerial Perspective –, 5/e , PHI, 2014
- 2. Maheswari S. N, Maheswari Sharad K. Maheswari , A Text book of Accounting For Management , , 2/e, Vikas Publishing house (P)Ltd.
- 3. Tulsian P. C, Financial Accounting, 1/e, PearsonEducation.
- 4. Madegowda J, Accounting for managers, Himalaya PublishingHouse.
- 5. Gupta R. L & Radhaswamy M, Advanced Accountancy, Sultan ChandPublications
- 6. Jain S. P and Narang K L. Financial Accounting -, KalyaniPublishers
- 7. Business Taxation, Akhileshwar Pathak and SavanGodiawala, 2/e, McGraw Hill Education(India) Pvt. Ltd.2013

REFERENCE BOOKS:

- 1. Ambrish Gupta, Financial Accounting for Management: An Analytical Perspective, 4/e, PearsonEducation.
- 2. Ashish K Bhattacharya, Introduction to Financial Statement Analysis, ElsevierIndia
- 3. Raman B. S, Financial Accounting –, Vol I & Vol II, United Publishers, 1/e, 2009.
- 4. Gary A. Porter & Curtis L. Norton, Financial Accounting (IFRS update)–, 6/e, Cengage Learning.
- 5. Arora M. N., Accounting For Management, Himalaya PublishingHouse.
- 6. Bhattacharya Essentials of Financial Accounting (Based on IFRS) , 2/e, Prentice Hall India,
- 7. Comdex (Computer and Financial Accounting with Tally 9.0 Course Kit). Dream Tech.
- 8. Namrata Agrawal Comdex Tally 9, -DreamTech.
- 9. Jasmine Kaur, IFRS: A Practical approach, McGrawHill.

BUSINESS, GOVERNMENT AND SOCIETY

Subject Code	: 14MBA14	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To enable students to understand the challenges and complexities faced by businesses and their leaders as they endeavor maximize returns while responsibly managing their duties to stakeholders and society.
- 2. To help students to understand the rationale for government interventions in market systems.
- 3. To help students develop an understanding of Social Responsibility and make their own judgments as to the proper balance of attention to multiple bottomlines.
- 4. To help students develop the skills needed to work through ethicaldilemmas

Module1:

The Study of Business, Government and Society (BGS): Importance of BGS to Managers –Models of BGS relationships – Market Capitalism Model, Dominance Model, Countervailing Forces Model and Stakeholder Model – Global perspective – Historical Perspective.

Module2:

Corporate Governance: Introduction, Definition, Market model and control model, OECD on corporate governance, A historical perspective of corporate governance, Issues in corporate governance, relevance of corporate governance, need and importance of corporate governance, benefits of good corporate governance, the concept of corporate, the concept of governance, theoretical basis for corporate governance, obligation to society, obligation to investors, obligation to employees, obligation to customers, managerial obligation, Indian cases

Module3:

Public Policies: The role of public policies in governing business, Government and public policy, classification of public policy, areas of public policy, need for public policy in business and levels of public policy.

Module4:

Environmental concerns and corporations: History of environmentalism, environmental preservation-role of stakeholders, international issues, sustainable development, costs and benefits of environmental regulation, industrial pollution, role of corporate in environmental management, waste management and pollution control, key strategies for prevention of pollution, environmental audit, Laws governing environment.

Module5:

Business Ethics: Meaning of ethics, business ethics, relation between ethics and business ethics, evolution of business ethics, nature of business ethics, scope, need and purpose, importance, approaches to business ethics, sources of ethical knowledge for business roots of

(8 Hours)

(8 Hours)

(8 Hours)

(4 Hours)

(8 Hours)

unethicalbehaviour, ethical decision making, some unethical issues, benefits from managing ethics at workplace, ethical organizations

Module6:

Corporate Social Responsibility: Types and nature of social responsibilities, CSR principles and strategies, models of CSR, Best practices of CSR, Need of CSR, Arguments for and against CSR, CSR in Indian perspective, Indian examples.

Module7:

(14 Hours) Business Law: Law of contract - meaning of contract, agreement, essential elements of a valid contract. Law of agency- meaning, creation and termination of agency.Bailment and Pledge - meaning, rights and duties of bailor and bailee.

Negotiable Instruments Act 1881: Nature and Characteristics of Negotiable instruments, Kinds of Negotiable Instruments - Promissory Notes, Bills of Exchange and Cheques. Discharge and Dishonour of Negotiable Instruments.

Sale of Goods Act 1930: Definition of Sale, Sale v/s Agreement to Sell, Goods, Condition and Warranties, Express and Implied Condition, "Doctrine of Caveat Emptor", Right and duties of Unpaid Seller.

Meaning, scope and objectives of - Intellectual property law, law relating to patents, law relating to copyrights, law relating to trade mark.

Practical Components:

- 1. Students are expected to study any five CSR initiatives by Indian organizations and submit a report for thesame.
- 2. A group assignment on "The relationship between Business, Government and Society in Indian Context and relating the same with respect the models studied in Module1.
- 3. Case studies/Role plays related ethical issues in business with respect to Indian context.

RECOMMENDED BOOKS:

- 1. Business, Government, and Society: A Managerial Perspective, Text and Cases -John F. Steiner, 12/e, McGraw-Hill,2011.
- 2. Business and Government Francis Cherunilam, HPH.
- 3. Corporate Governance: principles, policies and practices Fernando A. C, 2/e, Pearson.2011.
- 4. Business Ethics and Corporate Governance Ghosh B. N, Tata McGraw-Hill, 2012.
- 5. Business Law for Managers, Goel P. K, Biztantra, 2012.
- 6. CorporateSocialResponsibility:AStudyofCSRPracticesinIndianIndustry,Baxi C. V & Rupamanjari Sinha Ray, Vikas Publishing House, 2012.

REFERENCE BOOKS:

- 1. Business and Society Lawrence and Weber, 12/e, Tata McGraw-Hill, 2010.
- 2. Business Ethics Bajaj P. S & Raj Agarwal, Biztantra, 2012.
- 3. Corporate Governance Keshoo Prasad, 2/e,PHI.
- 4. Corporate Governance, Ethics and social responsibility Balachandran V, &Chandrashekharan V, 2/e, PHI,2011.
- 5. Corporate Governance Machiraju H. R, HPH.
- 6. Business Ethics and Corporate Governance Prabakaran S, ExcelBOOKS.
- 7. Corporate Goverance Badi N. V, Vrinda Publications, 2012.
- 8. Civic Sense Prakash Pillappa, Excel BOOKS, 2012.

(6 Hours)
MARKETING MANAGEMENT

Subject Code	: 14MBA15	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To provide students an insight to basic concepts of marketingmanagement.
- 2. To help students understand various marketing tools/models for solving marketing problems in the changing businessenvironment.
- 3. To understand fundamental premise underlying market drivenstrategies.

Module1:

Introduction to Marketing: Introduction, Definitions of market and marketing, The Exchange Process, Elements of Marketing Concept, Functions of Marketing, Old Concept or Product- oriented Concept, New or Modern or Customer- oriented Concept, Marketing Environment, Techniques used in environment analysis, Characteristics (Micro and Macro), Marketing to the 21st century customer

Module2:

Consumer Behaviour Analysis: Meaning and Characteristics, Importance, Factors Influencing Consumer Behaviour, Consumer Purchase Decision Process, Buying Roles, Buying Motives, Buyer Behaviour Models

Module3:

Market Segmentation, Targeting & Positioning: Concept of Market Segmentation, Benefits, Requisites of Effective Segmentation, Bases for Segmenting Consumer Markets, Market Segmentation Strategies.

Targeting - Bases for identifying target Customer target Marketing strategies.

Positioning - Meaning, Product Differentiation Strategies, Tasks involved in Positioning.

Branding - Concept of Branding, Types, Brand Equity, Brandingstrategies.

Module4:

Managing the Product: Concept, product hierarchy, product line, product mix, product mix strategies, Product life cycle and its strategies, New Product Development, packing as a marketing tool, Role of labelling in packing.

Module-5

Pricing decisions: Significance of pricing, factor influencing pricing (Internal factor and External factor), objectives, Pricing Strategies-Value based, Cost based, Market based, Competitor based, Pricing Procedure.

Marketing Channels: Meaning, Purpose, Factors Affecting Channel Choice, Channel Design, Channel Management Decision, Channel Conflict, Designing a physical Distribution System, Network Marketing,

(8 hours)

(8hours)

(8 hours)

(8 hours)

(8 hours)

Module 6:

(10 hours)

Integrated Marketing communication: Meaning and Importance of Marketing Communication, Communication Objectives, Steps in Developing Effective Communication Advertising - Objectives, Ad Budget, AIDA Model, Advertising Copy Deciding Media, Evaluating Advertising Effectiveness,

Sales Promotion - Kinds of Promotion, Tools and Techniques of Sales Promotion, Push and Pull Strategies

Personnel Selling - Concept, Features, Functions, and Steps involved in personal Selling. Publicity - Meaning, Objectives, Types, Functions of Public relations,

Direct Marketing - Meaning, Features, Functions, Basic Concepts of E-Commerce, E-Business

Module7:

(6 hours)

Marketing Planning: Meaning, Concepts, Steps involved in Marketing planning, Marketing Audit- Meaning, Feature, Various components of Marketing Audit Marketing Strategy-Analysis of Industry and Competition, Strategic Planning Process,

Case Studies of Indian Context

Practical Components

- 1. Analyze Product Life Cycle of few Products like-Electronic goods, Computers.
- 2. Analyze Packaging strategies used by FMCGcompanies
- 3. Analyze Marketing strategies/planning used by automobile cosmetic and FMCG companies

RECOMMENDED BOOKS

- 1. MarketingManagement: A South Asian Perspective Kotler, Keller, Koshy &Jha, 13/e, Pearson Education,2012
- 2. Marketing Management, Ramaswamy V. S. & Namakumari S. 4/e, TMH, 2014
- 3. Fundamentals of Marketing Management, Etzel M.J BJ Walker & William J. Stanton, 14/e, MH,2012
- 4. Marketing Management Concepts & Cases-S.A.Sherlekar
- 5. Marketing Management, Tapan Panda, 2/e, ExcelPublication

REFERENCE BOOKS

- 1. Marketing Management, Arun Kumar & Meenakshi N, 2/e, Vikas, 2012
- 2. Applied Case Studies in Marketing Shajahan S, Primus BOOKS, 2011.
- 3. Marketing Management Karunakaran, HPH.
- 4. Marketing in India: Text and Cases- Neelamegham S, 4/e, Vikas.
- 5. Marketing- Lamb, Hair, Mc Danniel, 7/e, Cengage Learning2012.
- 6. Marketing: Marketing in the 21st Century Evans & Berman, 2/e, Cengage Learning, 2005.

Marketing: Planning, Implementation, and Control -William M. Pride, Ferrell O. C, Cengage Learning, 2010.

HUMAN RESOURCE MANAGEMENT

Subject Code: 14MBA21IA Marks: 50No. of Lecture Hours / Week: 04Exam Hours: 03Total Number of Lecture Hours: 56Exam Marks: 100Practical Component: 01 Hour / Week: 01: 01

OBJECTIVES:

- 1. To develop a meaningful understanding of HRM theory, functions and practices.
- 2. To apply HRM concepts and skills across various types of organizations.

Module1:

Human Resource Management:

Introduction, meaning, nature, scope of HRM.Importance and Evolution of the concept of HRM.Major functions of HRM, Principles of HRM, Organization of Personnel department, Role of HR Manager. HRM's evolving role in the 21st century.

Module2:

Job Analysis: Meaning, process of Job Analysis, methods of collecting job analysis data, Job Description and Job Specification, Role Analysis.

Human Resource Planning: Objectives, Importance and process of Human Resource Planning, Effective HRP.

Module3:

Recruitment: Definition, Constraints and Challenges, Sources and Methods of Recruitment, New Approaches to recruitment.

Selection: Definition and Process of Selection.

Placement: Meaning, Induction/Orientation, Internal Mobility, Transfer, Promotion, Demotion and Employee Separation.

Module4:

Training and development: Training v/s development, Training v/s Education, Systematic Approach to Training, Training Methods, Executive Development, Methods and Development of Management Development, Career and SuccessionPlanning.

Module5:

Performance Appraisal: Concept of Performance Appraisal, the Performance Appraisal Process, Methods of Performance Appraisal, Essential Characteristic of an Effective Appraisal System.

Compensation: Objectives of Compensation Planning, Job Evaluation, Compensation Pay Structure in India, Wage and Salary Administration, Factors Influencing Compensation Levels, Executive Compensation.

(8 hours)

(8 hours)

(8 hours)

(8 hours)

(8 hours)

Module6:

Employee Welfare: Introduction, Types of Welfare Facilities and Statutory Provisions. **Employee Grievances**: Employee Grievance procedure, Grievances Management in Indian Industry.

Discipline: Meaning, approaches to discipline, essential of a good disciplinary system, managing difficult employees.

Module7:

(8 hours)

Industrial Relations: Overview of industrial relations and industrial conflict. **Industrial disputes**: preventive and settlement machinery, collective bargaining, industrial relations scenario: current issues and future challenges.

Practical Component:

- 1. Give a case and ask the students to prepare the recruitment advertisement for a newspaper.
- 2. Expose students to standard selection tests followed in varioussectors.
- 3. Exploring training and developmentpractices.
- 4. Exploring performance appraisal practices in varioussectors.
- 5. Exploring employee separation practices.
- 6. Give a job analysis case and ask the students to prepare job description and job specification.
- 7. Ask the students to prepare an appointment letter for the post of office manager of a company known toyou.

RECOMMENDED BOOKS:

- 1. Human Resource Management Rao V. S. P, Excel BOOKS, 2010
- 2. Human Resource Management Cynthia D. Fisher, 3/e, AIPD, Chennai.
- 3. Human Resources Management: A South Asian Perspective, Snell, Bohlander, & Vohra, Cengage Learning, 16th Rep., 2012.
- 4. Human Resource Management Lawrence S. Kleeman, Biztantra ,2012.
- 5. Human Resource Management Aswathappa KHPH

REFERENCE BOOKS:

- 1. Human Resource Management John M. Ivancevich, 10/e, McGrawHill.
- 2. Human Resource Management in practice Srinivas R. Kandula, PHI,2009
- 3. Managing Human Resources Luis R Gomez-Mejia, David B. Balkin, Robert L. Cardy,6/e, PHI,2010.
- 4. P.Subba Rao, Human Resource Management & Industrial relations, Himalaya Publishing House, Mumbai.

(8 hours)

FINANCIAL MANAGEMENT

Subject Code	: 14MBA22	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To explain the basic functions and responsibilities of a financial department in a business/firm:
- 2. To elaborate the key decision areas in financial management-investment, financing, dividend and working capitalmanagement
- 3. To explain the various techniques of evaluation of investmentproposals
- 4. To discuss the various factors to be considered in designing the target capital structure.

Module1:

Financial management – Introduction to financial management, objectives of financial management - profit maximization and wealth maximization. Changing role of finance managers. Interface of Financial Management with other functional areas.

Indian financial system - Primary market, Secondary market - stocks & commodities market, Money market, Forex markets. (Theory Only)

Sources of Financing: Shares, Debentures, Term loans, Lease financing, Hybrid financing, Venture Capital, Angel investing and private equity, Warrants and convertibles (Theory Only)

Module2:

Time value of money –Future value of single cash flow & annuity, present value of single cash flow, annuity & perpetuity.Simple interest & Compound interest, Capital recovery & loan amortization.

Module3:

Cost of Capital Cost of capital - basic concepts. Cost of debenture capital, cost of preferential capital, cost of term loans, cost of equity capital (Dividend discounting and CAPM model). Cost of retained earnings. Determination of Weighted average cost of capital (WACC) and Marginal cost of capital.

Module4:

Investment decisions -- Investment evaluation techniques -- Net present value, Internal rate of return, Modified internal rate of return, Profitability index, Payback period, discounted payback period, accounting rate of return. Estimation of cash flow for new project, replacement projects.

Module5:

Working capital management – factors influencing working capital requirements. Current asset policy and current asset finance policy. Determination of operating cycle and cash cycle. Estimation of working capital requirements of a firm (Does not include Cash, Inventory & ReceivablesManagement)

(10 Hours)

(8 Hours)

(10 Hours)

(10 Hours)

(6 Hours)

20

Module6:

Capital structure and dividend decisions – Planning the capital structure. (No capital structure theories to be covered) Leverages – Determination of operating leverage, financial leverage and total leverage. Dividend policy – Factors affecting the dividend policy - dividend policies- stable dividend, stable payout. (No dividend theories to becovered).

Module7:

Emerging Issues in Financial management: Derivatives, Mergers and Acquisitions, Behavioural Finance, Financial Modelling, Financial engineering, risk management. (Theory Only).

RECOMMENDED BOOKS:

- 1. PrasannaChandra , Financial Management -, 8/e, TMH, 2011.
- 2. R K Sharma and Shashi K Gupta, Financial Management, Kalyani Publications-2012
- 3. Khan M. Y.& Jain P. K Financial Management, 6/e, TMH,2011.
- 4. Rajiv Srivastava and Anil Misra, Financial Management, Second edition,Oxford UniversityPress,2011
- 5. Vanhorne, James C, Financial Management & Policy-., 12/e, Pearson, 2002

REFERENCE BOOKS:

- 1. I M Pandey, Financial Management, Vikas Publications-2013
- 2. Brigham & Houston, Fundamentals of Financial Management, 10/e, Cengage Learning.
- 3. Damodaran, Corporate Finance, , 2/e, Wiley India (P) Ltd., 2004
- 4. Paresh P., Shah Financial Management, 2/e, Biztantra.
- 5. Sheeba Kapil, Fundamentals of FinancialManagement, Pearson, 2013

(8 Hours)

(4 Hours)

RESEARCH METHODS

SubjectCode	:14MBA23	IAMarks	50
No. of Lecture Hours/Week	: 04	Exam Hours	03
Total Number of Lecture Hours	: 56	Exam Marks	100
PracticalComponent	: 01 Hour /Week		

Objectives:

1. To provide an understanding on the basic concepts of researchmethods

2. To expose the students to the role that statistics plays in business decisions

Module1:

Business Research – Meaning, types, process of research- management problem, defining the research problem, formulating the research Hypothesis, developing the research proposals, research design formulation, sampling design, planning and collecting the data for research, data analysis and interpretation. Research Application in business decisions, Features of good research study.

Module2:

Types of Business Research Design: Exploratory and Conclusive Research Design

Exploratory Research: Meaning, purpose, methods –secondary resource analysis, comprehensive case methods, expert opinion survey, focus groupdiscussions.

Conclusive research Design - **Descriptive Research** - Meaning, Types – cross sectional studies and longitudinal studies. –

Experimental research design – Meaning and classification of experimental designs- Pre experimental design, Quasi-experimental design, True experimental design, statistical experimental design.

Observation Research – Meaning – Uses – Participation and Non-participation – Evaluation – Conducting an Observation study – Datacollection

Module3:

Sampling: Concepts- Types of Sampling - Probability Sampling – simple random sampling, systematic sampling, stratified random sampling, cluster sampling -Non Probability Sampling – convenience sampling- judgemental sampling, snowball sampling- quota sampling - Errors insampling.

Module4:

Data Collection: Primary and Secondary data

Primary data collection methods - Observations, survey, Interview and Questionnaire, Qualitative Techniques of data collection.

Questionnaire design – Meaning - process of designing questionnaire.

Secondary data -Sources – advantages and disadvantages

Measurement and Scaling Techniques: Basic measurement scales-Nominal scale, Ordinal scale, Interval scale, Ratio scale. Attitude measurement scale - Likert's Scale, Semantic Differential Scale, Thurstone scale, Multi-Dimensional Scaling.

(8 hours)

(6 hours)

(6 hours)

(6 hours)

Module5:

(8 hours)

Preparing the Data for Analysis: Editing, Coding, Classification, Tabulation, Validation Analysis and Interpretation

Module6:

(16 hours)

Hypothesis: Meaning, Types, characteristics, source, Formulation of Hypothesis, Errors in Hypothesis

Parametric and Non Parametric Test: T-Test, Z-Test, F-Test, U-Test, K-W Test (Theory Only)

Statistical Analysis: Bivarate Analysis (Chi-Square only), Multivariate Analysis (Theory Only)

ANOVA: One- Way and Two Way Classification. (Theory Only)

Module7:

(6 hours)

Report writing and presentation of results: Importance of report writing, types of research report, report structure, guidelines for effective documentation.

Practical Components:

- 1. Students are expected to write the research design on Exploratory and Descriptive Research.
- 2. Students are asked to prepare the questionnaire on brand awareness, effectiveness of training in public sector organization, Investors attitude towards Mutual funds in any financialinstitutions.
- 3. Students are asked to conduct Market survey to know the consumer perception towards anyFMCG.
- 4. Identify the problem and collect relevant literatures and data foranalysis
- 5. Data Interpretation and report writing: Short and Longreports.
- 6. Report presentation methods, ex: Power Point Presentation, etc

RECOMMENDED BOOKS

- 1. Research Methodology- C R Kothari, Vishwa Prakashan, 2002
- 2. Business Research Methods. Donald R. Cooper & Pamela s Schindler, TMH/9e/2007
- 3. Business Research Methods-SL Guptah and HeteshGuptha, McGraw hill -2012
- 4. Marketing Research- Naresh K Malhotrs- Pearson Education/PHI/5e/2007
- 5. Business Research Methodology J K Sachdeva –HPH-2e-2011

REFERENCE BOOKS

- 1. Research Methods- William M C Trochi,- Biztantra, 2/e,2007
- 2. Methodology of Research in social Sciences- O R Krishnaswami, M Ranganatham, HPH,2007
- 3. Research Methodology concepts and cases Deepak Chawla and NeenaSondhi Vikas Publication -2011
- 4. Research Methodology C Murthy- Vrinda Publication -2011

STRATEGIC MANAGEMENT

Subject Code	: 14MBA25	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To explain core concepts in strategic management and provide examples of their relevance and use by actual companies
- 2. To focus on what every student needs to know about formulating, implementing and executing business strategies in today's marketenvironments
- 3. To teach the subject using value-adding cases that features interesting products and companies, illustrate the important kinds of strategic challenges managers face, embrace valuable teaching points and spark student'sinterest.

ModuleI

Meaning and Nature of Strategic Management, its importance and relevance. Characteristics of Strategic Management. The Strategic Management Process. Relationship between a Company's Strategy and its Business Model.

ModuleII

(8 Hours)

(8 Hours)

Strategy Formulation – Developing Strategic Vision and Mission for a Company – Setting Objectives – Strategic Objectives and Financial Objectives – Balanced Scorecard.Company Goals and Company Philosophy.The hierarchy of Strategic Intent – Merging the Strategic Vision, Objectives and Strategy into a Strategic Plan.

ModuleIII

Analyzing a Company's External Environment – The Strategically relevant components of a Company's External Environment – Industry Analysis – Industry Analysis – Porter's dominant economic features – Competitive Environment Analysis – Porter's Five Forces model – Industry diving forces – Key Success Factors – concept and implementation.

ModuleIV

Analyzing a company's resources and competitive position – Analysis of a Company's present strategies – SWOT analysis – Value Chain Analysis – Benchmarking

Generic Competitive Strategies – Low cost provider Strategy – Differentiation Strategy – Best cost provider Strategy – Focused Strategy – Strategic Alliances and Collaborative Partnerships – Mergers and Acquisition Strategies – Outsourcing Strategies –International Business levelStrategies.

ModuleV

Business Planning in different environments – Entrepreneurial Level Business planning – Multi stage wealth creation model for entrepreneurs– Planning for large and diversified companies – brief overview of Innovation, integration, Diversification, Turnaround Strategies - GE nine cell planning grid and BCG matrix.

(7Hours)

(8Hours)

23

(7 Hours)

\ModuleVI

(10 Hours)

Strategy Implementation – Operationalizing strategy, Annual Objectives, Developing Functional Strategies, Developing and communicating concise policies. Institutionalizing the strategy.Strategy, Leadership and Culture.Ethical Process and Corporate SocialResponsibility.

ModuleVII

(8 Hours)

Strategic Control, guiding and evaluating strategies.Establishing Strategic Controls.Operational Control Systems. Monitoring performance and evaluating deviations, challenges of Strategy Implementation. Role of Corporate Governance

Practical Components:

- Business Plan: Students should be asked to prepare a Business Plan and present it at the end of the semester. This should include the following:
 - ExecutiveSummary
 - Overview of Business and industryanalysis
 - Description of recommended strategy and justification
 - Broad functional objectives and Key ResultAreas.
 - Spreadsheet with 5-year P&L, Balance Sheet, CashFlow projections, with detailed worksheets for the revenue and expensesforecasts.
- Analysing Mission and Vision statements of a few companies and comparingthem
- ApplyingMichaelPorter'smodeltoanindustry(Retail,Telecom, Infrastructure, FMCG, Insurance, Banking etc
 - Pick a successful growing company. Do a web-search of all news related to that company over a one-year period. Analyse the news items to understand and write down the company's strategy and executionefficiency.
- Pick a company that has performed very badly compared to its competitors. Collect information on why the company failed. What were the issues in strategy and execution that were responsible for the company's failure in the market.Analyse the internal and external factors
- oMap out GE 9-cell matrix and BCG matrix for some companies and comparethem
- · Conduct SWOT analysis of your institution and validate it by discussing withfaculty
- · Conduct SWOT analysis of companies around your campus by talking to them

RECOMMENDED BOOKS:

- 1. Crafting and Executing Strategy, Arthur A. Thompson Jr., AJ Strickland III, John E Gamble, 18/e, Tata McGraw Hill,2012.
- 2. Strategic Management, Alex Miller, Irwin McGrawHill
- 3. Strategic Management Analysis, Implementation, Control, Nag A, 1/e, Vikas, 2011.
- 4. Strategic Management An Integrated Approach, Charles W. L. Hill, Gareth R. Jones, CengageLearning.
- 5. Business Policy and Strategic Management, Subba Rao P,HPH.
- 6. Strategic Management, Kachru U, Excel BOOKS,2009.

REFERENCE BOOKS:

- 1. Strategic Management: Concepts and Cases, David R, 13/e, PHI.
- 2. Strategic Management: Building and Sustaining Competitive Advantage, Robert A. Pitts & David Lei, 4/e, CengageLearning.
- 3. Competitive Advantage, Michael E Porter, Free PressNY
- 4. Essentials of Strategic Management, Hunger, J. David, 5/e, Pearson.
- 5. Strategic Management, SarojDatta, jaico Publishing House, 2011.
- 6. Business Environment for Strategic Management, Ashwathappa, HPH.
- 7. Contemporary Strategic Management, Grant, 6/e, 2012, WileyIndia.
- 8. Strategic Management-The Indian Context, R. Srinivasan, PHI

and

CONSUMER BEHAVIOUR

Subject Code	: 14MBA MM301	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To understand the concept of consumer behavior, decision making by consumers, behavior variables and influences on consumerbehavior.
- 2. To comprehend the social and cultural dimensions of consumer behavior, factors impacting attitudes and behavior.
- 3. To arm the budding marketers with an insight of the psychological and behavioral concepts of consumers thus enabling them to achieve their objectives and excel.

Module1:

Introduction to the study of Consumer Behaviour: Meaning & Definition of CB, Difference between consumer & Customer, Nature & characteristics of Indian Consumers, Consumer Movement in India, Rights & Responsibilities of consumers in India, Benefits of consumerism.

Module2:

Role of Research in understanding consumer behaviour: Consumer Research: Consumer Research Paradigms (Qualitative & Quantitative Research Methods) Developing research objectives, collecting secondary data, designing primary research, data analysis and reporting research findings.

Models of Consumer Behaviour: Input-Process-Output Model, *Nicosia Model, Howard Sheth Model*, Engel-Kollat-Blackwell *Models* of Consumer Behaviour, Internal Influences: Motivation, Personality, Perception, Learning, Attitude, Communications, External Influences: Social Class, Culture, REFERENCE Groups, Family members.

Levels of Consumer Decision Making – Consumer Buying Decision Process, Complex Decision Making or Extensive Problem Solving Model, Low Involvement Decision Making or Limited Problem Solving Model, Routinised Response Behaviour, Four views of consumer decision making. On-line Decision Making: Meaning &Process/Stages

Situational Influences- Nature of Situational Influence (The communication Situation, The Purchase Situation, The usage situation, The disposition situation) Situational Characteristics and consumption behaviour (Physical features, Social Surroundings, Temporal Perspectives, Task Definition, Antecedent States.)

Module3:

Individual Influences on Consumer Behaviour and CRM: Part 1

A) Motivation: Basics of Motivation, Needs, Goals, Positive & Negative Motivation, Rational Vs Emotional motives, Motivation Process, Arousal of motives, Selection of goals.

Motivation Theories and Marketing Strategy - Maslow's Hierarchy of Needs, McGuire's Psychological Motives (Cognitive Preservation Motives, Cognitive Growth Motives, Affective Preservation Motives, Affective Growth Motives).

B) Personality: Basics of Personality, Theories of Personality and Marketing Strategy(Freudian Theory, Neo-Freudian Theory, Trait Theory), Applications of Personality concepts in Marketing, Personality and understanding consumer diversity(Consumer Innovativeness and related personality traits, Cognitive personality factors, Consumer Materialism, Consumer Ethnocentrisms), Brand Personality (Brand Personification, Gender,

(8 Hours)

(4 Hours)

(10 Hours)

Geography, Colour), Self and Self-Image (One or Multiple selves, The extended self, Altering theself).

C) Perception: Basics of Perception & Marketing implications, Elements of Perception(Sensation, Absolute Threshold, Differential Threshold, Subliminal Perception), Dynamics of Perception (Perceptual Selection, Perceptual Interpretation, Perceptual Organization ,perceived price, perceived quality, price/quality relationship, Perceived Risk, Types of risk, How consumers' handle risk.

Customer RelationshipManagement

Meaning & Significance of CRM, Types of CRM (Operational, Collaborative, Analytical), Strategies for building relationship marketing, e-CRM, Meaning, Importance of e-CRM, Difference Between CRM &e-CRM

Module4:

Individual Influences on Consumer Behaviour: Part 2

A) Learning: Elements of Consumer Learning, Motivation, Cues, Response, Reinforcement, Marketing Applications of Behavioural Learning Theories, Classical Conditioning Pavlovian Model, Neo-Pavlovian Model), Instrumental Conditioning, Elaboration LikelihoodModel.

B) Attitude: Basics of attitude, the nature of attitude, Models of Attitude and Marketing Implication, (Tri-component Model of attitude, Multi attribute attitudemodels.

C) Persuasive Communication: Communications strategy, Target Audience, Media Strategy, Message strategies, Message structure and presentation.

Module5:

External Influences on Consumer Behaviour: Part 1

A) Social Class: Social Class Basics, What is Social Class? (Social class & Social status, the dynamics of status consumption, Features of Social Class, Five Social-Class Categories in India

B) Culture and Subculture - Major Focus on IndianPerspective

Culture: Basics, Meaning, Characteristics, Factors affecting culture, Role of customs, values and beliefs in Consumer Behaviour.

Subculture: Meaning, Subculture division and consumption pattern in India,

Types of subcultures (Nationality subcultures, Religious subcultures, Geographic and regional subcultures, racial subcultures, age subcultures, sex as asubculture)

Cross-cultural consumer analysis: Similarities and differences among people, the growing global middle class; Acculturation is a needed marketing viewpoint, applying research techniques Cross-cultural marketing strategy: Cross-cultural marketing problems in India, Strategies to overcome cross-cultural problems.

Module6:

External Influences on Consumer Behaviour: Part 2

Groups: Meaning and Nature of Groups, Types

(07 Hours)

(08 Hours)

(07 Hours)

Family: The changing structure of family, Family decision making and consumption related roles, Key family consumption roles, Dynamics of husband-wife decision making, The expanding role of children in family decision making, The family life cycle & marketing strategy, Traditional family life cycle & marketing implications, Reference Groups: Understanding the power & benefits of reference groups, A broadened perspective on reference groups, Factors that affect reference group influence, Types of reference groups, Friendship groups, Shopping groups, Work groups, Virtual groups, Consumer-action groups, reference group appeals, Celebrities.

Module7:

Consumer Influence and Diffusion of Innovations

Opinion Leadership: Dynamics of opinion leadership process, Measurement of opinion leadership, Market Mavens, Opinion Leadership & Marketing Strategy, Creation of Opinion Leaders

Diffusion of Innovations: Diffusion Process (Innovation, Communication channels, Social System, Time) Adoption Process: Stages, categories of adopters

Post Purchase Processes: Post Purchase Processes, Customer Satisfaction, and customer commitment: Post purchase dissonance, Product use and non use, Disposition, Product disposition.

Case studies in Indiancontextonly

(04 Hours)

(08 Hours)

PracticalComponent:

- 1. Students can go to malls and unorganized retail outlets and observe the behavior of consumers of different demographic segments while buying different category of goods. Come back to class and present the findings / observations followed with a groupdiscussion.
- 2. Students can prepare a questionnaire and do a survey on consumer buying behavior and present the findings in the lass.
- 3. Find three advertisements that appeal to the need for power, affiliation and achievement and discuss their effectiveness. Rewrite these for persons in different levels of Maslow'sHierarchy?
- 4. Meet your friends and conduct a survey to find what are the important factors in their purchase of mobiles, shoes, bags etc. There are now plenty of advertisements regarding most products how do they deal with this information verload?

RECOMMENDED BOOKS:

- 1. Consumer Behavior Leon Schiff man, LesslieKanuk, 10/e, Pearson, 2010.
- 2. Consumer Behavior: Building Marketing Strategy Del I. Hawkins, & Others, 11/e TMH.
- 3. Consumer behavior Jay D. Lindquist, Joseph Sirgy, 1/e, CengageLearning.
- 4. Consumer behavior David L. Louden, Della Bitta, 4/e, McGrawHill.
- 5. Consumer Behavior Raju M. S & Dominique Xardel, Vikas PublishingHouse.

REFERENCE BOOKS:

- 1. Consumer Behavior Henry Asseal, CenageLearning.
- 2. Consumer Behavior in Indian Perspective Suja Nair, HimalayaPublications
- 3. Customer Behavior: A Managerial Perspective Sheth, Mittal, CengageLearning.
- 4. Consumer Behavior- Satish K. Batra& S H HKazmi, ExcelBOOKS.
- 5. CRM Alok Kumar, Chhabi Sinha, 7/e,Biztantra.
- 6. Customer Relationship Management Peru Ahamed&Sagadevan, VikasPublishing.
- 7. Consumer Behavior Kumar Rajeev, HimalayaPublisher.

MARKETING RESEARCH

Subject Code	: 14MBA MM303	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives of the course:

- 1. To provide an understanding of the basics of marketing research and to build a research vocabulary, key terms and ideas.
- 2. To provide a balance of the theoretical and practical aspects of marketing research and encourage the students to take up analytical and critical thinking through research.
- 3. To highlight importance of research inmanagement

Module1:

Introduction: Meaning, scope and importance of marketing research; own vs. agency marketing research; marketing information system; meaning, need and components, marketing information system and marketing research; marketing research process-I an overview; problem definition, formulation and preparation of research proposal.

Module2:

Primary Data Collection: Primary data collection methods; mail survey, telephone survey and interviews and their evaluation; observations; experimental methods, questionnaire preparation and administering, organizing fieldwork for collecting data.

Module3:

Research Design and Information Sources: Meaning and scope of research design; types of research designs, exploratory, descriptive and conclusive; sources and uses of secondary data, collection of secondary data.

Module4:

Sample Design and Sampling: Determining universe, sampling frame and sampling unit; determining sampling method; non probability and probability methods; sample size determination; sampling errors vs. non-sampling errors.

Sampling: Steps & Types: Probability / non probability (simple, systematize; stratified proportionate, disproportionate), Sample size determination

Module5:

Questionnaire design:-Steps in Q.D. with examples for each step. Rating Scales, Juster, Likert, Semantic Differential, Thurston, Attitude Scales, Scales for illiterate respondents

Module6:

Measurement Techniques: Nominal Scale, Ordinal Scale, Interval Scale, Ratio Scale; Scale Types: Comparative Scaling, Non-comparative Scaling; Attitude Measurement, Self-Reporting Methods, Methods for Rating Attributes, Data Analysis, Customer Research, Advertising Research, Product Research, Distribution Research, Sales Research, Marketing Environment Research, Internet Marketing Research, and International Marketing Research

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

Module7:

Research trends, Behavioural Science Based Approach, Economic and Competitive Pressures, Consumer Insight Groups, Quantifying Emotions, Impact of the Social Media, Doit-Yourself (DIY) Research; Research ethics, typical research errors, Research andculture;

Practical Components:

- 1. Choose 5 successful products or services and identify the insight behind them through a fieldsurvey.
- 2. Do a comprehensive essay on the difference between consumer vs. trade vs. competition insights & how best to exploit hem.
- 3. Take 5 recent digital innovations e.g. twitter or face book and identify the insights. Locate 5 non-users of search or mail and Interview their reasons.
- 4. Choose 5 recent successful campaigns and identify their insights through consumer interviews. Present your findings to the class
- 5. Choose 3 successful movies e.g. Dabang&Zindaginamilegi& My name is Khan--- and interview consumers about the reasons for their success. Similarly repeat this with 3 recent expensive flop movies and Present your findings to theclass

RECOMMENDED BOOKS:

- 1. Marketing Research contemporary approach- Naraynreddy and GVRK Acharyalu Excelpublications
- 2. Marketing Research and consumer Behavior Saravanavel et.al Vikas publishinghouse
- 3. Essentials of Marketing Research 4/e, Tony Proctor, PHI,2005
- 4. Essentials of Marketing Research William G. Zikmund et.al. 4/e, Cengage Learning, 2010.
- 5. Research Skills for Students: Transferable and Learning Skills Allison, et.al.1996.
- 6. Market Research Robin Birn, Patrick Forsyth, John Wiley and Sons Inc.2002.

REFERENCE BOOKS:

- 1. Market Research: a guide to planning, methodology & evaluation Paul Hague, Kogan Page,1996.
- 2. Market Research Best Practice. 30 Visions of the Future Peter Mouncey, et.al, 2007.

INDUSTRIAL RELATIONS AND LEGISLATIONS

Subject Code	: 14MBA HR301	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To enable students to grasp and apply the principles of IR and develop an awareness of the significance of industrial peace.
- 2. To provide a conceptual basis of IndustrialRelations.
- 3. To give an understanding of the components and meaning of sustaining Industrial peace anchored on harmonious Employee-Managementrelations.

PART A: INDUSTRIAL RELATIONS MODULE1: Introduction:

Background of Industrial Relations – Definition, scope, objectives, factors affecting IR, participants of IR, importance of IR. Approaches to Industrial relations, system of IR in India – Historical perspective &post independence period, Code of Discipline and historical initiatives for harmonious IR, Government policies relating to labor, ILO and its influence on Legal enactments inIndia.

MODULE2:

Collective Bargaining & Negotiation:

Collective Bargaining: Definition, Meaning, Nature, essential conditions for the success of collective bargaining, functions of collective bargaining, importance of Collective Bargaining, collective bargaining process, prerequisites for collective bargaining, implementation and administration of agreements.

Negotiations-Types of Negotiations-Problem solving attitude, Techniques of negotiation, negotiation process, essential skills for negotiation, Workers Participation in Management

Module3:

Trade Union

Trade Unions: Meaning, trade union movement in India, The role of the Trade Unions in Modern Industrial Society of India, functions of trade unions, objectives of important trade unions, The Trade Union Act, 1926, procedure for registration of Trade Union, Grounds for the withdrawal and cancellation of registration, union structure, Rights and responsibilities, Penalties for offences of trade unions, Difference between a registered and a recognised Trade Union, problems of trade unions, future trends of trade union movement inIndia.

Module4:

Grievance procedure and Discipline management:

Grievance - Meaning and forms, sources of grievance, approaches to grievance machinery, Grievance procedures, model grievance procedure.

(8 Hours)

(8 hours)

(8 Hours)

(8 Hours)

Discipline - Causes of Indiscipline - Maintenance of discipline. Principles of Natural Justice, Judicial approach to discipline, Domestic enquiries, Disciplinary procedures, approaches to manage discipline in Industry, Principles of Hot stove rule.

Module5:

Industrial Conflicts:

Industrial conflict – perspectives, Nature of conflicts and its manifestations causes and types of Industrial conflicts, prevention of Industrial conflicts, industrial disputes act of 1947, settlement Machinery of Industrial disputes.

Paradigm shift from industrial relations to employee relations – shift in focus, difference, employee relations management at work, culture and employee relations, future of employee relations.

RECOMMENDED BOOKS:

- 1. Employee Relations Management P N Singh, Singh P. N., PearsonPublications
- 2. Dynamics of Industrial Relations Mamoria&Mamoria,
- 3. Human Resource Management, Principles & Practice Aquinas, VikasPublication
- 4. Personnel Management & Industrial Relations Nair
- 5. Essentials of Human Resource Management and Industrial Relations Subba Rao 3rd Revisededition
- 6. Malhotra, O.P. : The Law of IndustrialDisputes
- 7. Arya, V.P. : A Guide to Settlement of IndustrialDisputes
- 8. Aggarwal, Dr. Arjun P. and Larki, H. : Gherao and Industrial Relations, Trade Unionism in the NewSociety
- 9. Aggarwal, S.L. : Labour Relations Law inIndia

PART B: INDUSTRIAL LEGISLATIONS (16 hours)

- Factories Act1948,
- Industrial Employment (Standing orders) Act,1946
- Employees' State Insurance (ESI) Act,1948,
- Maternity benefit Act, 1961
- Workmen's compensation Act,1923
- Payment of Gratuity Act1972,
- Employees' Provident Fund and Miscellaneous Provisions Act1952;
- Payment of Bonus Act, 1965.
- Payment of Wages Act,1936,
- Child Labour (Prohibition & Regulation) Act,1986

RECOMMENDED BOOKS:

- 1. Labor Laws for Managers, BD Singh, ExcelBOOKS
- 2. Industrial Relations and Labor laws, 5th Edition, SC Srivastava, VikasPublications
- 3. Elements of Mercantile Law N. DKapoor
- 4. Labor Industrial Laws Dr. V. G. Goswami , EighthEdition
- 5. P R N Sinha et al Industrial Relations, Trade Unions &Labour Legislation, Pearson Education
- 6. Bareacts

(8 Hours)

RECRUITMENT & SELECTION

SubjectCode	:14MBAHR302	IAMarks	50
No. of Lecture Hours/Week	: 04	Exam Hours	03
Total Number ofLectureHours	: 56	Exam Marks	100
PracticalComponent	: 01 Hour /Week		

Module1:

Job Analysis: Meaning, definition and purpose. Methods of job analysis: job analysis interviews, job analysis questionnaire, task analysis inventory, position analysis questionnaire, subject expert workshops, critical incident technique, Fleisclunann job analysis survey, functional job analysis, job element method, repertory grid, critical incident technique

Module2:

Hiring Process & Hiring decision: Nature of hiring: regular, temporary, full time, part time, apprentice, contractual, and outsourcing, Existing post or new post to be created, Need analysis, cost analysis and job analysis.

Module3:

Hiring internally: Meaning and definition of internal recruitment, Advantages and disadvantages in terms of cost, time, quality and suitability.

Sources of internal recruitment: - circulars, intranet advertisements, employee referrals, Appointment or promotion, Policy guidelines and union settlements.

Module4:

External Hiring: Meaning and definition of external recruitment.

Sources of recruitment:- advertisement, in newspaper, TV/Radio, Internet, search on the internet, wanted signboards, consultants, employment exchange, campus recruitment, employee referrals and unsolicited applications. Advantages and disadvantages of the above sources in terms of cost, time, convenience, reach of the targeted population, and quality of applicant pool.

Job advertisement: drafting, size and contents. Contents of public sector recruitment: single or multiple sources and choosing the best source

Module5:

(8 Hours) Screening the candidates: Application Forms: bio-data / resume / curriculum vitae and weighted application blanks: meaning definition, purpose, advantages and disadvantages taking a Behavioural approach to recruitment: spotting personality patterns, making basic assumptions, predicting the future, strategy Vs. Technique, Pinning down what is needed: targeted interviewing, focusing on behaviour, assessing how person performs, assuming they have been hired. - Identifying the ingredients of success: the winning candidate"s profile, challenges in the interview, the starting point, day to day execution, dealing with people, the inner person, additional characteristics. Studying the CV.

Module6:

Testing: Meaning, definition, purpose, advantages and disadvantages, Ability tests clerical ability test, mechanical ability test, mental ability test, physical ability test, personality assessment test, typing test, shorthand test, computer proficiency test

(10 Hours)

(8 Hours)

(6 Hours)

(7 Hours)

(9 Hours)

Interviewing: Planning the interview, Interview process - getting started, examining the 5 interview areas, examining the strengths & weaknesses, listening to what are being said, digging for Behavioural gold, probing for specifics, spotting patterns, using an interview checklist, Allowing candidates to ask questions at the end, explaining the procedure of selection and concluding with a happy note, making the decision. Interview in public sector undertaking, statutory requirements.

Module7:

(8 Hours)

Reference checking & Appointment orders: meaning, definition and purpose. Verification of character, criminal antecedents, previous work behavior and education qualifications. Verification of community certificates in public sector companies

Meaning, definition, and purpose.Statutory requirements (under the Shops and commercial establishments Act).Contents of appointment letter, hard copy (or soft copy), method of delivery and retrieving the acknowledgement copy.Medical Examination & acceptance of offer for joining.

Practical Component:

1. Students need to identify two jobs in the college and need to do job analysis for those positions using any of the job analysismethods.

2. In teams students can be asked to give presentations about various types of jobs (regular, temporary, full time, part time, apprentice, contractual, and outsourcing) in different industries along with its advantages and disadvantages

3. In Teams, select and analyze any two of the Job postings advertisements in Newspapers to know more about job description and job specification mentioned in each advertisement for everypost.

4.Obtain online access to the resume data base of Naukri.com or Monsterindia.com for a week give at least four Job Descriptions and specification to each student, to search and download from the data base at least five resumes for eachpositions.

5. Students can identify 4 or 5 jobs of their interest and can create Advertisements for the same imaging that they are Proprietors of the companies and hiring for these positions.

6. Debate on Advantages and disadvantages of hiring external and Internal for the selected jobs like Police Constable, Doctor, CEO, Mechanical Engineer, Professoretc.,

7. Role play : Students can do the role play for the entire process of hiring and selecting 3 or 4 selected roles in a specificindustry.

RECOMMENDED BOOKS:

- 1. Human Resource Selection by Robert D. Gatewood and Hubert S. Feild, South western Cengage Learning, Mason, Ohio2001
- 2. Staffing Organization, Herbert G. Heneman III, Timothy A. Judge, 5th Edition, McGraw HillInternational

REFERENCE BOOKS:

- 1. Employee Selection, Lilly M Berry, ThomsonPublications
- 2. Hiring & keeping the best people, HBSPress
- 3. Human Resource Planning, Dipak Kumar Bhattacharyya, 2nd edition, ExcelBOOKS.
- 4. High performance hiring by Robert w. Wendover, Crisp Publication, California, 1991.

PUBLIC RELATIONS

Subject Code	: 14MBA HR407	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objective:

To provide an understanding of the fundamentals tools of public relations practice and to provide a multidisciplinary understanding of the emerging trends in the field of public relations

Module1:

What is Public Relation? – Proactive and Reactive Approaches – Public Relations Process – Behavoiural Public Relations Model – Persuasion Model – Two way symmetrical Communications Model – When communications is not enough – 20 great truths about PublicRelations

Module2:

Theoretical basis for Public Relations – Theories of Relationships – Systems Theory – situational Theory – Theories of Persuasion and Social Influence – Social Exchange Theory – Diffusion Theory – Social Learning Theory – Elaborated Likelihood Theory - Theories of Mass communication – Uses and Gratification Theory – Agenda Setting Theory – Public Relations roles – Models of Public Relations – Approaches to Conflict Resolutions

Module3:

Employee communications – Role of employee communication – concept of Organizational culture – Establishing Communication Policy – Organizational change – Importance of employee communication – Special employee Communication Situations – Media of Employee communications – Objectives of Internal media – Starting internal media – controlling internal media- Occasional and Special media

Rules of Effective Employee Relations. Frontline supervisors as the key communicators Case: Investing in Employees Pays Off (CJSS)

Case: Southwest Airlines - Where Fun, LUV, and Profit Go Hand -in Hand (CJSS)

Case: Employee Retention: It is the employer who is on probation (LLHT)

Case: Maintaining Employee Relationship in a Tragedy (LLHT)

Kodak Communicates One – on - One with All of its Employees (CJSS)

Module4:

Community Relations – Importance of Public Relations – Community Relations Process – Guidelines for Effective Relations Programs -Specific Functions of Public Relations – Criteria for Community relations Activities – Corporate Social Responsibility & Philanthropy-Emerging Challenge of CommunityActivism

Case: Community Relationships Maintained During Hospital Closing (CJSS)

° (8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

Module5:

Media Relations – Media Relations –Role of Media in Public Relations – Social Media – working with the media –Media Relations Program Elements –Role of Technology in Public Relations Case: Fatal Tiger Attack at San Francisco Zoo(LLHT) Case: There's a Syringe in My Pepsi Can(CJSS)

Module6:

Issues in Public Relations – public relations challenges –Types of Issues - Target audiences-Public Service as Preventive Public Relations – Special Interests – Importance of Compromise – Issue Anticipation – Scenario Technique Case: Take your choice – Tobacco or Health (CJSS)

Module7:

Crisis Management – Understanding how people typically react to issues – Human Nature – Role of communications – Types of crises – News media influence - Fundamental guidelines Case: Bhopal – A Nightmare for Union Carbide (CJSS Case: Sir Ganga Ram Hospital – Disaster management Plan (IS))

Pedagogy: Lecture+ Case Studies + Seminars. Faculty should bring latest issues concerning public relations in class discussions.

Practical Component:

1. Related cases for each module to be discussed in the classes and presentation can be done for each case by group ofstudents.

2. Team of students can be made and asked to report the media personalities about the event held in the college. Different styles of reporting the same event can be discussed in the class with its possible reactions from themedia.

3. Collect the newspaper articles about various messages from organizations through spokespersons and analyze the effect of each type of delivery and impact on theaudience.

4. Conduct a CSR Programme for the college like Blood donation, Eye camps in association with Lions, Rotary clubs etc and gather the information's about various challenges these organizations face during such community orientedprogrammes.

RECOMMENDED BOOKS

- 1. Lattimore, Laskin, Heiman &Toth, "Public Relations The Profession and Practice", third edition, Tata McGraw Hill, 2012(LLHT)
- 2. Center, Jackson, Smith and Stansbury, "Public Relations Practices Managerial Case Studies and Problems", Seventh Edition, Prentice Hall of India,2008(CJSS)
- 3. Iqbal Sachdeva, "Public Relations Principles and Practices, Oxford University Press, 2009(IS)

(8 Hours)

(8 Hours)

WORKPLACE ETHICS AND VALUE SYSTEMS

Subject Code	: 14MBA HR408	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To make students understand the meaning of good ethics, doing things right and the obstacles to making good ethical decisions
- 2. To enable students to identify and critically assess the principles and values they personally embrace and use in addressing the ethical issues which arise in their workinglives.
- 3. To acquaint students with some of the major kinds of ethical problems encountered while performing work assignments and some possible ways of responding tothem.

Module1:

Workplace Ethics: Introduction, Needs, Principals, Development of Personal Ethics, Workplace Ethics for Employees-Ethical behaviour in workplace- Professionalism, Ethical violations by employees, Employee Attitude and Ethics, Employee Etiquettes. Benefits of ethics in Workplace- employee commitment, investor loyalty, customer satisfaction, profits

Module2:

Conducting Professionalism at Workplace: Unethical Conduct for employees and employers.Factors leading to Unethical Behaviours.Different unethical behaviours.Measures to control unethical behaviours. Rewarding ethicalbehaviour

Module3:

Business Ethics and Corporate Governance: Overview of Business Ethics, Corporate Governance, Ethical issues in human resource management- The principal of ethical hiring, Firing, worker safety, whistle blowing, Equality of opportunity, Discrimination, Ethics and remuneration, Ethics in retrenchment. Ethical Dilemmas at workplace, Ethical issues in global business, corporate responsibility of employers.

Module4:

Workplace Privacy & Ethics: Watching what you say and what you do in the workplace, Hardware, Software and Spyware, Plagiarism and Computer Crimes, Convenience and Death of Privacy, Defence of employee privacy rights.

Module5:

Teamwork in the Workplace & Ethics: Teams, Elements of team, Stages of team development, team meetings, team rules, and teams work and professional responsibility, rules of professional responsibility, ASME code of ethics.

Module6:

Managing Change in Workplace through Ethics: Introduction to Change Management, Models of change, the Ethics of Managing Change, the role of ethics and responsibilities in

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

(10 Hours)

leading innovation and change, ethics based model for change management, ethics and risks of change management

Module7:

(6 Hours)

Ethics, Discrimination and Harassment at Workplace: Discrimination, sexual harassment, Creating awareness about workplace harassment, Vishaka Dutta vs. State of Rajasthan – Supreme Court directions. Compulsory workplace guidelines.

Practical Components:

- 1. To solve case studies on WorkplaceEthics
- 2. To visit organizations and find out the problems and causes for unethical behavior at workplace.
- 3. To visit organizations and find out the measures adopted to control unethical behavior of employees.
- 4. To compare and contrast the various ethical codes of conduct practiced in organizations.
- 5. To study the recent cases on breach of workplaceprivacy.

RECOMMENDED BOOKS:

- 1. Ethical Theory and Business, 8th Edition, Tom L. Beauchamp, Norman E. Bowie and DenisArnold
- 2. Business Ethics, 9th Edition, O.C. Ferrell, John Fraedrich, and Linda Ferrell, Cengage Learning.
- 3. How technology is compromising Workplace Privacy, Fredrick S Lane 111, AMACOM Div American Mgmt Assn,2003
- 4. Ethics in the Workplace, Dean Bredeson, Keith Goree, Cengage Learning, 2011.
- 5. Ethics in 21st Century, Mary Alice Trent, Oral Roberts University, Longman.
- 6. Ethics in workplace, Elizabeth P Tierney, Oak treepress
- 7. Ethics in Workplace: System Perspective, William F Roth, Pearson, 2014.

CONCRETE TECHNOLOGY (COMMON TO CV/TR/CTM)

Sub Code	:	10 CV 42	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	÷	03
Total Hrs.	:	52	Exam Marks	:	100

$\mathbf{PART} - \mathbf{A}$

Unit-1

Cement, Chemical composition, hydration of cement, Types of cement, manufacture of OPC by wet and dry, process (flow charts only) Testing of cement - Field testing, Fineness by sieve test and Blaine's air permeability test, Normal consistency, testing time, soundness, Compression strength of cement and grades of cement, Quality of mixing water. -7 Hours Unit-2

Fine aggregate - grading, analysis, Specify gravity, bulking, moisture content, deleterious materials. Coarse aggregate – Importance of size, shape and texture.Grading of aggregates - Sieve analysis, specific gravity, Flakiness and elongation index, crushing, impact and abrasion tests. - 6 Hours **Unit-3**

www.universityupdates.in // www.android.universityupdates.in

Workability - factors affecting workability, Measurement of workability slump, flow tests, Compaction factor and vee-bee consistometer tests, Segregation and bleeding, Process of manufactures of concrete : Batching, Mixing, Transporting, Placing, Compaction, Curing. -7 Hours **Unit-4**

Chemical admixtures - plasticizers, accelerators, retarders and air entraining agents, Mineral admixtures - Fly ash, Silica fumes and rice husk ash.

-6 Hours

Part-B

Unit-5

Factors affecting strength, w/c ratio, gel/space ratio, maturity concept, Effect of aggregate properties, relation between compressive strength, and tensile strength, bond strength, modulus of rupture, Accelerated curing, aggregate - cement bond strength, Testing of hardened concrete - compressive strength, split tensile strength, Flexural strength, factors influencing strength test results. - 6Hours

Unit-6

Elasticity - Relation between modulus of elasticity and Strength, factors affecting modulus of elasticity, Poisson , Ratio, Shrinkage - plastic shrinkage and drying shrinkage, Factors affecting shrinkage, Creep - Measurement of creep, factors affecting creep, effect of creep, -7 Hours

Unit-7

Durability - definition, significance, permeability, Sulphate attack, Chloride attack, carbonation, freezing and thawing, Factors contributing to cracks in concrete - plastic shrinkage, settlement cracks, construction joints, Thermal expansion, transition zone, structural design deficiencies, - 6 Hours **Unit-8**

Concept of Concrete Mix design, variables in proportioning, exposure conditions, Procedure of mix design as per IS 10262-1982, Numerical examples of Mix Design -7 Hours

TEXT BOOKS:

1. "Concrete Technology" - Theory and Practice, M.S.Shetty, S.Chand and Company, New Delhi, 2002.

REFERENCES :

1. "Properties of Concrete"Neville, A.M.:, ELBS, London

2. "Concrete Technology" – A.R.Santakumar. Oxford University Press (2007)'

3. "Concrete Manual" - Gambhir Dhanpat Rai & Sons, New Delhi.

4. "Concrete Mix Design" - N.Krishna Raju, Sehgal - publishers.

5. "Recommended guidelines for concrete mix design" - IS:10262,BIS Publication

STRUCTURAL ANALYSIS –I (COMMON TO CV/TR)

Sub Code	:	10 CV 43	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

STRUCTURAL SYSTEMS AND ENERGY CONCEPT

1.1 Forms of structures, 1.2 Conditions of equilibrium, 1.3 Degree of freedom, 1.4 Linear and Non linear structures, 1.5 One, two, three dimensional structural systems, 1.6 Determinate and indeterminate structures [Static and Kinematics]. 1.7 Strain energy and complimentary strain energy, 1.8 Strain energy due to axial load, bending and shear, 1.9 Theorem of minimum potential energy, 1.10 Law of conservation of energy, 1.11 Principle of virtual work,

UNIT 2: DEFLECTION OF BEAMS

2.1 Moment area method, 2.2 Conjugate beam method

UNIT 3:

DEFLECTION OF BEAMS AND FRAMES BY STRAIN ENERGY

3.1 The first and second theorem of Castigliano, problems on beams, frames and trusses, 3.2 Betti's law, 3.3 Clarke - Maxwell's theorem of reciprocal deflection.

7 Hours

UNIT 4:

ANALYSIS OF BEAMS AND PLANE TRUSSES BY STRAIN ENERGY

4.1 Analysis of beams (Propped cantilever and Fixed beams) and trusses using strain energy and unit load methods

7 Hours

7 Hours

6 Hours

PART – B

www.universityupdates.in // www.android.universityupdates.in

UNIT 5: ARCHES AND CABLES

5.1 Three hinged circular and parabolic arches with supports at same levels and different levels, 5.2 Determination of thrust, shear and bending moment, 5.3 Analysis of cables under point loads and UDL, length of cables (Supports at same levels and at different levels).

6 Hours

UNIT 6: ANALYSIS OF BEAMS

6.1 Consistent deformation method - Propped cantilever and fixed beams

6 Hours

UNIT 7:

7.1 Clapeyron's theorem of three moments - continuous beams and fixed beams

6 Hours

UNIT 8:

ANALYSIS OF ARCHES

8.1 Two hinged parabolic arch, 8.2 Two hinged Circular Arch

7 Hours

TEXT BOOKS:

- 1. Theory of Structures, Pandit and Guptha, Vol. I, Tata McGraw Hill, New Delhi.
- 2. Basic Structural Analysis Reddy C. S., Tata McGraw Hill, New Delhi.
- 3. Strength of Materials and theory of structures Vol I & II, B.C. Pumia , R.K., Jain Laxmi Publication New Delhi

REFERENCE BOOKS:

- 1. **Elementary Structural Analysis**, Norris and Wilbur, International Student Edition. McGraw Hill Book Co: New York
- 2. **Structural Analysis**, 4th SI Edition by Amit Prasanth & Aslam Kassimali, Thomson Learning.
- 3. Analysis of Structures, Thandava Murthy, Oxford University Press, Edition 2005.

www.universityupdates.in || www.android.universityupdates.in

SURVEYING – II (COMMON TO CV/TR/EV/CTM)

Sub Code	:	10 CV 44	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1: THEODOLITE SURVEY

1.1 Thedolite and types, 1.2 Fundamental axes and parts of a transit theodolite, 1.3 Uses of theodolite, 1.4 Temperary adjustments of a transit thedolite, 1.5 Measurement of horizontal angles – Method of repetitions and reiterations, 1.6 Measurements of vertical angles, 1.7 Prolonging a straight line by a theodolite in adjustment and theodolite not in adjustment

6 Hours

UNIT 2: PERMANENT ADJUSTMENT OF DUMPY LEVEL AND TRANSIT THEODOLITE

2.1 Interrelationship between fundamental axes for instrument to be in adjustment and step by step procedure of obtaining permanent adjustments

7 Hours

UNIT 3:

TRIGONOMETRIC LEVELING

3.1 Determination of elevation of objects when the base is accessible and inaccessible by single plane and double plane method, 3.2 Distance and difference in elevation between two inaccessible objects by double plane method. Salient features of Total Station, Advantages of Total Station over conventional instruments, Application of Total Station.

8 Hours

UNIT 4: TACHEOMETRY

4.1 Basic principle, 4.2 Types of tacheometric survey, 4.3 Tacheometric equation for horizontal line of sight and inclined line of sight in fixed hair method, 4.4 Anallactic lens in external focusing telescopes, 4.5 Reducing the constants in internal focusing telescope, 4.6 Moving hair method and

www.universityupdates.in || www.android.universityupdates.in

tangential method, 4.7 Subtance bar, 4.8 Beaman stadia arc.

7 Hours

PART – B

UNIT 5:

CURVE SETTING (Simple curves)

5.1 Curves – Necessity – Types, 5.2 Simple curves, 5.3 Elements, 5.4 Designation of curves, 5.5 Setting out simple curves by linear methods, 5.6 Setting out curves by Rankines deflection angle method.

6 Hours

UNIT 6:

CURVE SETTING (Compound and Reverse curves)

6.1 Compound curves 6.2 Elements 6.3 Design of compound curves 6.4 Setting out of compound curves 6.5 Reverse curve between two parallel straights (Equal radius and unequal radius).

6 Hours

UNIT 7:

CURVE SETTING (Transition and Vertical curves)

7.1 Transition curves 7.2 Characteristics 7.3 Length of Transition curve 7.4 Setting out cubic Parabola and Bernoulli's Lemniscates, 7.5 Vertical curves – Types – Simple numerical problems.

6 Hours

UNIT 8: AREAS AND VOLUMES

8.1 Calculation of area from cross staff surveying, 8.2 Calculation of area of a closed traverse by coordinates method. 8.3 Planimeter – principle of working and use of planimeter to measure areas, digital planimeter, 8.4 Computations of volumes by trapezoidal and prismoidal rule, 8.5 Capacity contours

6 Hours

TEXT BOOKS:

1. 'Surveying' Vol 2 and Vol 3 - B. C. Punmia, Laxmi Publications 2. 'Plane Surveying' A. M. Chandra – New age international (P) Ltd

3. 'Higher Surveying' A.M. Chandra – New age international (P) Ltd

REFERENCE BOOKS:

1. **Fundamentals of Surveying** - Milton O. Schimidt – Wong, Thomson Learning.

DESIGN OF RCC STRUCTURAL ELEMENTS

Subject Code	: 10CV52	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

GENERAL FEATURES OF REINFORCED CONCRETE: Introduction, Design Loads, Materials for Reinforced Concrete and Code requirements. Design Philosophy – Limit State Design principles. Philosophy of limit state design, Principles of limit states, Factor of Safety, Characteristic and design loads, Characteristic and design strength.

6 Hours

UNIT - 2

PRINCIPLES OF LIMIT STATE DESIGN AND ULTIMATE STRENGTH OF R.C. SECTION: General aspects of Ultimate strength, Stress block parameters for limit state of collapse, Ultimate flexural strength of singly reinforced rectangular sections, Ultimate flexural strength of doubly reinforced rectangular sections, Ultimate flexural strength of flanged sections, Ultimate shear strength of RC sections, Ultimate torsional strength of RC sections, Concepts of development length and anchorage, Analysis examples of singly reinforced, doubly reinforced, flanged sections, shear strength and development length.

7 Hours

UNIT - 3

FLEXURE AND SERVICEABILITY LIMIT STATES: General Specification for flexure design of beams-practical requirements, size of beam, cover to reinforcement-spacing of bars. General aspects of serviceability-Deflection limits in IS: 456 – 2000-Calculation of deflection (Theoretical method), Cracking in structural concrete members, Calculation of deflections and crack width.

www.universityupdates.in // www.android.universityupdates.in

6 Hours

DESIGN OF BEAMS: Design procedures for critical sections for moment and shears. Anchorages of bars, check for development length, Reinforcement requirements, Slenderness limits for beams to ensure lateral stability, Design examples for Simply supported and Cantilever beams for rectangular and flanged sections.

PART - B

UNIT - 5

DESIGN OF SLABS: General consideration of design of slabs, Rectangular slabs spanning one direction, Rectangular slabs spanning in two directions for various boundary conditions. Design of simply supported, cantilever and continuous slabs as per IS: 456 – 2000.

UNIT - 6

DESIGN OF COLUMNS: General aspects, effective length of column, loads on columns, slenderness ratio for columns, minimum eccentricity, design of short axially loaded columns, design of column subject to combined axial load and uniaxial moment and biaxial moment using SP - 16 charts.

5 Hours

8 Hours

UNIT - 7

DESIGN OF FOOTINGS: Introduction, load for footing, Design basis for limit state method, Design of isolated rectangular footing for axial load and uniaxial moment, design of pedestal.

6 Hours

UNIT - 8

DESIGN OF STAIR CASES: General features, types of stair case, loads on stair cases, effective span as per IS code provisions, distribution of loading on stairs, Design of stair cases. With waistslabs.

6 Hours

REFERENCE BOOKS:

- 1. Limit State Design of Reinforced concrete-by P.C. Varghese, PHI Learning Private Limited 2008-2009
- **2. Fundamentals of Reinforced concrete Design-**by M.L.Gambhir, PHI Learning Private Limited 2008-2009.
- **3. Reinforced concrete Design-**by Pallai and Menon, TMH Education Private Limited,
- **4. Reinforced concrete Design-**by S.N.Shinha, TMH Education Private Limited,

38

UNIT - 4

8 Hours

www.universityupdates.in || www.android.universityupdates.in

5. Reinforced concrete Design-by Karve & Shaha, Structures Publishers Pune.

- Design of RCC Structural Elements S. S. Bhavikatti, Vol-I, New Age International Publications, New Delhi.
- 7. IS-456-2000 and SP-16

www.universityupdates.in // www.android.universityupdates.in

GEOTECHNICAL ENGINEERING - I

Subject Code	: 10CV54	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT-1

INTRODUCTION: History of soil mechanics, Definition, origin and formation of soil. Phase Diagram, Voids ratio, Porosity, Percentage Air Voids, Air content, Degree of saturation, Water content, Specific Gravity of soil solids and soil mass, Densities and Unit weights - Bulk, Dry, Saturated & Submerged and their inter relationships.

6 Hours

UNIT - 2

INDEX PROPERTIES OF SOIL AND THEIR DETERMINATION: Index Properties of soil- Water content, Specific Gravity, Particle size distribution, Relative Density, Consistency limits and indices, in-situ density, Activity of Clay, Laboratory methods of determination of index properties of soil: Water content (Oven Drying method & Rapid Moisture method), Specific gravity of soil solids (Pycnometer and density bottle method), Particle size distribution (Sieve analysis and Hydrometer analysis only), Liquid Limit- (Casagrande and Cone penetration methods), Plastic limit and shrinkage limit.

7 Hours

UNIT - 3

CLASSIFICATION OF SOILS: Purpose of soil classification, Particle size classification – MIT classification and IS classification, Textural classification. IS classification - Plasticity chart and its importance, Field identification of soils.

CLAY MINERALOGY AND SOIL STUCTURE: Single grained, honey combed, flocculent and dispersed structures, Valence bonds, Soil-Water system, Electrical diffuse double layer, adsorbed water, base-exchange capacity, Isomorphous substitution. Common clay minerals in soil and their structures- Kaolinite, Illite and Montmorillonite.

8 Hours

UNIT - 4

FLOW OF WATER THROUGH SOILS: Darcy's law- assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified soils, Seepage

www.universityupdates.in // www.android.universityupdates.in

velocity, Superficial velocity and coefficient of percolation, quick sand phenomena, Capillary Phenomena.

6 Hours

PART - B

UNIT - 5

SHEAR STRENGTH OF SOIL: Concept of shear strength, Mohr-coulomb theory, conventional and modified failure envelops, Effective stress concept-total stress, effective stress and Neutral stress, Concept of pore pressure, Total and effective shear strength parameters, factors affecting shear strength of soils, Sensitivity and Thixotropy of clay.

7 Hours

UNIT - 6

COMPACTION OF SOIL: Definition, Principle of compaction, Standard and Modified proctor's compaction tests, factors affecting compaction, effect of compaction on soil properties, Field compaction control – compactive effort & method, lift thickness and number of passes, Proctor's needle, Compacting equipment.

UNIT - 7

6 Hours

CONSOLIDATION OF SOIL: Definition, Mass-spring analogy, Terzaghi's one dimensional consolidation theory-assumption and limitations (no derivation), Normally consolidated, under consolidated and over consolidated soils, pre-consolidation pressure and its determination by Casagrande's method. Consolidation characteristics of soil (C_c , a_v , m_v and C_v).

UNIT-8

DETERMINATION OF SHEAR STRENGTH AND CONSOLIDATION OF SOIL: Measurement of shear parameters- Direct shear test, unconfined compression test, Triaxial compression test and vane shear test, Test under different drainage conditions.

Laboratory one dimensional consolidation test, Determination of consolidation characteristics of soils-compression index and coefficient of consolidation (square root of time fitting method, logarithmic time fitting method).

6 Hours

TEXT BOOKS:

- 1. Soil Mechanics and Foundation Engg.- Punmia B.C. (2005), 16th Edition Laxmi Publications Co., New Delhi.
- 2. **Principles of Soil Mechanics and Foundation Engineering**-Murthy V.N.S. (1996), 4th Edition, UBS Publishers and Distributors, New Delhi.
3. Geotechnical Engineering; Braja, M. Das (2002), Fifth Edition, Thomson Business Information India (P) Ltd., India

REFERENCES BOOKS:

- 1. Foundation Analysis and Design- Bowles J.E. (1996), 5th Edition, McGraw Hill Pub. Co. New York.
- Soil Engineering in Theory and Practice- Alam Singh and 2. Chowdhary G.R. (1994), CBS Publishers and Distributors Ltd., New Delhi.
- 3. Basic and Applied Soil Mechanics- Gopal Ranjan and Rao A.S.R. (2000), New Age International (P) Ltd., Newe Delhi.
- 4. Geotechnical Engineering- Donold P Coduto Phi Learning Private Limited, New Delhi
- 5. Geotechnical Engineering- Shashi K. Gulathi & Manoj Datta. (2009), "Tata Mc Graw Hill.
- 6. Text Book of Geotechnical Engineering- Iqbal H. Khan (2005), 2nd Edition, PHI, India.
- 7. Numerical Problems, Examples and objective questions in Geotechnical Engineering- Narasimha Rao A. V. & Venkatrahmaiah C. (2000), Universities Press., Hyderabad.

Hydrology and Irrigation Engineering

Hydro	logy and Irrig	gation Engine	eering	
Sub Code	10CV55	IA Marks	<mark>: 25</mark>	
<mark>Hrs/ Week</mark>	<mark>: 04</mark>	Exam Hours	<mark>: 03</mark>	
<mark>Total Hrs.</mark>	<mark>: 52</mark>	<mark>Exam Marks</mark>	<mark>: 100</mark>	
	PAR	T-A		
	HYDRO	DLOGY		
Sub Code Hrs/ Week Total Hrs.	: 10CV55 : 04 : 52 PAR HYDRO	IA Marks Exam Hours Exam Marks T-A DLOGY	25 03 100	

PART-A HYDROLOGY

UNIT 1: INTRODUCTION & PRECIPITATION

Introduction ,Hydrologic cycle (Horton's representation). Water budget equation

Precipitation: introduction, forms of precipitation, types of precipitation, measurement of precipitation (Simon's gauge & Syphon gauge only), selection of rain gauge station. Adequacy of raingauges, methods of computing average rainfall, interpolation of missing data, adjustment of missing data by double mass curve method. Hyetograph and mass curve of 07 hrs rainfall,

UNIT 2 : LOSSES FROM PRECIPITATION

Evaporation: Definition, factors affecting, measurement (Class A pan). Estimation using empirical methods (Meyer's and Rohwer's equation), evaporation control.

Evapo-transpiration: Definition, factors affecting, measurement, estimation (Blaney criddle method)

Infiltration: Definition, factors affecting, measurement (double ring infiltrometer), infiltration indices, Horton's equation of infiltration. 07 hrs

UNIT 3: HYDROGRAPHS

Definition, components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, Prepositions of unit hydrograph- problems

06 hrs

UNIT 4: ESTIMATION OF FLOOD & FLOOD ROUTING Definition of flood, factors affecting flood, methods of estimation (envelope curves, empirical formulae, rational method).

Flood routing: Introduction to hydrological routing, relationship of out flow and storage, general storage equation, Muskingum routing method. 07 hrs

PART-B

IRRIGATION ENGINEERING

UNIT 5 : INTRODUCTION

Introduction, need for irrigation, advantages and disadvantages of irrigation, environmental impacts of irrigation, Systems of irrigation: Gravity irrigation, lift irrigation, well irrigation, tube well irrigation, infiltration galleries, sewage irrigation, supplemental irrigation.

06 hrs

UNIT 6: SOIL-WATER-CROP RELATIONSHIP

Introduction, soil profile, physical properties of soil, soil classification. Indian soils, functions of irrigation soils, maintaining soil fertility, soil-water-plant relationship, soilmoisture. Irrigation relationship, frequency of irrigation. 06 hrs

UNIT 7: WATER REQUIREMENT OF CROPS Introduction, definitions, crop seasons of India, water requirement of a crop, duty, delta, base period. Consumptive use. Irrigation efficiencies. Assessment of irrigation water.

07 hrs

Unit 8: Canals

Definition, Types of canals, Alignment of canals, Design of canals by Kenedy's and Lacey's methods- Problems 06 hrs

TEXT BOOKS:

- Engineering Hydrology Subramanya.K; Tata Mcgraw Hill NewDelhi-2008 (Ed)
- 2. Hydrology- Madan Mohan Das, Mim Mohan Das-PHI Learning private Ltd. New Delhi-2009 (Ed)
- A Text Book Of Hydrology- Jayarami Reddy, Laksmi Publications, New Delhi-2007 (Ed)
- Irrigation, water Resources and water power Engineering- P.N.Modi- standard book house, New Delhi.
- Irrigation and Water Power Engineering-Madan Mohan Das & Mimi Das Saikia; PHILearning pvy. Ltd. New Delhi 2009 (Ed).

REFERENCE BOOKS:

- Hydrology & Soil Conservation Engineering-Ghanshyam Das- PHI Learning Private Ltd., New Delhi-2009 (Ed)
- 2. Hydrology & Water Resources Engineering- Patra K.C. Narosa Book Distributors Pvt. Ltd. New Delhi-2008 (Ed)
- Hydrology & Water Resources Engineering-R.K.Sharma & Sharma, Oxford and Ibh, New Delhi
- 4. Irrigation Engineering and Hydraulic structures- S. K. garg- Khanna Publication, New Delhi.

TRANSPORTATION ENGINEERING I

Subject Code		:10CV56
I A Marks	:25	
No. of lecture Hours/week		:04
Exam Hours	:03	
Total No. of Lecture Hours		:52
Exam Marks	:100	

<u>PART – A</u>

UNIT - 1

PRINCIPLES OF TRANSPORTATION ENGINEERING: Importance of transportation, Different modes of transportation and comparison, Characteristics of road transport Jayakar committee recommendations, and implementation – Central Road Fund, Indian Roads Congress, Central Road Research Institute

04 Hrs

UNIT - 2

HIGHWAY DEVELOPMENT AND PLANNING: Road types and classification, road patterns, planning surveys, master plan – saturation system of road planning, phasing road development in India, problems on best alignment among alternate proposals Salient Features of 3rd and 4th twenty year

road development plans and Policies, Present scenario of road development in India (NHDP & PMGSY) and in Karnataka (KSHIP & KRDCL) Road development plan - vision 2021.

06 Hrs

UNIT - 3

HIGHWAY ALIGNMENT AND **SURVEYS:** Ideal Alignment, Factors affecting the alignment, Engineering surveys-Map study, Reconnaissance, Preliminary and Final location & detailed survey, Reports and drawings for new and re-aligned projects 04 Hrs HIGHWAY GEOMETRIC DESIGN - I: Importance, Terrain classification, Design speed, Factors affecting geometric design, Cross sectional elements-Camber- width of pavement-Shoulders-, Width of formation- Right of way, Typical cross sections 05 Hrs

UNIT - 4

HIGHWAY GEOMETRIC DESIGN – II: Sight Distance-Restrictions to sight distance- Stopping sight distance-Overtaking sight distance- overtaking zones- Examples on SSD and OSD- Sight distance at intersections, Horizontal alignment-Radius of Curve- Superelevation – Extra widening-Transition curve and its length, setback distance – Examples, Vertical alignment-Gradient-summit and valley curves with examples. 07 Hrs

<u> PART - B</u>

UNIT - 5

PAVEMENT MATERIALS: Subgrade soil - desirable properties-HRB soil classification-determination of CBR and modulus of subgrade reaction-Examples on CBR and Modulus of subgrade reaction, **Aggregates-** Desirable properties and list of tests, **Bituminous materials**-Explanation on Tar, bitumen,cutback and emulsion-List of tests on bituminous materials **06 Hrs**

UNIT - 6

PAVEMENT DESIGN: Pavement types, component parts of flexible and rigid pavements and their functions, design factors, ESWL and its determination-Examples, **Flexible pavement**-Design of flexible pavements as per IRC;37-2001-Examples, **Rigid pavement**- Westergaard's equations for load and temperature stresses- Examples- Design of slab thickness only as per IRC:58-2002

06 Hrs

UNIT – 7

PAVEMENT CONSTRUCTION: Earthwork –cutting-Filling, Preparation of subgrade, Specification and construction of i) Granular Subbase, ii) WBM Base, iii) WMM base, iv) Bituminous Macadam, v) Dense Bituminous Macadam vi) Bituminous Concrete, vii) Dry Lean Concrete sub base and PQC viii) concrete roads 05

Hrs

HIGHWAY DRAINAGE: Significance and requirements, Surface drainage system and design-Examples, sub surface drainage system, design of filter materials

03 Hrs

UNIT – 8

HIGHWAY ECONOMICS: Highway user benefits, VOC using charts only-Examples, Economic analysis - annual cost method-Benefit Cost Ratio method-NPV-IRR methods-Examples, Highway financing-BOT-BOOT concepts

06 Hrs

TEXT BOOKS:

1. Highway Engineering – S K Khanna and C E G Justo, Nem Chand Bros, Roorkee

2. Highway Engineering - L R Kadiyali, Khanna Publishers, New Delhi

- **3. Transportation Engineering** K P Subramanium, Scitech Publications, Chennai
- 4. Transportation Engineering James H Banks, Mc. Graw. Hill Pub. New Delhi
- Highway Engineeering –R. Sreenivasa Kumar, University Press. Pvt.Ltd. Hyderabad

REFERENCE BOOKS:

- 1. Relevant IRC Codes
- 2. Specifications for Roads and Bridges-MoRT&H, IRC, New Delhi.
- 3. Transportation Engineering C. Jotin Khisty, B. Kent lal, PHI Learning Pvt. Ltd. New Delhi.

VI SEMESTER

ENVIRONMENTAL ENGINEERING-I

Subject Code	: 10CV61	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

Part - A

Unit - 1

INTRODUCTION: Human activities and environmental pollution. Water for various beneficial uses and quality requirement. Need for protected water supply.

2 Hours

DEMAND OF WATER: Types of water demands- domestic demand in detail, institutional and commercial, public uses, fire demand. Per capita consumption –factors affecting per capita demand, population forecasting, different methods with merits &demerits- variations in demand of water. Fire demand – estimation by Kuichling's formula, Freeman formula & national board of fire underwriters formula, peak factors, design periods & factors governing the design periods

6 Hours

Unit - 2

SOURCES: Surface and subsurface sources – suitability with regard to quality and quantity.

3 Hours

COLLECTION AND CONVEYANCE OF WATER: Intake structures – different types of intakes; factor of selection and location of intakes. Pumps- Necessity, types – power of pumps; factors for the selection of a pump. Pipes – Design of the economical diameter for the rising main; Nomograms – use; Pipe appurtenances.

6 Hours

Unit - 3

QUALITY OF WATER: Objectives of water quality management. wholesomeness & palatability, water borne diseases. Water quality parameters – Physical, chemical and Microbiological. Sampling of water for examination. Water quality analysis (IS: 3025 and IS: 1622) using analytical and instrumental techniques. Drinking water

standards BIS & WHO guidelines. Health significance of Fluoride, Nitrates and heavy metals like Mercury, Cadmium, Arsenic etc. and toxic / trace organics.

6 Hours

Unit - 4 WATER TREATMENT: Objectives – Treatment flow-chart. Aeration-Principles, types of Aerators.

Hours

SEDIMENTATION: Theory, settling tanks, types, design. Coagulant aided sedimentation, jar test, chemical feeding, flash mixing, and clariflocculator.

Hours

Part - B

Unit - 5

FILTRATION: Mechanism – theory of filtration, types of filters, slow sand, rapid sand and pressure filters including construction, operation, cleaning and their design – excluding under drainage system – back washing of filters. Operational problems in filters.

6 Hours

4

2

4

Unit - 6

DISINFECTION: Theory of disinfection, types of disinfection, Chlorination, chlorine demand, residual chlorine, use of bleaching powder. UV irradiation treatment – treatment of swimming pool water

Hours

SOFTENING – definition, methods of removal of hardness by lime soda process and zeolite process RO & Membrane technique.

3 Hours

Unit - 7

MISCELLANEOUS TREATMENT: Removal of color, odor, taste, use of copper sulfate, adsorption technique, fluoridation and defluoridation.

4 Hours

DISTRIBUTION SYSTEMS: System of supply, service reservoirs and their capacity determination, methods of layout of distribution systems.

4

Hours

Unit - 8

MISCELLANEOUS: Pipe appurtenances, various valves, type of fire hydrants, pipefitting, Layout of water supply pipes in buildings.

2

Hours

TEXT BOOKS:

- 1. Water supply Engineering –S.K.Garg, Khanna Publishers
- 2. Environmental Engineering I B C Punima and Ashok Jain
- 3. Manual on Water supply and treatment –CPHEEO, Minstry of Urban Development, New Delhi

REFERENCES

1. Hammer, M.J., (1986), Water and Wastewater Technology –SI Version, 2nd

Edition, John Wiley and Sons.

2. Karia, G.L., and Christian, R.A., (2006), **Wastewater Treatment – Concepts** and **Design Approach**, Prentice Hall of India Pvt. Ltd., New Delhi.

3. Metcalf and Eddy, (2003), **Wastewater Engineering, Treatment and Reuse**, 4th Edition, Tata McGraw Hill Edition, Tata McGraw Hill Publishing Co. Ltd.

4. Peavy, H.S., Rowe, D.R., and Tchobanoglous, G., (1986), **Environmental Engineering**–Mc Graw Hill Book Co.

5. Raju, B.S.N., (1995), **Water Supply and Wastewater Engineering, T**ata McGraw Hill Pvt. Ltd., New Delhi.

6. Sincero, A.P., and Sincero, G.A., (1999), **Environmental Engineering – A Design Approach**–Prentice Hall of India Pvt. Ltd., New Delhi.

GEOTECHNICAL ENGINEERING - II

Subject Code	: 10CV64	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

SUBSURFACE EXPLORATION: Importance of exploration program, Methods of exploration: Boring, Seismic refraction method of grophysical exploration, Types of samples undisturbed, disturbed and representative samples, Samplers, sample disturbance, area ratio, Recovery ratio, clearance, Stabilisation of boreholes - Typical bore log. Number and depth of borings for various civil engineering structures, soil exploration report.

DRAINAGE AND DEWATERING: Determination of ground water level by Hvorselev's method, Control of ground water during excavation: Dewatering - Ditches and sumps, well point system, Vacuum method, Electro- Osmosis method.

8 Hours

UNIT - 2

UNIT - 3

UNIT - 4

STRESSES IN SOILS: Boussinesq's and Westergaard's theories for concentrated, circular and rectangular loads. Comparison of Boussinesq's and westergaard's analysis. Pressure distribution diagrams, Contact pressure, Newmark's chart.

Hours

6

FLOWNETS: Laplace equation (no derivation) assumptions and limitations only, characteristics and uses of flownets, Methods of drawing flownets for Dams and sheet piles. Estimating quantity of seepage and Exit gradient. Determination of phreatic line in earth dams with and without filter. Piping and protective filter.

5 Hours

LATERAL EARTH PRESSURE: Active and Passive earth pressures, Earth pressure at rest. Rankine's and Coulomb's Earth pressure theories--assumptions and limitations, Graphical solutions for active earth pressure (cohesionless soil only) – Culmann's and Rebhann's methods, Lateral earth pressure in cohesive and cohesionless soils, Earth pressure distribution.

7 Hours PART - B

UNIT - 5

STABILITY OF EARTH SLOPES: Types of slopes, causes and type of failure of slopes. Definition of factor of safety, Stability of infinite slopes, Stability of finite slopes by Method of slices and Friction Circle method, Taylor's stability number, Fellineous method,.

7 Hours

UNIT - 6

BEARING CAPACITY: Definitions of ultimate, net and safe bearing capacities, Allowable bearing pressure. Terzaghi's and Brinch Hansen's bearing capacity equations assumptions and limitations, Bearing capacity of footing subjected to eccentric loading. Effect of ground water table on bearing capacity. Field methods of evaluation of bearing capacity - Plate load test, Standard penetration test and cone penetration test.

8 Hours

UNIT - 7

FOUNDATION SETTLEMENT: Importance and Concept of Settlement Analysis, Immediate, Consolidation and Secondary settlements (no derivations, but, computation using relevant formula for Normally Consolidated soils), Tolerance. BIS specifications for total and differential settlements of footings and rafts.

5 Hours

UNIT – 8

PROPORTIONING SHALLOW AND PILE FOUNDATIONS

Allowable Bearing Pressure, Factors influencing the selection of depth of foundation, Factors influencing Allowable Bearing Pressure, Factors influencing the choice of foundation, Proportioning isolated, combined, strip and mat foundations, Classification of pile foundation, Pile load capacity, Proportioning pile foundation.

6 Hours

TEXT BOOKS:

- 1. Soil Engineering in Theory and Practice- Alam Singh and Chowdhary G.R. (1994), CBS Publishers and Distributors Ltd., New Delhi.
- Soil Mechanics and Foundation Engg.- Punmia B.C. (2005), 16th Edition Laxmi Publications Co., New Delhi. REFERENCES BOOKS:
- 1. Foundation Analysis and Design- Bowles J.E. (1996), 5th Edition, McGraw Hill Pub. Co. New York.

- Soil Mechanics and Foundation Engineering- Murthy V.N.S. (1996), 4th Edition, UBS Publishers and Distributors, New Delhi.
- 3. Basic and Applied Soil Mechanics- Gopal Ranjan and Rao A.S.R. (2000), New Age International (P) Ltd., Newe Delhi.
- Geotechnical Engineering- Venkatrahmaiah C. (2006), 3rd Edition New Age International (P) Ltd., Newe Delhi.
- Soil Mechanics- Craig R.F. (1987), Van Nostrand Reinhold Co. Ltd.
- Principles of Geotechnical Engineering- Braja M. Das (2002), 5th Edition, Thomson Business Information India (P) Ltd., India.
- Text Book of Geotechnical Engineering- Iqbal H. Khan (2005), 2nd Edition, PHI, India.

ALTERNATIVE BUILDING MATERIALS AND TECHNOLOGIES

Subject Code	: 10CV662	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

- **INTRODUCTION:** 1. Energy in building materials
- 2. Environmental issues concerned to building materials
- 3. Global warming and construction industry
- 4. Environmental friendly and cost effective building technologies.
- 5. Requirements for building of different climatic regions.
 - 6. Traditional building methods and vernacular architecture.

6 Hours

UNIT - 2

ALTERNATIVE BUILDING MATERIALS:

- 1. Characteristics of building blocks for walls
- 2. Stones and Laterite blocks
- 3. Bricks and hollow clay blocks
- 4. Concrete blocks
- 5. Stabilized blocks: Mud Blocks, Steam Cured Blocks, Fal-G Blocks and Stone Masonry Block

6 Hours

UNIT - 3 LIME-POZZOLANA CEMENTS

- 1. Raw materials
- 2. Manufacturing process
- 3. Properties and uses
- 4. Fibre reinforced concretes
- 5. Matrix materials
- 6. Fibers : metal and synthetic
- 7. Properties and applications
- 8. Fibre reinforced plastics
- 9. Matrix materials
- 10. Fibers : organic and synthetic
- 11. Properties and applications
- 12. Building materials from agro and industrial wastes
- 13. Types of agro wastes

14. Types of industrial and mine wastes

- 15. Properties and applications
 - 16. Field quality control test methods

6 Hours

UNIT - 4 ALTERNATIVE BUILDING TECHNOLOGIES

- 1. Alternative for wall construction
- 2. Types
- 3. Construction method
- 4. Masonry mortars
- 5. Types
- 6. Preparation
- 7. Properties
- 8. Ferrocement and ferroconcrete building components
- 9. Materials and specifications
- 10. Properties
- 11. Construction methods
- 12. Applications
- 13. Alternative roofing systems
- 14. Concepts
- 15. Filler slabs
- 16. Composite beam panel roofs

17. Masonry vaults and domes

8 ours

PART - B

STRUCTURAL MASONRY

- 1. Compressive strength of masonry elements
- 2. Factors affecting compressive strength
- 3. Strength of units, prisms / wallettes and walls
- 4. Effect of brick work bond on strength
- 5. Bond strength of masonry : Flexure and shear
- 6. Elastic properties of masonry materials and masonry

6 Hours

UNIT - 6

UNIT - 5

- 1. IS Code provisions
- 2. Design of masonry compression elements
- 3. Concepts in lateral load resistance

Hours

8

UNIT - 7 COST EFFECTIVE BUILDING DESIGN

1. Cost concepts in buildings

- 2. Cost saving techniques in planning, design and construction
 - 3. Cost Analysis : Case studies using alternatives.

UNIT - 8 EQUIPMENT FOR PRODUCTION OF ALTERNATIVE MATERIALS

- 1. Machines for manufacture of concrete
- 2. Equipments for production of stabilized blocks
 - 3. Moulds and methods of production of precast elements.

6 Hours

6 Hours

TEXT BOOKS:

- 1. Alternative building methodologies for engineers and architects, lecture notes edited: K.S. Jagadish and B.V. Venkatarama Reddy, Indian Institute of cience, Bangalore.
- 2. Structural Masonry by Arnold W. Hendry.

REFERENCE BOOKS:

- 1. Relevant IS Codes.
- 2. Alternative building materials and technologies.
- 3. Proceedings of workshop on Alternative building material and technology, 19th to 20th December 2003 @ BVB College of Engineering. & Tech., Hubli.

67

www.universityupdates.in || www.android.universityupdates.in

GROUND WATER HYDROLOGY

Subject Code	: 10CV665	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION: Importance. Vertical distribution of sub-surface water. Occurrence in different types of rocks and soils. Definition of aquifer, Aquifuge, Aquitard and Aquiclude. Confined and unconfined aquifers.

6 Hours

UNIT - 2

AQUIFER PROPERTIES: Aquifer parameters – Specific yield, Specific retention, Porosity, Storage coefficient, derivation of the expression. Determination of specific yield. Land subsidence due to ground water withdrawals.

6 Hours

UNIT - 3

DARCY'S LAW AND HYDRAULIC CONDUCTIVITY: Introduction. Darcy's law. Hydraulic conductivity. Coefficient of permeability and Intrinsic permeability, Transmissibility, Permeability in Isotropic, Unisotropic layered soils. Steady one dimensional flow, different cases with recharge.

7 Hours

UNIT - 4

WELL HYDRAULICS – STEADY FLOW: Introduction. Steady radial flow in confined and unconfined aquifers. Pumping tests.

7 Hours

PART - B

UNIT - 5

WELL HYDRAULICS – UNSTEADY FLOW: Introduction. General equation derivation; Theis method, Cooper and JaCob method, Chow's method. Solution of unsteady flow equations.

7 Hours

UNIT - 6

GROUND WATER DEVELOPMENT: Types of wells. Methods of constructions. Tube well design. Dug wells. Pumps for lifting water: Working principles, Power requirements.

UNIT - 7

7 Hours

GROUND WATER EXPLORATION: Seismic method, Electrical resistivity method, Bore hole geo-physical techniques; Electrical logging, Radio active logging, Induction logging, Sonic logging and Fluid logging.

6 Hours

UNIT - 8

GROUND WATER RECHARGE AND RUNOFF: Recharge by vertical leakage. Artificial recharge. Ground water runoff. Ground water budget.

6 Hours

TEXT BOOKS:

- 1. Ground Water- H.M. Raghunath, Wiley Eastern Limited, New Delhi.
- 2. Ground Water Hydrology- K. Todd, Wiley and Sons, New Delhi.
- 3. Numerical Ground Water Hydrology- A.K. Rastogi, Penram, International Publishing (India), Pvt. Ltd., Mumbai.

REFERENCE BOOKS:

- 1. Ground Water Hydrology- Bower H.- McGraw Hill, New Delhi.
- 2. Ground Water and Tube Wells- Garg Satya Prakash, Oxford and IBH, New Delhi.
- 3. Ground Water Resource Evaluation- W.C. Walton, McGraw Hill Kogakusha Ltd., New Delhi.
- 4. Water wells and Pumps Michel D.M., Khepar. S.D., Sondhi. S.K., McGraw Hill Education 2nd Edition.

TRAFFIC ENGINEERING

Subject Code	: 10CV667	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION: Definition, objectives of Traffic Engineering and scope of Traffic Engineering.

2

Hours

UNIT - 2

TRAFFIC CHARACTERISTICS: Road user characteristics, vehicular characteristics – static and dynamic characteristics, power

performance of vehicles, Resistance to the motion of vehicles – Reaction time of driver – Problems on above.

6

Hours

UNIT - 3

TRAFFIC STUDIES: Various types of traffic engineering studies, data collection, analysis objectives and method of study – Definition of study area – Sample size and analysis.

6 Hours

UNIT - 4

INTERPRETATION OF TRAFFIC STUDIES: Classified traffic Volume at mid block and intersections, PCU, origin and destination, spot speed, speed and delay, parking – on street parking, off street parking, Accident – causes, analysis measures to reduce accident – problems on above.

6 Hours

PART - B

UNIT - 5

TRAFFIC FLOW THEORIES: Traffic flow theory, Green shield theory – Goodness of fit, - correlation and regression analysis (linear only) – Queuing theory, Car following theory and relevant problems on above.

8 Hours

UNIT - 6

STATISTICAL ANALYSIS: Poisson's distribution and application to traffic engineering. Normal Distribution – Significance tests for observed traffic data, Chi Square test – problems on above. Traffic forecast – simulation technique.

12 Hours UNIT - 7

TRAFFIC REGULATION AND CONTROL: Driver, vehicle and road controls – Traffic regulations – one way – Traffic markings, Traffic signals – Vehicle actuated and synchronized signals – Signals co-ordination. Webster's method of signal design, IRC method, traffic rotary elements and designs, traffic operation – Street lighting, Road side furniture, Relevant problems on above.

Hours

10

UNIT - 8

INTELLIGENT TRANSPORT SYSTEM: Definition, Necessities, Application in the present traffic scenario

2

Hours

TEXT BOOKS:

- Traffic Engineering & Transport Planning L.R. Kadiyali-Khanna Publishers.
- 2. Highway Engineering Nemchand & Bros- Khanna & Justo-Roorkee (UA).
- 3. Traffic Engg. Matson & Smith:-Mc.Graw Hill and Co.
- 4. Traffic flow theory Drew- Mc. Graw Hill and Co.

REFERENCE BOOKS:

- 1. Traffic Engineering. Pignataro- Prentice Hall.
- 2. Highway Capacity Manual 2000.
- An introduction to traffic engineering- Jotin Khistey and Kentlal- PHI.
- 4. Traffic Engineering- Mc Shane & Roess- PHI.

ESTIMATION & VALUATION

Subject Code	: 10CV73	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

ESTIMATION: Study of various drawings with estimates, important terms, units of measurement, abstract Methods of taking out quantities and cost – center line method, long and short wall method or crossing method. Preparation of detailed and abstract estimates for the following Civil Engineering works – Buildings – RCC framed structures with flat, sloped RCC roofs with all Building components.

16 Hours

PART - B

ESTIMATE: Different type of estimates, approximate methods of estimating buildings, cost of materials. Estimation of wooden joineries such as doors, windows & ventilators.

5 Hours

ESTIMATES: Steel truss (Fink and Howe truss), manhole and septic tanks, RCC Culverts.

6 Hours

SPECIFICATIONS: Definition of specifications, objective of writing specifications, essentials in specifications, general and detail specifications of common item of works in buildings.

5 Hours

PART - C

RATE ANALYSIS: Definition and purpose. Working out quantities and rates for the following standard items of works – earth work in different types of soils, cement concrete of different mixes, bricks and stone masonry, flooring, plastering, RCC works, centering and form work for different RCC items, wood and steel works for doors, windows and ventilators.

6 Hours

MEASUREMENT OF EARTHWORK FOR ROADS: Methods for computation of earthwork - cross sections - mid section formula or average end area or mean sectional area, trapezoidal & prismoidal formula with and without cross slopes.

6 Hours

CONTRACTS: Types of contract – essentials of contract agreement – legal aspects, penal provisions on breach of contract. Definition of the terms -Tender, earnest money deposit, security deposit, tender forms, documents and types. Acceptance of contract documents. Termination of contract, completion certificate, quality control, right of contractor, refund of deposit. Administrative approval – Technical sanction. Nominal muster roll, measurement books - procedure for recording and checking measurements preparation of bills.

Valuation- Definitions of various terms, method of valuation, Freehold & Leasehold properties, Sinking fund, depreciation and method of estimating depreciation, Outgoings.

8 Hours

REFERENCE BOOKS:

- 1. Estimating & Costing, B. N. Dutta, Chand Publisher
- 2.
- Quantity Surveying- P.L. Basin S. Chand : New Delhi. Estimating & Specification S.C. Rangwala :: Charotar publishing 3. house, Anand.
- 4. Text book of Estimating & Costing- G.S. Birde, Dhanpath Rai and sons : New Delhi.
- A text book on Estimating, Costing and Accounts- D.D. Kohli 5. and R.C. Kohli S. Chand : New Delhi.
- 6. Contracts and Estimates, B. S. Patil, University Press, 2006.

DESIGN OF PRE-STRESSED CONCRETE STRUCTURES

Subject Code	: 10CV74	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

MATERIALS: High strength concrete and steel, Stress-Strain characteristics and properties.

2 Hours BASIC PRINCIPLES OF PRESTRESSING: Fundamentals, Load balancing concept, Stress concept, centre of Thrust. Pre-tensioning and posttensioning systems, tensioning methods and end anchorages.

4 Hours

UNIT - 2

ANALYSIS OF SECTIONS FOR FLEXURE: Stresses in concrete due to pre-stress and loads, stresses in steel due to loads, Cable profiles.

8 Hours

UNIT - 3

LOSSES OF PRE-STRESS: Various losses encountered in pre-tensioning and post tensioning methods, determination of jacking force.

6 Hours

UNIT - 4

DEFLECTIONS: Deflection of a pre-stressed member – Short term and long term deflections, Elastic deflections under transfer loads and due to different cable profiles. Deflection limits as per IS 1343. Effect of creep on deflection, load verses deflection curve, methods of reducing deflection **6 Hours**

PART - B

UNIT - 5

LIMIT STATE OF COLLAPSE: Flexure -IS Code recommendations – Ultimate flexural strength of sections.

5 Hours

UNIT - 6 LIMIT

LIMIT STATE OF COLLAPSE (cont...): Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking.

7 Hours

UNIT - 7

DESIGN OF END BLOCKS: Transmission of prestress in pretensioned members, transmission length, Anchorage stress in post-tensioned members. Bearing stress and bursting tensile force-stresses in end blocks-Methods, I.S. Code, provision for the design of end block reinforcement.

6 Hours

8 Hours

UNIT - 8

DESIGN OF BEAMS: Design of pre-tensioned and post-tensioned symmetrical and asymmetrical sections. Permissible stress, design of prestressing force and eccentricity, limiting zone of pre-stressing force cable profile.

REFERENCE BOOKS:

- 1. **Pre-stressed Concrete-** N. Krishna Raju Tata Mc. Graw Publishers.
- 2. **Pre-stressed Concrete-** P. Dayarathnam : Oxford and IBH Publishing Co.

- Design of pre-stressed concrete structures- T.Y. Lin and Ned H. Burns - John Wiley & Sons, New York.
- 4. Fundamental of pre-stressed concrete- N.C. Sinha & S.K. Roy
- 5. IS: 1343: 1980
- 6. Pre-stressed Concrete- N. Rajgopalan

PAVEMENT MATERIALS AND CONSTRUCTION

Subject Code	: 10CV763	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A PAVEMENT MATERIALS

UNIT - 1

AGGREGATES: Origin, classification, requirements, properties and tests on road aggregates, concepts of size and gradation – design gradation, maximum aggregate size, aggregate blending by different methods to meet specification.

6 Hours

UNIT - 2

BITUMEN AND TAR: Origin, preparation, properties and chemical constitution of bituminous road binders; requirements.

4 Hours

UNIT - 3

BITUMINOUS EMULSIONS AND CUTBACKS: Preparation, characteristics, uses and tests. Adhesion of Bituminous Binders to Road Aggregates: Adhesion failure, mechanism of stripping, tests and methods of improving adhesion.

8 Hours

UNIT - 4

BITUMINOUS MIXES: Mechanical properties, dense and open textured mixes, flexibility and brittleness, (no Hveem Stabilometer & Hubbar – Field Tests) bituminous mix, design methods using Rothfuch's Method only and

specification, Marshal mixed design criteria- voids in mineral aggregates, voids in total mix, density, flow, stability, percentage voids filled with bitumen.

6 Hours

PART - B

PAVEMENT CONSTRUCTION

UNIT - 5

EQUIPMENT IN HIGHWAY CONSTRUCTION: Various types of equipment for excavation, grading and compaction – their working principle, advantages and limitations. Special equipment for bituminous and cement concrete pavement and stabilized soil road construction.

6 Hours

UNIT - 6

SUBGRADE: Earthwork grading and construction of embankments and cuts for roads. Preparation of subgrade, quality control tests.

6 Hours

UNIT - 7

FLEXIBLE PAVEMENTS: Specifications of materials, construction method and field control checks for various types of flexible pavement layers.

8 Hours

UNIT - 8

CEMENT CONCRETE PAVEMENTS: Specifications and method of cement concrete pavement construction (PQC Importance of providing DLC as sub-base and polythene thin layer between PQC and sub-base); Quality control tests; Construction of various types of joints.

8 Hours

TEXT BOOKS:

- 1. **Highway Engineering** Khanna, S.K., and Justo, C.E.G., : Nem Chand and Bros. Roorkee
- 2. Construction Equipment and its Management- Sharma, S.C. : Khanna Publishers.
- 3. Hot Mix Asphalt Materials, Mixture Design and Construction-Freddy L. Roberts, Kandhal, P.S. : University of Texas Austin, Texas. NAPA Education Foundation Lanham, Maryland.

REFERENCES BOOKS:

- 1. RRL, DSIR, 'Bituminous Materials in Road Construction', HMSO Publication.
- 2. RRL, DSIR, 'Soil Mechanics for Road Engineers', HMSO Publication.
- 3. Relevant IRC codes and MoRT & H specifications.

CONCRETE AND HIGHWAY MATERIALS LABORATORY

Subject Code	: 10CVL78	IA Marks	: 25
No. of Practical Hours/Week	: 03	Exam Hours	: 03
Total No. of Practical Hours	: 42	Exam Marks	: 50

PART - A

CEMENT: Normal Consistency, Setting time, Soundness by Autoclave method, Compression strength test and Air permeability test for fineness, Specific gravity of cement.

FRESH CONCRETE: Workability – slump, Compaction factor and Vee Bee tests.

HARDENED CONCRETE: Compression strength and Split tensile tests. Test on flexural strength of RCC beams, Permeability of concrete.

PART - B

SOIL: Density of Soil by Sand replacement method, CBR Text.

AGGREGATES: Crushing, abrasion, impact and Shape tests (Flaky, Elongation, Angularity number) Specific gravity and water absorption.

BITUMINOUS MATERIALS AND MIXES: Specific Gravity, Penetration, Ductility, Softening point, Flash and fire point, Viscosity, proportioning of aggregate mixes by Rothfutch Method, Marshall Stability tests.

REFERENCE BOOK:

1. Relevant IS Codes and IRC Codes.

- 2. **Highway Material Testing Laboratory Manual** by Khanna S K and Justo, CEG Nemi Chand & Bros.
- 3. M. L. Gambhir : Concrete Manual : Dhanpat Rai & sons New Delhi.

www.universityupdates.in || www.android.universityupdates.in

VIII -SEMESTER

ADVANCED CONCRETE TECHNOLOGY

Subject Code	: 10CV81	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

UNIT - 1

Importance of Bogue's compounds, Structure of a Hydrated Cement Paste, Volume of hydrated product, porosity of paste and concrete, transition Zone, Elastic Modulus, factors affecting strength and elasticity of concrete, Rheology of concrete in terms of Bingham's parameter.

7 Hour

UNIT - 2

CHEMICAL ADMIXTURES- Mechanism of chemical admixture, Plasticizers and super Plasticizers and their effect on concrete property in fresh and hardened state, Marsh cone test for optimum dosage of super plasticizer, retarder, accelerator, Air-entraining admixtures, new generation superplasticiser.

MINERAL ADMIXTURE-Fly ash, Silica fume, GCBS, and their effect on concrete property in fresh state and hardened state.

6 Hours

UNIT - 3

MIX DESIGN - Factors affecting mix design, design of concrete mix by BIS method using IS10262 and current American (ACI)/ British (BS) methods. Provisions in revised IS10262-2004.

6 Hours

UNIT - 4

DURABILITY OF CONCRETE - Introduction, Permeability of concrete, chemical attack, acid attack, efflorescence, Corrosion in concrete. Thermal conductivity, thermal diffusivity, specific heat. Alkali Aggregate Reaction, IS456-2000 requirement for durability.

7 Hours

PART - B

UNIT - 5

RMC concrete - manufacture, transporting, placing, precautions, Methods of concreting- Pumping, under water concreting, shotcrete, High volume fly ash concrete concept, properties, typical mix

Self compacting concrete concept, materials, tests, properties, application and Typical mix.

6 Hours

UNIT - 6

Fiber reinforced concrete - Fibers types and properties, Behavior of FRC in compression, tension including pre-cracking stage and post-cracking stages, behavior in flexure and shear, Ferro cement - materials, techniques of manufacture, properties and application

7 Hours

UNIT - 7

Light weight concrete-materials properties and types. Typical light weight concrete mix High density concrete and high performance concrete-materials, properties and applications, typical mix.

6 Hours

UNIT - 8

Test on Hardened concrete-Effect of end condition of specimen, capping, H/D ratio, rate of loading, moisture condition. Compression, tension and flexure tests. Tests on composition of hardened concrete-cement content, original w/c ratio. NDT tests concepts-Rebound hammer, pulse velocity methods.

7 Hours

TEXT / REFERENCE BOOKS:

- 1. **Properties of Concrete** Neville, A.M. ELBS Edition, Longman Ltd., London
- 2. Concrete Technology- M.S. Shetty
- 3. **Concrete Technology-** A.R. Santhakumar,-Oxford University Press.
- 4. **Concrete** P.K. Mehta, P J M Monteiro,- Prentice Hall, New Jersey (Special Student Edition by Indian Concrete Institute Chennai)
- 5. ACI Code for Mix Design
- 6. IS 10262-2004
- 7. Concrete Mix Design- N. Krishna Raju Sehgal Publishers
- 8. Concrete Manual- Gambhir M.L.- Dhanpat Rai & Sons, New Delhi
- 9. Advanced Concrete Technology Processes- John Newman, Ban Seng Choo, London.
- 10. Advanced Concrete Technology Constituent materials- John Newman, Ban Seng Choo- London
- 11. Non-Destructive Test and Evaluation of Materials- J.Prasad, C G K Nair,-Mc Graw Hill.
- 12. High Performance Concrete- Prof Aitcin P C- E and FN, London.
- 13. Properties of Fresh Concrete- Power T.C.- E and FN, London

ENVIRONMENTAL IMPACT ASSESSMENT

Subject Code	: 10CV847	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Development Activity and Ecological Factors EIA, Rapid and Comprehensive EIA, EIS, FONSI. Need for EIA Studies, Baseline Information,

6 Hours

UNIT - 2

Step-by-step procedures for conducting EIA, Limitations of EIA.

6 Hours

UNIT - 3

Frame work of Impact Assessment. Development Projects-Environmental Setting, Objectives and Scope, Contents of EIA, Methodologies, Techniques of EIA.

8 Hours

UNIT - 4

Assessment and Prediction of Impacts on Attributes Air, Water, Noise, Land Ecology, Soil, Cultural and Socio-economic Environment. EIA guidelines for Development Projects, Rapid and Comprehensive EIA.

6 Hours

PART - B

UNIT - 5

EIA guidelines for Development Projects, Rapid and Comprehensive EIA.

UNIT - 6

Public Participation in Environmental Decision making. Practical Considerations in preparing Environmental Impact Assessment and Statements.

6 Hours

6 Hours

UNIT - 7

Salient Features of the Project Activity-Environmental Parameter Activity Relationships- Matrices.

4 Hours

UNIT - 8

EIA for Water resource developmental projects, Highway projects: Nuclear-Power plant projects, Mining project (Coal, Iron ore), Thermal Power Plant, Infrastructure Construction Activities.

10 Hours

REFERENCES

- 1. Environmental Impact Analysis-Jain R.K.-Van Nostrand Reinhold Co.
- 2. Environment Impact Assessment.- Anjaneyalu. Y.
- 3. Guidelines for EIA of developmental Projects Ministry of Environment and Forests, GOI.
- 4. **Environment Impact Assessment** Larry W. Canter McGraw Hill Publication.

ADVANCED DESIGN OF RCC STRUCTURES

Subject Code	: 14CSE12	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

Objectives:

The objectives of this course is to make students to learn principles of Structural Design, To design different types of structures and to detail the structures. To evaluate performance of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Structural Design
- Design and develop analytical skills.
- Summarize the principles of Structural Design and detailing
- Understands the structural performance.
- 1. Yield line method of design of slabs. Design of flat slabs.
- 2. Design of grid floors.
- 3. Design of continuous beams with redistribution of moments
- 4. Design of Chimneys, Design of silos and bunkers.
- 5. Art of detailing earthquake resistant structures. Expansion and contraction joints

REFERENCE BOOKS:

- 1. A Park and Paulay, "Reinforced Reinforced and Prestressed Concrete"
- 2. Lin TY and Burns N H, "Reinforced Concrete Design".
- 3. Kong KF and Evans T H "Design of Prestressed Concrete Structures
- 4. P.C.Varghese, "Advanced Reinforced Concrete Design", Prentice-Hall of India, New Delhi, 2005.
- 5. Dr.B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Comprehensive RCC Design"

STRUCTURAL DYNAMICS

Subject Code	: 14CSE14	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

Objectives:

The objectives of this course is to make students to learn principles of Structural Dynamics, To implement these principles through different methods and to apply the same for free and forced vibration of structures. To evaluate the dynamic characteristics of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Structural Dynamics
- Design and develop analytical skills.
- Summarize the Solution techniques for dynamics of Multi-degree freedom systems
- Understand the concepts of damping in structures.
- 1. Introduction: Introduction to Dynamic problems in Civil Engineering, Concept of degrees of freedom, D'Alembert's principle, principle of virtual displacement and energy principles Dynamics of Single-degree-of-freedom systems: Mathematical models of Single-degree-of-freedom systems system, Free vibration response of damped and undamped systems. Methods of evaluation of damping.
- 2. Response of Single-degree-of-freedom systems to harmonic loading (rotation unbalance, reciprocating unbalance) including support motion, vibration isolation, transmissibility, Numerical methods applied to Single-degree-of-freedom systems Duhamel integral, principle of vibration-measuring instruments seismometer and accelerometer.
- **3.** Dynamics of Multi-degree freedom systems: Mathematical models of multi-degree-of-freedom systems, Shear building concept, free vibration of undamped multi-degree-of-freedom systems Natural frequencies and mode shapes orthogonality property of modes.
- 4. Response of Shear buildings for harmonic loading without damping using normal mode approach. Response of Shear buildings for forced vibration for harmonic loading with damping using normal mode approach, condition of damping uncoupling.
- 5. Approximate methods: Rayleigh's method Dunkarley's method, Stodola's method. Dynamics of Continuous systems: Free longitudinal vibration of bars, flexural vibration of beams with different end conditions,- Stiffness matrix, mass matrix (lumped and consistent); equations of motion for the discretised beam in matrix form.

Books for Reference:

- 1. Dynamics of Structures Theory and Application to Earthquake Engineering"- 2nd ed., Anil K. Chopra, Pearson Education.
- 2. Earthquake Resistant Design of Building Structures, Vinod Hosur, WILEY (india)
- 3. Vibrations, structural dynamics- M. Mukhopadhaya : Oxford IBH
- 4. Structural Dynamics- Mario Paz: CBS publishers.
- 5. Structural Dynamics- Clough & Penzien : TMH
- 6. Vibration Problems in Engineering Timoshenko, S, Van-Nostrand Co.
ELECTIVE - I

SPECIAL CONCRETE

Subject Code	: 14CSE152	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of Concrete mix design, To differentiate between different types of concrrete. To characterize the high Performance concrete.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of Concrete mix design
- Design and develop analytical skills.
- Summerize the Light Weight concrete, Fibre reinforced concrete and High Performance concrete:
- Understand the concepts of high Performance concrete.
- 1. Components of modern concrete and developments in the process and constituent materials : Role of constituents, Development in cements and cement replacement materials, pozzolona, fly ash, silica fume, rice husk ash, recycled aggregates, chemical admixtures. Mix proportioning of Concrete: Principles and methods.
- 2. Light Weight concrete: Introduction, classification, properties, strength and durability, mix proportioning and problems. High density concrete: Radiation shielding ability of concrete, materials for high density concrete, mix proportioning, properties in fresh and hardened state, placement methods.
- **3.** Ferro cement: Ferrocement materials, mechanical properties, cracking of ferrocement, strength and behaviour in tension, compression and flexure, Design of ferrocement in tension, ferrocement constructions, durability, and applications.
- 4. *Fibre reinforced concrete:* Fibre materials, mix proportioning, distribution and orientation, interfacial bond, properties in fresh state, strength and behavior in tension, compression and flexure of steel fibre reinforced concrete, mechanical properties, crack arrest and toughening mechanism, applications.
- **5.** High Performance concrete: constituents, mix proportioning, properties in fresh and hardened states, applications and limitations. Ready Mixed Concrete, Self Compacting Concrete, Reactive powder concrete, bacterial concrete.

- 1. Neville A.M, "Properties of Concrete" Pearson Education Asis, 2000
- 2. P. Kumar Mehta, Paul J.N.Monterio, CONCRETE, "Microstructure, Properties and Materials"- Tata McGraw Hill
- 3. A.R.Santhakumar, (2007) "Concrete Technology"-Oxford University Press, New Delhi, 2007
- 4. Gambhir "Concrete Technology" TMH.
- 5. Short A and Kinniburgh.W, "Light Weight Concrete"- Asia Publishing House, 1963
- 6. Aitcin P.C. "High performance concrete"-E and FN, Spon London 1998
- 7. Rixom.R. and Mailvaganam.N., "Chemical admixtures in concrete"- E and FN, Spon London 1999
- 8. Rudnai.G., "Light Wiehgt concrete"- Akademiaikiado, Budapest, 1963.

STRUCTURAL ENGINEERING LAB-1

Subject Code	: 14CSE16	IA Marks	: 25
No. of Lab Hrs./ Week	: 03	Exam Hrs	: 03
Total No. of Lab Hrs.	: 48	Exam Marks	:50

The objectives of this course is to make students to learn principles of design of experiments, To investigate the performance of structural elements . To evaluate the different testing methods and equipments. .

Course Outcomes: On completion of this course, students are able to

Achieve Knowledge of design and development of experimenting skills. •

- Understand the principles of design of experiments
- Design and develop analytical skills.
- Summerize the testing methods and equipments. .
- 1. Testing of beams for deflection, flexure and shear 12 Hrs 12 Hrs
- 2. Experiments on Concrete, including Mix design
- 3. Experiments on vibration of multi storey frame models for Natural frequency and modes. 12Hrs

4. Use of Non destructive testing (NDT) equipments - Rebound hammer, Ultra sonic pulse velocity meter and Profometer

12 Hrs

EARTHQUAKE RESISTANT STRUCTURES

Subject Code	: 14CSE22	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of engineering seismology, To design the reinforced concrete buildings for earthquake resistance. To evaluate the seismic response of the structures.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of engineering seismology
- Design and develop analytical skills.
- Summarize the Seismic evaluation and retrofitting of structures.
- Understand the concepts of earthquake resistance of reinforced concrete buildings.
- 1. Introduction to engineering seismology, Geological and tectonic features of India, Origin and propagation of seismic waves, characteristics of earthquake and its quantification Magnitude and Intensity scales, seismic instruments. Earthquake Hazards in India, Earthquake Risk Evaluation and Mitigation. Structural behavior under gravity and seismic loads, Lateral load resisting structural systems, Requirements of efficient earthquake resistant structural system, damping devises, base isolation systems.
- 2. The Response history and strong motion characteristics. Response Spectrum elastic and inelastic response spectra, tripartite (D-V-A) response spectrum, use of response spectrum in earthquake resistant design.Computation of seismic forces in multi-storeyed buildings using procedures (Equivalent lateral force and dynamic analysis) as per IS-1893.
- 3. Structural Configuration for earthquake resistant design, Concept of plan irregularities and vertical irregularities, Soft storey, Torsion in buildings. Design provisions for these in IS-1893. Effect of infill masonry walls on frames, modeling concepts of infill masonry walls. Behaviour of masonry buildings during earthquakes, failure patterns, strength of masonry in shear and flexure, Slenderness concept of masonry walls, concepts for earthquake resistant masonry buildings codal provisions.
- 4. Design of Reinforced concrete buildings for earthquake resistance-Load combinations, Ductility and energy absorption in buildings. confinement of concrete for ductility, design of columns and beams for ductility, ductile detailing provisions as per IS-1893. Structural behavior, design and ductile detailing of shear walls.
- 5. Seismic response control concepts Seismic demand, seismic capacity, Overview of linear and nonlinear procedures of seismic analysis. Performance Based Seismic Engineering methodology, Seismic evaluation and retrofitting of structures.

Books for Reference:

- 1. Dynamics of Structures Theory and Application to Earthquake Engineering- 2nd ed. Anil K. Chopra, Pearson Education.
- 2. Earthquake Resistant Design of Building Structures, Vinod Hosur, WILEY (india)
- 3. Earthquake Resistant Design of Structures, Duggal, Oxford University Press
- 4. Earthquake resistant design of structures Pankaj Agarwal, Manish Shrikande PHI India
- 5. IS 1893 (Part I): 2002, IS 13920: 1993, IS 4326: 1993, IS-13828: 1993
- 6. Design of Earthquake Resistant Buildings, Minoru Wakabayashi, McGraw Hill Pub.
- 7. Seismic Design of Reinforced Concrete and Masonry Buildings, T Paulay and M J N Priestley, John Wiley and Sons

FINITE ELEMENT METHOD OF ANALYSIS

Subject Code	: 14CSE23	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of Analysis of Stress and Strain, To apply the Finite Element Method for the analysis of one and two dimensional problems. To evaluate the stress and strain parameters and their inter relations of the continuum.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of stress-strain behaviour of continuum
- Design and develop analytical skills.
- Describe the state of stress in a continuum
- Understand the concepts of elasticity and plasticity.
- Basic concepts of elasticity Kinematic and Static variables for various types of structural problems approximate method of structural analysis – Rayleigh – Ritz method – Finite difference method – Finite element method. Variation method and minimization of Energy approach of element formulation.Principles of finite element method – advantages & disadvantages – Finite element procedure. Finite elements used for one, two & three dimensional problems – Element aspect ratio – mesh refinement vs. higher order elements – Numbering of nodes to minimize band width.
- 2. Nodal displacement parameters Convergence criterion Compatibility requirements Geometric invariance Shape function Polynomial form of displacement function. Generalized and Natural coordinates Lagrangian interpolation function shape functions for one, two & three dimensional elements.
- **3.** Isoparametric elements Internal nodes and higher order elements Serendipity and Lagrangian family of Finite Elements Sub parametric and Super parametric elements Condensation of internal nodes Jacobian transformation Matrix. Development of strain displacement matrix and stiffness matrix, consistent load vector, numerical integration.
- 4. Application of Finite Element Method for the analysis of one & two dimensional problems Analysis of simple beams and plane trusses Application to plane stress / strain / axisymmetric problems using CST & Quadrilateral Elements.
- **5.** Application to Plates & Shells- Choice of displacement function (C, C and C type) Techniques for Non linear Analysis.

- 1. Krishnamoorthy C S, "Finite Element Analysis"- Tata McGraw Hill
- 2. Desai C and Abel J F, "Introduction to the Finite Element Method"- East West Press Pvt. Ltd., 1972
- 3. Bathe K J, "Finite Element Procedures in Engineering Analysis" Prentice Hall
- 4. Rajasekaran. S, "Finite Element Analysis in Engineering Design"-Wheeler Publishing
- Cook R D, Malkan D S & Plesta M.E, "Concepts and Application of Finite Element Analysis" 3rd Edition, John Wiley and Sons Inc., 1989
- 6. Shames I H and Dym C J, "**Energy and Finite Element Methods in Structural Mechanics**"- McGraw Hill, New York, 1985

DESIGN CONCEPTS OF SUBSTRUCTURES

Subject Code	: 14CSE24	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of subsoil exploration, To design the sub structures. To evaluate the soil shear strength parameters.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of subsoil exploration
- Design and develop analytical skills.
- Identify and evaluate the soil shear strength parameters .
- Understand the concepts of Settlement analysis.
- 1. Introduction, Site investigation, In-situ testing of soils, Subsoil exploration, Classification of foundations systems. General requirement of foundations, Selection of foundations, Computations of Loads, Design concepts.
- 2. Concept of soil shear strength parameters, Settlement analysis of footings, Shallow foundations in clay, Shallow foundation in sand & C- Φ soils, Footings on layered soils and sloping ground, Design for Eccentric or Moment Loads.
- 3. Types of rafts, bearing capacity & settlements of raft foundation, Rigid methods, Flexible methods, soil-structure interaction, different methods of modeling the soil. Combined footings (rectangular & trapezoidal), strap footings & wall footings, Raft super structure interaction effects & general concepts of structural design, Basement slabs.
- 4. Deep Foundations: Load Transfer in Deep Foundations, Types of Deep Foundations, Ultimate bearing capacity of different types of piles in different soil conditions, Laterally loaded piles, tension piles & batter piles, Pile groups: Bearing capacity, settlement, uplift capacity, load distribution between piles, Proportioning and design concepts of piles.
- 5. Types of caissons, Analysis of well foundations, Design principles, Well construction and sinking. Foundations for tower structures: Introduction, Forces on tower foundations, Selection of foundation type, Stability and design considerations, Ring foundations general concepts.

IMPORTANT NOTE:

Only design principles of all type footings as per relevant BIS codes are to be covered, design of RC elements need not be covered

- 1. Swami Saran "Analysis & Design of Substructures"- Oxford & IBH Pub. Co. Pvt. Ltd., 1998.
- 2. Nainan P Kurian "Design of Foundation Systems" Narosa Publishing House, 1992.
- 3. R.B. Peck, W.E. Hanson & T.H. Thornburn "Foundation Engineering"- Wiley Eastern Ltd., Second Edition, 1984.
- 4. J.E. Bowles "Foundation Analysis and Design"- McGraw-Hill Int. Editions, Fifth Ed., 1996.
- 5. W.C. Teng "Foundation Design"- Prentice Hall of India Pvt. Ltd., 1983.
- 6. Bureau of Indian Standards:IS-1498, IS-1892, IS-1904, IS-6403, IS-8009, IS-2950, IS-11089, IS-11233, IS-2911 and all other relevant codes.

DESIGN OF TALL STRUCTURES

Subject Code	: 14CSE252	IA Marks	: 50
No. of Lecture Hrs./ Week	: 04	Exam Hrs	: 03
Total No. of Lecture Hrs.	: 50	Exam Marks	: 100

The objectives of this course is to make students to learn principles of stability of tall buildings, To design the tall buildings for earthquake and wind resistance. To evaluate the performance of tall structures for strength and stability.

Course Outcomes: On completion of this course, students are able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the principles of strength and stability
- Design and develop analytical skills.
- Summarize the behavior of various structural systems.
- Understand the concepts of P-Delta analysis.
- 1. Design Criteria: Design philosophy, loading, sequential loading, and materials high performance concrete, fiber reinforced concrete, lightweight concrete, design mixes. Loading and Movement: Gravity loading: Dead and live load, methods of live load reduction, Impact, Gravity loading, Construction loads
- **2.** Wind loading: static and dynamic approach, Analytical and wind tunnel experimentation method. Earthquake loading: Equivalent lateral force, modal analysis, combinations of loading, working stress design, Limit state design, Plastic design.
- **3.** Behavior of Various Structural Systems: Factors affecting growth, Height and structural form; High rise behavior, Rigid frames, braced frames, in-filled frames, shear walls, coupled shear walls, wall-frames, tubular, cores, Futigger braced and hybrid mega system.
- **4. Analysis and Design:** Modeling for approximate analysis, accurate analysis and reduction techniques, analysis of building as total structural system considering overall integrity and major subsystem interaction, analysis for member forces; drift and twist, computerized general three dimensional analyses.
- **5. Stability of Tall Buildings:** Overall buckling analysis of frames, wall frames, approximate methods, second order effects of gravity of loading, P-Delta analysis, simultaneous first order and P-Delta analysis, Transnational, Torsional instability, out of plum effects, stiffness of member in stability, effect of foundation rotation. Structural elements: sectional shapes, properties and resisting capacities, design, deflection, cracking, pre-stressing, shear flow. Design for differential movement, creep and shrinkage effects, temperature effects and fire

- 1. Taranath B.S, "Structural Analysis and Design of Tall Buildings"- McGraw Hill
- 2. Wilf gang Schuller, "High rise building structures" John Wiley
- 3. Bryan Stafford Smith & Alexcoull, "Tall building structures Analysis and Design"- John Wiley
- 4. T.Y Lin & D.Stotes Burry, "Structural concepts and system for Architects and Engineers"- John Wiley
- 5. Lynn S.Beedle, "Advances in Tall Buildings"- CBS Publishers and Distributors.
- 6. Dr. Y.P. Gupta Editor, "Proceedings National Seminar on High Rise Structures- Design and Construction practices for middle level cities"- New Age International Limited.
- 7.

STRUCTURAL ENGINEERING LAB-2

Subject Code	: 14CSE26	IA Marks	: 25
No. of Lab Hrs./ Week	: 03	Exam Hrs	: 03
Total No. of Lab Hrs.	: 48	Exam Marks	:50

The objectives of this course is to make students to learn the soft wares for structural analysis and design, To investigate the performance of structures for static and dynamic forces.

Course Outcomes: On completion of this course, students are able to

• Achieve Knowledge of design and development of programming skills.

- Understand the principles of structural analysis and design
- Design and develop analytical skills.
- Summerize the performance of structures for static and dynamic forces..

1. Static and Dynamic analysis of Building structure using software (ETABS / STAADPRO)	12 Hrs
2. Design of RCC and Steel structure using software (ETABS / STAADPRO)	12 Hrs
3. Analysis of folded plates and shells using software.	12 Hrs
4. Preparation of EXCEL sheets for structural design.	12 Hrs

Subject Code:	10IS51	I.A. Marks : 25
Hours/Week :	04	Exam Hours: 03
Total Hours :	52	Exam Marks: 100

PART – A

UNIT - 1

6 Hours

Overview: Introduction: FAQ's about software engineering, Professional and ethical responsibility. Socio-Technical systems: Emergent system properties; Systems engineering;

Organizations, people and computer systems; Legacy systems.

UNIT - 2

6 Hours

Critical Systems, Software Processes: Critical Systems: A simple safetycritical system; System dependability; Availability and reliability.

Software Processes: Models, Process iteration, Process activities; The Rational Unified Process; Computer Aided Software Engineering.

UNIT-3

7 Hours

Requirements: Software Requirements: Functional and Non-functional requirements; User requirements; System requirements; Interface specification; The software requirements document.

Requirements Engineering Processes: Feasibility studies; Requirements elicitation and analysis; Requirements validation; Requirements management.

UNIT - 4

7 Hours System models, Project Management: System Models: Context models; Behavioral models; Data models; Object models; Structured methods. Project Management: Management activities; Project planning; Project scheduling; Risk management

PART - B

UNIT - 5

7 Hours

Software Design: Architectural Design: Architectural design decisions; System organization; Modular decomposition styles; Control styles.

Object-Oriented design: Objects and Object Classes; An Object-Oriented design process; Design evolution.

UNIT - 6

6 Hours

Development: Rapid Software Development: Agile methods; Extreme programming; Rapid application development.

Software Evolution: Program evolution dynamics; Software maintenance; Evolution processes; Legacy system evolution.

UNIT – 7

7 Hours

Verification and Validation: Verification and Validation: Planning; Software inspections; Automated static analysis; Verification and formal methods.

Software testing: System testing; Component testing; Test case design; Test automation.

UNIT-8

6 Hours

Management: Managing People: Selecting staff; Motivating people; Managing people; The People Capability Maturity Model.

Software Cost Estimation: Productivity; Estimation techniques; Algorithmic cost modeling, Project duration and staffing.

Text Books:

Software Engineering, 8th Edition, Pearson 1. Ian Sommerville: Education, 2007.

(Chapters-: 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 21, 22, 23, 25, 26)

Reference Books:

- Roger.S.Pressman: Software Engineering-A Practitioners approach, 1. 7th Edition, Tata McGraw Hill, 2007.
- 2. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India, 2009.

DATABASE MANAGEMENT SYSTEMS

Subject Code: 10CS54	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT - 1

6 Hours

6 Hours

Introduction: Introduction; An example; Characteristics of Database approach; Actors on the screen; Workers behind the scene; Advantages of using DBMS approach; A brief history of database applications; when not to use a DBMS.

Data models, schemas and instances; Three-schema architecture and data independence; Database languages and interfaces; The database system environment; Centralized and client-server architectures; Classification of Database Management systems.

UNIT - 2

Entity-Relationship Model: Using High-Level Conceptual Data Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types; Refining the ER Design; ER Diagrams, Naming Conventions and Design Issues; Relationship types of degree higher than two.

UNIT - 3

Relational Model and Relational Algebra : Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update

Operations, Transactions and dealing with constraint violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations : JOIN and DIVISION; Additional Relational Operations; Examples of Queries in Relational Algebra; Relational Database Design Using ER- to-Relational Mapping.

UNIT - 4

6 Hours **SQL** – 1: SQL Data Definition and Data Types; Specifying basic constraints in SQL; Schema change statements in SQL; Basic queries in SQL; More complex SQL Queries.

UNIT – 5

PART - B

SQL - 2 : Insert, Delete and Update statements in SQL; Specifying constraints as Assertion and Trigger; Views (Virtual Tables) in SQL; Additional features of SQL; Database programming issues and techniques; Embedded SQL, Dynamic SQL; Database stored procedures and SQL / PSM.

UNIT - 6

Database Design – 1: Informal Design Guidelines for Relation Schemas; Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form

UNIT - 7

Database Design -2: Properties of Relational Decompositions; Algorithms for Relational Database Schema Design; Multivalued Dependencies and Fourth Normal Form; Join Dependencies and Fifth Normal Form; Inclusion Dependencies; Other Dependencies and Normal Forms

8 Hours

6 Hours

6 Hours

UNIT – 8

Transaction Management: The ACID Properties; Transactions and Schedules; Concurrent Execution of Transactions; Lock- Based Concurrency Control; Performance of locking; Transaction support in SQL; Introduction to crash recovery; 2PL, Serializability and Recoverability; Lock Management; Introduction to ARIES; The log; Other recovery-related structures; The write-ahead log protocol; Checkpointing; Recovering from a System Crash; Media Recovery; Other approaches and interaction with concurrency control.

Text Books:

1. Elmasri and Navathe: Fundamentals of Database Systems, 5th Edition, Pearson Education, 2007.

(Chapters 1, 2, 3 except 3.8, 5, 6.1 to 6.5, 7.1, 8, 9.1, 9.2 except SOLJ, 9.4, 10)

2. Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, 3rd Edition, McGraw-Hill, 2003. (Chapters 16, 17.1, 17.2, 18)

Reference Books:

- 1. Silberschatz, Korth and Sudharshan: Data base System Concepts, 6th Edition, Mc-GrawHill, 2010.
- 2. C.J. Date, A. Kannan, S. Swamynatham: An Introduction to Database Systems, 8th Edition, Pearson Education, 2006.

COMPUTER NETWORKS - I

Subject Code: 10CS55	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART – A

UNIT - 1

Introduction: Data Communications, Networks, The Internet, Protocols & Standards, Layered Tasks,

The OSI model, Layers in OSI model, TCP/IP Protocol suite, Addressing

UNIT-2

Physical Layer-1: Analog & Digital Signals, Transmission Impairment, Data Rate limits, Performance, Digital-digital conversion (Only Line coding: Polar, Bipolar and Manchester coding), Analog-to-digital conversion (only PCM), Transmission Modes, Digital-to-analog conversion

UNIT-3

Physical Layer-2 and Switching: Multiplexing, Spread Spectrum, Introduction to switching, Circuit Switched Networks, Datagram Networks, Virtual Circuit Networks

UNIT-4

Data Link Layer-1: Error Detection & Correction: Introduction, Block coding, Linear block codes, Cyclic codes, Checksum.

PART - B

UNIT-5

6 Hours Data Link Layer-2: Framing, Flow and Error Control, Protocols, Noiseless Channels, Noisy channels, HDLC, PPP (Framing, Transition phases only)

UNIT-6

Multiple Access & Ethernet: Random access, Controlled Access, Channelization, Ethernet: IEEE standards, Standard Ethernet, Changes in the standard, Fast Ethernet, Gigabit Ethernet

6 Hours

6 Hours

7 Hours

7 Hours

7 Hours

UNIT - 7

6 Hours

Wireless LANs and Cellular Networks: Introduction, IEEE 802.11,

Bluetooth, Connecting devices, Cellular Telephony

UNIT - 8:

7 Hours

Network Layer: Introduction, Logical addressing, IPv4 addresses, IPv6 addresses, Internetworking basics,

IPv4, IPv6, Comparison of IPv4 and IPv6 Headers.

Text Books:

 Behrouz A. Forouzan,: Data Communication and Networking, 4th Edition Tata McGraw-Hill, 2006. (Chapters 1.1 to 1.4, 2.1 to 2.5, 3.1 To 3.6, 4.1 to 4.3, 5.1, 6.1, 6.2, 8.1 to 8.3, 10.1 to 10.5, 11.1 to 11.7, 12.1 to 12.3, 13.1 to 13.5, 14.1, 14.2, 15.1, 16.1, 19.1, 19.2, 20.1 to 20.3)

Reference Books:

- 1. Alberto Leon-Garcia and Indra Widjaja: Communication Networks -Fundamental Concepts and Key architectures, 2nd Edition Tata McGraw-Hill, 2004.
- 2. William Stallings: Data and Computer Communication, 8th Edition, Pearson Education, 2007.
- Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 4th Edition, Elsevier, 2007.
- 4. Nader F. Mir: Computer and Communication Networks, Pearson Education, 2007.

DATABASE APPLICATIONS LABORATORY

Subject Code: 10CSL57	I.A. Marks : 25
Hours/Week : 03	Exam Hours: 03
Total Hours : 42	Exam Marks: 50

1. Consider the following relations:

Student (*snum:* integer, *sname:* string, *major:* string, *level:* string, *age:* integer)

Class (*name:* string, *meets at:* string, *room:* string, *d:* integer) Enrolled (*snum:* integer, *cname:* string)

Faculty (fid: integer, *fname:* string, *deptid:* integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per student-class pair such that the student is enrolled in the class. Level is a two character code with 4 different values (example: Junior: JR etc)

Write the following queries in SQL. No duplicates should be printed in any of the answers.

- i. Find the names of all Juniors (level = JR) who are enrolled in a class taught by Prof. Harshith
- ii. Find the names of all classes that either meet in room R128 or have five or more Students enrolled.
- iii. Find the names of all students who are enrolled in two classes that meet at the same time.
- iv. Find the names of faculty members who teach in every room in which some class is taught.
- v. Find the names of faculty members for whom the combined enrollment of the courses that they teach is less than five.
- 2. The following relations keep track of airline flight information: Flights (*no:* integer, *from:* string, *to:* string, *distance:* integer, *Departs:* time, *arrives:* time, *price:* real)

Aircraft (*aid:* integer, *aname:* string, *cruisingrange:* integer) Certified (*eid:* integer, *aid:* integer) Employees (*eid:* integer, *ename:* string, *salary:* integer) Note that the Employees relation describes pilots and other kinds of employees as well; Every pilot is certified for some aircraft, and only pilots are certified to fly. Write each of the following queries in SQL.

- i. Find the names of aircraft such that all pilots certified to operate them have salaries more than Rs.80, 000.
- ii. For each pilot who is certified for more than three aircrafts, find the *eid* and the maximum *cruisingrange* of the aircraft for which she or he is certified.
- iii. Find the names of pilots whose *salary* is less than the price of the cheapest route from Bengaluru to Frankfurt.
- iv. For all aircraft with *cruisingrange* over 1000 Kms, .find the name of the aircraft and the average salary of all pilots certified for this aircraft.
- v. Find the names of pilots certified for some Boeing aircraft.
- vi. Find the *aids* of all aircraft that can be used on routes from Bengaluru to New Delhi.
- 3. Consider the following database of student enrollment in courses & books adopted for each course.

STUDENT (regno: string, name: string, major: string, bdate:date)COURSE (course #:int, cname:string, dept:string)ENROLL (regno:string, course#:int, sem:int, marks:int)BOOK _ ADOPTION (course#:int, sem:int, book-ISBN:int)TEXT (book-ISBN:int, book-title:string, publisher:string, author:string)

- i. Create the above tables by properly specifying the primary keys and the foreign keys.
- ii. Enter at least five tuples for each relation.
- iii. Demonstrate how you add a new text book to the database and make this book be adopted by some department.
- iv. Produce a list of text books (include Course #, Book-ISBN, Book-title) in the alphabetical order for courses offered by the 'CS' department that use more than two books.
- v. List any department that has *all* its adopted books published by a specific publisher.
- vi. Generate suitable reports.
- vii. Create suitable front end for querying and displaying the results.
- 4. The following tables are maintained by a book dealer.

AUTHOR (<u>author-id</u>:int, name:string, city:string, country:string) PUBLISHER (<u>publisher-id</u>:int, name:string, city:string, country:string)

CATALOG (<u>book-id</u>:int, title:string, author-id:int, publisher-id:int, category-id:int, year:int, price:int)

CATEGORY (category-id:int, description:string)

ORDER-DETAILS (order-no:int, book-id:int, quantity:int)

- i. Create the above tables by properly specifying the primary keys and the foreign keys.
- ii. Enter at least five tuples for each relation.
- iii. Give the details of the authors who have 2 or more books in the catalog and the price of the books is greater than the average price of the books in the catalog and the year of publication is after 2000.
- iv. Find the author of the book which has maximum sales.
- v. Demonstrate how you increase the price of books published by a specific publisher by 10%.
- vi. Generate suitable reports.
- vii. Create suitable front end for querying and displaying the results.
- Consider the following database for a banking enterprise BRANCH(<u>branch-name</u>:string, branch-city:string, assets:real) ACCOUNT(<u>accno</u>:int, branch-name:string, balance:real) DEPOSITOR(<u>customer-name</u>:string, <u>accno</u>:int) CUSTOMER(<u>customer-name</u>:string, <u>customer-street</u>:string, customer-city:string) LOAN(<u>loan-number</u>:int, branch-name:string, amount:real)

BORROWER(customer-name:string, loan-number:int)

- i. Create the above tables by properly specifying the primary keys and the foreign keys
- ii. Enter at least five tuples for each relation
- iii. Find all the customers who have at least two accounts at the *Main* branch.
- iv. Find all the customers who have an account at *all* the branches located in a specific city.
- v. Demonstrate how you delete all account tuples at every branch located in a specific city.
- vi. Generate suitable reports.
- vii. Create suitable front end for querying and displaying the results.

Instructions:

- 1. The exercises are to be solved in an RDBMS environment like Oracle or DB2.
- 2. Suitable tuples have to be entered so that queries are executed correctly.
- 3. Front end may be created using either VB or VAJ or any other similar tool.
- 4. The student need not create the front end in the examination. The results of the queries may be displayed directly.
- 5. Relevant queries other than the ones listed along with the exercises may also be asked in the examination.
- 6. Questions must be asked based on lots.

COMPUTER NETWORKS - II

Subject Code: 10	0CS64	I.A. Marks : 25
Hours/Week : 04	4	Exam Hours: 03
Total Hours : 52	2	Exam Marks: 100

PART - A

UNIT - 1

6 Hours

Packet Switching Networks - 1: Network services and internal network operation, Packet network topology, Routing in Packet networks, Shortest path routing: Bellman-Ford algorithm.

UNIT - 2

6 Hours

Packet Switching Networks – 2: Shortest path routing (continued), Traffic management at the Packet level, Traffic management at Flow level, Traffic management at flow aggregate level.

UNIT - 3

6 Hours

8 Hours

TCP/IP-1: TCP/IP architecture, The Internet Protocol, IPv6, UDP.

UNIT - 4

UNIT - 5

TCP/IP-2: TCP, Internet Routing Protocols, Multicast Routing, DHCP, NAT and Mobile IP.

PART – B

7 Hours

Applications, Network Management, Network Security: Application layer overview, Domain Name System (DNS), Remote Login Protocols, E-mail, File Transfer and FTP, World Wide Web and HTTP, Network management, Overview of network security, Overview of security methods, Secret-key encryption protocols, Public-key encryption protocols, Authentication, Authentication and digital signature, Firewalls.

UNIT – 6

6 Hours

QoS, VPNs, Tunneling, Overlay Networks: Overview of QoS, Integrated Services QoS, Differentiated services QoS, Virtual Private Networks, MPLS, Overlay networks.

UNIT - 7

7 Hours

Multimedia Networking: Overview of data compression, Digital voice and compression, JPEG, MPEG, Limits of compression with loss, Compression methods without loss, Overview of IP Telephony, VoIP signaling protocols, Real-Time Media Transport Protocols, Stream control Transmission Protocol (SCTP)

UNIT – 8

6 Hours

Mobile AdHoc Networks and Wireless Sensor Neworks: Overview of Wireless Ad-Hoc networks, Routing in AdHOc Networks, Routing protocols for and Security of AdHoc networks, Sensor Networks and protocol structures, Communication Energy model, Clustering protocols, Routing protocols, ZigBee technology and 802.15.4.

Text Books:

- Communication Networks Fundamental Concepts & key architectures, Alberto Leon Garcia & Indra Widjaja, 2nd Edition, Tata McGraw-Hill, India (7 - excluding 7.6, 8)
- Computer & Communication Networks, Nadir F Mir, Pearson Education, India (9, 10 excluding 10.7, 12.1 to 12.3, 16, 17.1 to 17.6, 18.1 to18.3, 18.5, 19, 20)

Reference Books:

- 1. Behrouz A. Forouzan: Data Communications and Networking, 4th Edition, Tata McGraw-Hill, 2006.
- 2. William Stallings: Data and Computer Communication, 8th Edition, Pearson Education, 2007.
- Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 4th Edition, Elsevier, 2007.
- 4. Wayne Tomasi: Introduction to Data Communications and Networking, Pearson Education, 2005.

OBJECT-ORIENTED MODELING AND DESIGN

Subject Code: 10CS71	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

$\mathbf{PART} - \mathbf{A}$

UNIT – 1 Introduction, Modeling Concepts, class Me

Introduction, Modeling Concepts, class Modeling: What is Object Orientation? What is OO development? OO themes; Evidence for usefulness of OO development; OO modeling history

Modeling as Design Technique: Modeling; abstraction; The three models. Class Modeling: Object and class concepts; Link and associations concepts; Generalization and inheritance; A sample class model; Navigation of class models; Practical tips.

UNIT - 2

6 Hours

7 Hours

Advanced Class Modeling, State Modeling: Advanced object and class concepts; Association ends; N-ary associations; Aggregation; Abstract classes; Multiple inheritance; Metadata; Reification; Constraints; Derived data; Packages; Practical tips.

State Modeling: Events, States, Transitions and Conditions; State diagrams; State diagram behavior; Practical tips.

UNIT - 3

Advanced State Modeling, Interaction Modeling: Advanced State Modeling: Nested state diagrams; Nested states; Signal generalization; Concurrency; A sample state model; Relation of class and state models; Practical tips.

Interaction Modeling: Use case models; Sequence models; Activity models. Use case relationships; Procedural sequence models; Special constructs for activity models.

UNIT – 4

7 Hours

7 Hours

Process Overview, System Conception, Domain Analysis: Process Overview: Development stages; Development life cycle.

System Conception: Devising a system concept; Elaborating a concept; Preparing a problem statement.

Domain Analysis: Overview of analysis; Domain class model; Domain state model; Domain interaction model; Iterating the analysis.

PART - B

UNIT – 5

Application Analysis, System Design: Application Analysis: Application interaction model; Application class model; Application state model; Adding operations.

Overview of system design; Estimating performance; Making a reuse plan; Breaking a system in to sub-systems; Identifying concurrency; Allocation of sub-systems; Management of data storage; Handling global resources; Choosing a software control strategy; Handling boundary conditions; Setting the trade-off priorities; Common architectural styles; Architecture of the ATM system as the example.

UNIT – 6

7 Hours

Class Design, Implementation Modeling, Legacy Systems: Class Design: Overview of class design; Bridging the gap; Realizing use cases; Designing algorithms; Recursing downwards, Refactoring; Design optimization; Reification of behavior; Adjustment of inheritance; Organizing a class design; ATM example.

Implementation Modeling: Overview of implementation; Fine-tuning classes; Fine-tuning generalizations; Realizing associations; Testing.

Legacy Systems: Reverse engineering; Building the class models; Building the interaction model; Building the state model; Reverse engineering tips; Wrapping; Maintenance.

UNIT – 7

Design Patterns – 1: What is a pattern and what makes a pattern? Pattern categories; Relationships between patterns; Pattern description Communication Patterns: Forwarder-Receiver; Client-Dispatcher-Server; Publisher-Subscriber.

UNIT – 8

6 Hours

6 Hours

Design Patterns – 2, Idioms: Management Patterns: Command processor; View handler.

Idioms: Introduction; what can idioms provide? Idioms and style; Where to find idioms; Counted Pointer example

Text Books:

- Michael Blaha, James Rumbaugh: Object-Oriented Modeling and Design with UML, 2nd Edition, Pearson Education, 2005. (Chapters 1 to 17, 23)
- Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern-Oriented Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2007. (Chapters 1, 3.5, 3.6, 4)

Reference Books:

- 1. Grady Booch et al: Object-Oriented Analysis and Design with Applications, 3rd Edition, Pearson Education, 2007.
- 2. Brahma Dathan, Sarnath Ramnath: Object-Oriented Analysis, Design, and Implementation, Universities Press, 2009.

- Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado: 3. UML 2 Toolkit, Wiley- Dreamtech India, 2004.
- Simon Bennett, Steve McRobb and Ray Farmer: Object-Oriented Systems Analysis and Design Using UML, 2nd Edition, Tata McGraw-Hill, 2002.

EMBEDDED COMPUTING SYSTEMS

Sub Code: 10CS72	IA Marks :25	;
Hrs/Week: 04	Exam Hours :03	3
Total Hrs: 52	Exam Marks :10)0

PART-A

UNIT - 1

6 Hours Complex Systems and

Embedded **Computing:** Introduction, Microprocessors, Embedded Systems Design Process, Formalism for System design

Design Example: Model Train Controller.

UNIT - 2

7 Hours

Instruction Sets, CPUs: Preliminaries, ARM Processor, Programming Input and Output, Supervisor mode, Exceptions, Traps, Coprocessors, Memory Systems Mechanisms, CPU Performance, CPU Power Consumption. Design Example: Data Compressor.

UNIT - 3

Bus-Based Computer Systems: CPU Bus, Memory Devices, I/O devices, Component Interfacing, Designing with Microprocessor, Development and Debugging, System-Level Performance Analysis Design Example: Alarm Clock.

UNIT - 4

Program Design and Analysis: Components for embedded programs, Models of programs, Assembly, Linking and Loading, Basic Compilation Techniques, Program optimization, Program-Level performance analysis, Software performance optimization, Program-Level energy and power analysis, Analysis and optimization of program size, Program validation and testing. Design Example: Software modem.

PART-B

UNIT - 56 Hours Real Time Operating System (RTOS) Based Design - 1: Basics of OS, Kernel, types of OSs, tasks, processes, Threads, Multitasking and Multiprocessing, Context switching, Scheduling Policies, Task Communication, Task Synchronization.

UNIT-6

RTOS-Based Design - 2: Inter process Communication mechanisms, Evaluating OS performance, Choice of RTOS, Power Optimization. Design Example: Telephone Answering machine

UNIT - 7

7 Hours Distributed Embedded Systems: Distributed Network Architectures, Networks for Embedded Systems: I2C Bus, CAN Bus, SHARC Link Ports, Ethernet, Myrinet, Internet, Network Based Design. Design Example: Elevator Controller.

UNIT-8

7 Hours

6 Hours

Embedded Systems Development Environment: The Integrated Development Environment, Types of File generated on Cross Compilation, Dis-assembler /Decompiler, Simulators, Emulators, and Debugging, Target Hardware Debugging.

Text Books:

1. Wayne Wolf: Computers as Components, Principles of Embedded

7 Hours

Computing Systems Design, 2nd Edition, Elsevier, 2008.

Shibu K V: Introduction to Embedded Systems, Tata McGraw Hill, 2009

(Chapters 10, 13)

Reference Books:

- 1. James K. Peckol: Embedded Systems, A contemporary Design Tool, Wiley India, 2008
- 2. Tammy Neorgaard: Embedded Systems Architecture, Elsevier, 2005.

PROGRAMMING THE WEB

Subject Code: 10CS73	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

UNIT - 1

6 Hours

Fundamentals of Web, XHTML – 1: Internet, WWW, Web Browsers and Web Servers, URLs, MIME, HTTP, Security, The Web Programmers Toolbox.

XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links.

UNIT - 2

7 Hours

6 Hours

XHTML – 2, CSS: XHTML (continued): Lists, Tables, Forms, Frames CSS: Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution.

UNIT - 3

Javascript: Overview of Javascript, Object orientation and Javascript, Syntactic characteristics, Primitives, operations, and expressions, Screen output and keyboard input, Control statements, Object creation and modification, Arrays, Functions, Constructors, Pattern matching using regular expressions, Errors in scripts, Examples.

UNIT - 4

Javascript and HTML Documents, Dynamic Documents with Javascript: The Javascript execution environment, The Document Object Model, Element access in Javascript, Events and event handling, Handling events from the Body elements, Button elements, Text box and Password elements, The DOM 2 event model, The navigator object, DOM tree traversal and modification.

Introduction to dynamic documents, Positioning elements, Moving elements, Element visibility, Changing colors and fonts, Dynamic content, Stacking elements, Locating the mouse cursor, Reacting to a mouse click, Slow movement of elements, Dragging and dropping elements.

PART - B

UNIT – 5

XML: Introduction, Syntax, Document structure, Document type definitions, Namespaces, XML schemas, Displaying raw XML documents, Displaying XML documents with CSS, XSLT style sheets, XML processors, Web services.

UNIT - 6

Perl, CGI Programming: Origins and uses of Perl, Scalars and their operations, Assignment statements and simple input and output, Control statements, Fundamentals of arrays, Hashes, References, Functions, Pattern matching, File input and output; Examples.

The Common Gateway Interface; CGI linkage; Query string format; CGI.pm module; A survey example; Cookies.

Database access with Perl and MySQL

7 Hours

7 Hours

UNIT – 7

6 Hours

PHP: Origins and uses of PHP, Overview of PHP, General syntactic characteristics, Primitives, operations and expressions, Output, Control

statements, Arrays, Functions, Pattern matching, Form handling, Files, Cookies, Session tracking, Database access with PHP and MySQL.

UNIT – 8

7 Hours

Ruby, Rails: Origins and uses of Ruby, Scalar types and their operations, Simple input and output, Control statements, Arrays, Hashes, Methods, Classes, Code blocks and iterators, Pattern matching.

Overview of Rails, Document requests, Processing forms, Rails applications with Databases, Layouts.

Text Books:

1. Robert W. Sebesta: Programming the World Wide Web, 4th Edition, Pearson Education, 2008.

(Listed topics only from Chapters 1 to 9, 11 to 15)

Reference Books:

- 1. M. Deitel, P.J. Deitel, A. B. Goldberg: Internet & World Wide Web How to Program, 4th Edition, Pearson Education, 2004.
- Chris Bates: Web Programming Building Internet Applications, 3rd Edition, Wiley India, 2007.
- 3. Xue Bai et al: The web Warrior Guide to Web Programming, Cengage Learning, 2003.

Web Programming Laboratory

Subject Code: 10CSL78	I.A. Marks : 25
Hours/Week : 03	Exam Hours: 03
Total Hours : 42	Exam Marks: 50

- 1. Develop and demonstrate a XHTML file that includes Javascript script for the following problems:
 - a) Input: A number n obtained using prompt Output: The first n Fibonacci numbers
 - b) Input: A number n obtained using prompt Output: A table of numbers from 1 to n and their squares using **alert**
- a) Develop and demonstrate, using Javascript script, a XHTML document that collects the USN (the valid format is: A digit from 1 to 4 followed by two upper-case characters followed by two digits followed by two upper-case characters followed by three digits; no embedded spaces allowed) of the user. Event handler must be included for the form element that collects this information to validate the input. Messages in the alert windows must be produced when errors are detected.
 b) Modify the above program to get the current semester also (restricted

b) Modify the above program to get the current semester also (restricted to be a number from 1 to 8)

3. a) Develop and demonstrate, using Javascript script, a XHTML document that contains three short paragraphs of text, stacked on top of each other, with only enough of each showing so that the mouse cursor can be placed over some part of them. When the cursor is placed over the exposed part of any paragraph, it should rise to the top to become completely visible.

b) Modify the above document so that when a paragraph is moved from the top stacking position, it returns to its original position rather than to the bottom.

4. a) Design an XML document to store information about a student in an engineering college affiliated to VTU. The information must include

USN, Name, Name of the College, Brach, Year of Joining, and e-mail id. Make up sample data for 3 students. Create a CSS style sheet and use it to display the document.

b) Create an XSLT style sheet for one student element of the above document and use it to create a display of that element.

5. a) Write a Perl program to display various Server Information like Server Name, Server Software, Server protocol, CGI Revision etc.

b) Write a Perl program to accept UNIX command from a HTML form and to display the output of the command executed.

- 6. a) Write a Perl program to accept the User Name and display a greeting message randomly chosen from a list of 4 greeting messages. b) Write a Perl program to keep track of the number of visitors visiting the web page and to display this count of visitors, with proper headings.
- 7. Write a Perl program to display a digital clock which displays the current time of the server.
- 8. Write a Perl program to insert name and age information entered by the user into a table created using MySQL and to display the current contents of this table.
- 9 Write a PHP program to store current date-time in a COOKIE and display the 'Last visited on' date-time on the web page upon reopening of the same page.
- 10. Write a PHP program to store page views count in SESSION, to increment the count on each refresh, and to show the count on web page.
- 11. Create a XHTML form with Name, Address Line 1, Address Line 2, and E-mail text fields. On submitting, store the values in MySQL table. Retrieve and display the data based on Name.
- 12. Build a Rails application to accept book information viz. Accession number, title, authors, edition and publisher from a web page and store the information in a database and to search for a book with the title specified by the user and to display the search results with proper headings.

Note: In the examination each student picks one question from the lot of all 12 questions.

DATA WAREHOUSING AND DATA MINING

Subject Code: 10CS755	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART – A

UNIT - 1**Data Warehousing:**

Introduction, Operational Data Stores (ODS), Extraction Transformation Loading (ETL), Data Warehouses. Design Issues, Guidelines for Data Warehouse Implementation, Data Warehouse Metadata

UNIT - 2

Online Analytical Processing (OLAP): Introduction, Characteristics of OLAP systems, Multidimensional view and Data cube, Data Cube Implementations, Data Cube operations, Implementation of OLAP and overview on OLAP Softwares.

UNIT - 3

Data Mining: Introduction, Challenges, Data Mining Tasks, Types of Data, Data Preprocessing, Measures of Similarity and Dissimilarity, Data Mining Applications

UNIT - 4

Association Analysis: Basic Concepts and Algorithms: Frequent Itemset Generation, Rule Generation, Compact Representation of Frequent Itemsets, Alternative methods for generating Frequent Itemsets, FP Growth Algorithm, Evaluation of Association Patterns

PART - B

6 Hours

Classification -1: Basics, General approach to solve classification problem, Decision Trees, Rule Based Classifiers, Nearest Neighbor Classifiers.

UNIT - 6

UNIT - 5

6 Hours Classification - 2 : Bayesian Classifiers, Estimating Predictive accuracy of classification methods, Improving accuracy of clarification methods, Evaluation criteria for classification methods, Multiclass Problem.

6 Hours

6 Hours

6 Hours

UNIT – 7

8 Hours

Clustering Techniques: Overview, Features of cluster analysis, Types of Data and Computing Distance, Types of Cluster Analysis Methods, Partitional Methods, Hierarchical Methods, Density Based Methods, Quality and Validity of Cluster Analysis

UNIT - 8

6 Hours

Web Mining: Introduction, Web content mining, Text Mining, Unstructured Text, Text clustering, Mining Spatial and Temporal Databases.

Text Books:

- 1. Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Pearson Education, 2005.
- 2. G. K. Gupta: Introduction to Data Mining with Case Studies, 3rd Edition, PHI, New Delhi, 2009.

Reference Books:

- 1. Arun K Pujari: Data Mining Techniques 2nd Edition, Universities Press, 2009.
- 2. Jiawei Han and Micheline Kamber: Data Mining Concepts and Techniques, 2nd Edition, Morgan Kaufmann Publisher, 2006.
- 3. Alex Berson and Stephen J. Smith: Data Warehousing, Data Mining, and OLAP Computing, Mc GrawHill Publisher, 1997.

C# PROGRAMMING AND .NET

Subject Code: 10CS761	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART – A

UNIT – 1

6 Hours

Interfaces and Collections: Defining Interfaces Using C# Invoking Interface Members at the object Level, Exercising the Shapes Hierarchy, Understanding Explicit Interface Implementation, Interfaces As Polymorphic Agents, Building Interface Hierarchies, Implementing, Implementation, Interfaces Using VS .NET, understanding the IConvertible Interface, Building a Custom Enumerator (IEnumerable and Enumerator), Building Cloneable objects (ICloneable), Building Comparable Objects (I Comparable), Exploring the system. Collections Namespace, Building a Custom Container (Retrofitting the Cars Type).

UNIT – 2

8 Hours

Callback Interfaces, Delegates, and Events, Advanced Techniques: Understanding Callback Interfaces, Understanding the .NET Delegate Type, Members of System. Multicast Delegate, The Simplest Possible Delegate Example, , Building More a Elaborate Delegate Example, Understanding Asynchronous Delegates, Understanding (and Using)Events.

The Advances Keywords of C#, A Catalog of C# Keywords Building a Custom Indexer, A Variation of the Cars Indexer Internal Representation of Type Indexer . Using C# Indexer from VB .NET. Overloading operators, The Internal Representation of Overloading Operators, interacting with Overload Operator from Overloaded- Operator- Challenged Languages, Creating Custom Conversion Routines, Defining Implicit Conversion Routines, The Internal Representations of Customs Conversion Routines

UNIT – 3

6 Hours

Understanding .NET Assembles: Problems with Classic COM Binaries, An Overview of .NET Assembly, Building a Simple File Test Assembly, A C#. Client Application, A Visual Basic .NET Client Application, Cross Language Inheritance, Exploring the CarLibrary's, Manifest, Exploring the CarLibrary's Types, Building the Multifile Assembly ,Using Assembly, Understanding Private Assemblies, Probing for Private Assemblies (The Basics), Private A Assemblies XML Configurations Files, Probing for Private Assemblies (The Details), Understanding Shared Assembly, Understanding Shared Names,

Building a Shared Assembly, Understanding Delay Signing, Installing/Removing Shared Assembly, Using a Shared Assembly

UNIT – 4

6 Hours

Object- Oriented Programming with C#: Forms Defining of the C# Class, Definition the "Default Public Interface" of a Type, Recapping the Pillars of OOP, The First Pillars: C#'s Encapsulation Services, Pseudo- Encapsulation: Creating Read-Only Fields, The Second Pillar: C#'s Inheritance Supports, keeping Family Secrets: The "Protected" Keyword, Nested Type Definitions, The Third Pillar: C #'s Polymorphic Support, Casting Between .

PART – B

UNIT – 5

6 Hours

Exceptions and Object Lifetime: Ode to Errors, Bugs, and Exceptions, The Role of .NET Exception Handing, the System. Exception Base Class, Throwing a Generic Exception, Catching Exception, CLR System – Level Exception(System. System Exception), Custom Application-Level Exception(System. System Exception), Handling Multiple Exception, The Family Block, the Last Chance Exception Dynamically Identifying Application – and System Level Exception Debugging System Exception Using VS. NET, Understanding Object Lifetime, the CIT of "new', The Basics of Garbage Collection, Finalization a Type, The Finalization Process, Building an Ad Hoc Destruction Method, Garbage Collection Optimizations, The System. GC Type.

UNIT – 6

6 Hours

Interfaces and Collections: Defining Interfaces Using C# Invoking Interface Members at the object Level, Exercising the Shapes Hierarchy, Understanding Explicit Interface Implementation, Interfaces As Polymorphic Agents, Building Interface Hierarchies, Implementing, Implementation, Interfaces Using VS .NET, understanding the IConvertible Interface, Building a Custom Enumerator (IEnumerable and Enumerator), Building Cloneable objects (ICloneable), Building Comparable Objects (I Comparable), Exploring the system. Collections Namespace, Building a Custom Container (Retrofitting the Cars Type).

UNIT - 7

8 Hours

Callback Interfaces, Delegates, and Events, Advanced Techniques: Understanding Callback Interfaces, Understanding the .NET Delegate Type, Members of System. Multicast Delegate, The Simplest Possible Delegate Example, Building More a Elaborate Delegate Example, Understanding Asynchronous Delegates, Understanding (and Using)Events.

The Advances Keywords of C#, A Catalog of C# Keywords Building a Custom Indexer, A Variation of the Cars Indexer Internal Representation of Type Indexer . Using C# Indexer from VB .NET. Overloading operators, The Internal Representation of Overloading Operators, interacting with Overload Operator from Overloaded- Operator- Challenged Languages, Creating Custom Conversion Routines, Defining Implicit Conversion Routines, The Internal Representations of Customs Conversion Routines

UNIT – 8

6 Hours

Understanding .NET Assembles: Problems with Classic COM Binaries, An Overview of .NET Assembly, Building a Simple File Test Assembly, A C#. Client Application, A Visual Basic .NET Client Application, Cross Language Inheritance, Exploring the CarLibrary's, Manifest, Exploring the CarLibrary's Types, Building the Multifile Assembly, Using Assembly, Understanding Private Assemblies, Probing for Private Assemblies (The Basics), Private A Assemblies XML Configurations Files, Probing for Private Assemblies (The Details), Understanding Shared Assembly, Understanding Delay Signing, Installing/Removing Shared Assembly, Using a Shared Assembly

Text Books:

- 1. Andrew Troelsen: Pro C# with .NET 3.0, 4th Edition, Wiley India, 2009.
 - Chapters: 1 to 11 (up to pp.369)
- 2. E. Balagurusamy: Programming in C#, 2nd Edition, Tata McGraw

Hill, 2008.

(Programming Examples 3.7, 3.10, 5.5, 6.1, 7.2, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3, 8.5, 8.7, 8.8, 9.1, 9.2, 9.3, 9.4, 10.2, 10.4, 11.2, 11.4, 12.1, 12.4, 12.5, 12.6, 13.1, 13.2, 13.3, 13.6, 14.1, 14.2, 14.4, 15.2, 15.3, 16.1, 16.2, 16.3, 18.3, 18.5.18.6)

Reference Books:

- 1. Tom Archer: Inside C#, WP Publishers, 2001.
- 2. Herbert Schildt: C# The Complete Reference, Tata McGraw Hill, 2004.

JAVA AND J2EE

Subject Code:10CS753 Hours/Week: 4 Total Hours: 52 IA Marks: 25 Exam Marks: 100 Exam Hours: 3

PART - A

UNIT - 1

6 Hours

Introduction to Java: Java and Java applications; Java Development Kit (JDK); Java is interpreted, Byte Code, JVM; Object-oriented programming; Simple Java programs.

Data types and other tokens: Boolean variables, int, long, char, operators, arrays, white spaces, literals, assigning values; Creating and destroying objects; Access specifiers.

Operators and Expressions: Arithmetic Operators, Bitwise operators, Relational operators, The Assignment Operator, The ? Operator; Operator Precedence; Logical expression; Type casting; Strings

Control Statements: Selection statements, iteration statements, Jump Statements.

UNIT - 2

6 Hours

Classes, Inheritance, Exceptions, Applets : Classes: Classes in Java; Declaring a class; Class name; Super classes; Constructors; Creating instances of class; Inner classes.

Inheritance: Simple, multiple, and multilevel inheritance; Overriding, overloading.

Exception handling: Exception handling in Java.

The Applet Class: Two types of Applets; Applet basics; Applet Architecture; An Applet skeleton; Simple Applet display methods; Requesting repainting; Using the Status Window; The HTML APPLET tag; Passing parameters to Applets; getDocumentbase() and getCodebase(); ApletContext and showDocument(); The AudioClip Interface; The AppletStub Interface; Output to the Console.

UNIT - 3

7 Hours

Multi Threaded Programming, Event Handling: Multi Threaded Programming: What are threads? How to make the classes threadable; Extending threads; Implementing runnable; Synchronization; Changing state of the thread; Bounded buffer problems, read-write problem, producer-consumer problems.

Event Handling: Two event handling mechanisms; The delegation event model; Event classes; Sources of events; Event listener interfaces; Using the delegation event model; Adapter classes; Inner classes.

UNIT - 4

7 Hours

Swings: Swings: The origins of Swing; Two key Swing features; Components and Containers; The Swing Packages; A simple Swing Application; Create a Swing Applet; Jlabel and ImageIcon; JTextField;The Swing Buttons; JTabbedpane; JScrollPane; JList; JComboBox; JTable.

Java 2 Enterprise Edition Overview, Database Access: Overview of J2EE and J2SE

The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief Overview of the JDBC process; Database Connection; Associating the JDBC/ODBC Bridge with the Database; Statement Objects; ResultSet; Transaction Processing; Metadata, Data types; Exceptions.

UNIT – 6

7 Hours

Servlets: Background; The Life Cycle of a Servlet; Using Tomcat for Servlet Development; A simple Servlet; The Servlet API; The Javax.servlet Package; Reading Servlet Parameter; The Javax.servlet.http package; Handling HTTP Requests and Responses; Using Cookies; Session Tracking.

UNIT – 7

6 Hours

JSP, RMI: Java Server Pages (JSP): JSP, JSP Tags, Tomcat, Request String, User Sessions, Cookies, Session Objects.

Java Remote Method Invocation: Remote Method Invocation concept; Server side, Client side.

UNIT - 8

7 Hours

Enterprise Java Beans: Enterprise java Beans; Deployment Descriptors; Session Java Bean, Entity Java Bean; Message-Driven Bean; The JAR File.

Text Books:

1. Herbert Schildt: Java The Complete Reference, 7th Edition, Tata McGraw Hill, 2007.

(Chapters 1, 2, 3, 4, 5, 6, 8, 10, 11, 21, 22, 29, 30, 31)

2. Jim Keogh: J2EE - The Complete Reference, Tata McGraw Hill, 2007.

(Chapters 5, 6, 11, 12, 15)

Reference Books:

- 1. Y. Daniel Liang: Introduction to JAVA Programming, 7th Edition, Pearson Education, 2007.
- 2. Stephanie Bodoff et al: The J2EE Tutorial, 2nd Edition, Pearson Education, 2004.

SOFTWARE TESTING

Subject Code: 10CS842	I.A. Marks: 25
Hours/Week: 4	Exam Marks: 100
Total Hours: 52	Exam Hours: 3

PART – A

UNIT 1

6 Hours

7 Hours

A Perspective on Testing, Examples: Basic definitions, Test cases, Insights from a Venn diagram, Identifying test cases, Error and fault taxonomies, Levels of testing. Examples: Generalized pseudocode, The triangle problem, The NextDate function, The commission problem, The SATM (Simple Automatic Teller Machine) problem, The currency converter, Saturn windshield wiper.

UNIT 2

Boundary Value Testing, Equivalence Class Testing, Decision Table-Based Testing: Boundary value analysis, Robustness testing, Worst-case testing, Special value testing, Examples, Random testing, Equivalence classes, Equivalence test cases for the triangle problem, NextDate function, and the commission problem, Guidelines and observations. Decision tables, Test cases for the triangle problem, NextDate function, and the commission problem, Guidelines and observations.

UNIT 3

Path Testing, Data Flow Testing: DD paths, Test coverage metrics, Basis path testing, guidelines and observations. Definition-Use testing, Slice-based testing, Guidelines and observations.

Levels of Testing, Integration Testing: Traditional view of testing levels, Alternative life-cycle models, The SATM system, Separating integration and system testing. A closer look at the SATM system, Decomposition-based, call graph-based, Path-based integrations.

PART – B

UNIT 5

7 Hours

7 Hours

6 Hours

System Testing, Interaction Testing: Threads, Basic concepts for requirements specification, Finding threads, Structural strategies and functional strategies for thread testing, SATM test threads, System testing guidelines, ASF (Atomic System Functions) testing example. Context of

interaction, A taxonomy of interactions, Interaction, composition, and determinism, Client/Server Testing,.

UNIT 6

Process Framework: Validation and verification, Degrees of freedom, Varieties of software. Basic principles: Sensitivity, redundancy, restriction, partition, visibility, Feedback. The quality process, Planning and monitoring, Quality goals, Dependability properties, Analysis, Testing, Improving the process, Organizational factors.

UNIT 7

Fault-Based Testing, Test Execution: Overview, Assumptions in faultbased testing, Mutation analysis, Fault-based adequacy criteria, Variations on mutation analysis. Test Execution: Overview, from test case specifications to test cases, Scaffolding, Generic versus specific scaffolding, Test oracles, Self-checks as oracles, Capture and replay.

UNIT 8

6 Hours

Planning and Monitoring the Process, Documenting Analysis and Test: Quality and process, Test and analysis strategies and plans, Risk planning, Monitoring the process, Improving the process, The quality team, Organizing documents, Test strategy document, Analysis and test plan, Test design specifications documents, Test and analysis reports.

TEXT BOOKS:

- 1. Paul C. Jorgensen: Software Testing, A Craftsman's Approach, 3rd Edition, Auerbach Publications, 2008.
- (Listed topics only from Chapters 1, 2, 5, 6, 7, 9, 10, 12, 1314, 15) 2. Mauro Pezze, Michal Young: Software Testing and Analysis -
 - Process, Principles and Techniques, Wiley India, 2009. (Listed topics only from Chapters 2, 3, 4, 16, 17, 20, 24)

REFERENCE BOOKS:

- 1. Aditya P Mathur: Foundations of Software Testing, Pearson Education, 2008.
- Srinivasan Desikan, Gopalaswamy Ramesh: Software Testing 2. Principles and Practices, 2nd Edition, Pearson Education, 2007.
- 3. Brian Marrick: The Craft of Software Testing, Pearson Education, 1995.

INFORMATION AND NETWORK SECURITY

Subject Code: 10CS835	I.A. Marks : 25
Hours/Week: 04	Exam Hours: 03
Total Hours: 52	Exam Marks: 100

PART – A

6 Hours

UNIT 1 Planning for Security: Introduction; Information Security Policy, Standards, and Practices; The Information Security Blue Print; Contingency plan and a model for contingency plan

6 Hours

UNIT 2 Security Technology-1: Introduction; Physical design; Firewalls; Protecting **Remote Connections**

UNIT 3

Security Technology – 2: Introduction; Intrusion Detection Systems (IDS); Honey Pots, Honey Nets, and Padded cell systems; Scanning and Analysis Tools

UNIT 4

8 Hours

Cryptography: Introduction; A short History of Cryptography; Principles of Cryptography; Cryptography Tools; Attacks on Cryptosystems.

PART - B

UNIT 5 8 Hours Introduction to Network Security, Authentication Applications: Attacks, services, and Mechanisms; Security Attacks; Security Services; A model for Internetwork Security; Internet Standards and RFCs Kerberos, X.509 Directory Authentication Service.

UNIT 6

Electronic Mail Security: Pretty Good Privacy (PGP); S/MIME

UNIT 7

IP Security: IP Security Overview; IP Security Architecture; Authentication Header; Encapsulating Security Payload; Combining Security Associations; Key Management.

UNIT 8

6 Hours

Web Security: Web security requirements; Secure Socket layer (SSL) and Transport layer Security (TLS); Secure Electronic Transaction (SET)

Text Books:

- 1. Michael E. Whitman and Herbert J. Mattord: Principles of Information Security, 2nd Edition, Cengage Learning, 2005. (Chapters 5, 6, 7, 8; Exclude the topics not mentioned in the syllabus)
- 2. William Stallings: Network Security Essentials: Applications and Standards, 3rd Edition, Pearson Education, 2007. (Chapters: 1, 4, 5, 6, 7, 8)

Reference Book:

1. Behrouz A. Forouzan: Cryptography and Network Security, Special Indian Edition, Tata McGraw-Hill, 2007.

DIGITAL IMAGE PROCESSING

Subject Code: 10CS762	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART – A

UNIT - 1

6 Hours Digitized Image and its properties: Basic concepts, Image digitization, Digital image properties

UNIT - 27 Hours Image Preprocessing: Image pre-processing: Brightness and geometric transformations, local preprocessing.

UNIT - 37 Hours Segmentation – 1: Thresholding, Edge-based segmentation.

UNIT - 47 Hours Segmentation – 2: Region based segmentation, Matching.

6 Hours

6 Hours

PART – B

7 Hours

Image Enhancement: Image enhancement in the spatial domain: Background, Some basic gray level transformations, Histogram processing, Enhancement using arithmetic/ logic operations, Basics of spatial filtering, Smoothing spatial filters, Sharpening spatial filters. Image enhancement in the frequency domain: Background, Introduction to the Fourier transform and the frequency domain, Smoothing Frequency-Domain filters, Sharpening Frequency Domain filters, Homomorphic filtering.

UNIT - 6

6 Hours

Image Compression: Image compression: Fundamentals, Image compression models, Elements of information theory, Error-Free Compression, Lossy compression.

UNIT - 7

7 Hours

Shape representation: Region identification, Contour-based shape representation and description, Region based shape representation and description, Shape classes.

UNIT – 8

6 Hours

Morphology: Basic morphological concepts, Morphology principles, Binary dilation and erosion, Gray-scale dilation and erosion, Morphological segmentation and watersheds

Text Books:

1. Milan Sonka, Vaclav Hlavac and Roger Boyle: Image Processing, Analysis and Machine Vision, 2nd Edition, Thomoson Learning, 2001.

(Chapters 2, 4.1 to 4.3, 5.1 to 5.4, 6, 11.1 to 11.4, 11.7)

2. Rafel C Gonzalez and Richard E Woods: Digital Image Processing, 3rd Edition, Pearson Education, 2003.

(Chapters 3.1 to 3.7, 4.1 to 4.5, 8.1 to 8.5)

Reference Books:

- 1. Anil K Jain, "Fundamentals of Digital Image Processing", PHI, 1997, Indian Reprint 2009.
- 2. B.Chanda, D Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2002.

MULTI-CORE ARCHITECTURE AND PROGRAMMING

Subject Code: 10CS846	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT 1

Introduction The power and potential of parallelism, Examining sequential and parallel programs, Parallelism using multiple instruction streams, The Goals: Scalability and performance portability, Balancing machine specifics with portability, A look at six parallel computers: Chip multiprocessors, Symmetric multiprocessor architectures, Heterogeneous chip designs, Clusters, Supercomputers, Observations from the six parallel computers.

UNIT 2

Reasoning about Performance

Motivation and basic concepts, Sources of performance loss, Parallel structure, Performance trade-offs, Measuring performance, Scalable performance.

UNIT 3

Examples of Multi-Core Architectures

Introduction to Intel Architecture, How an Intel Architecture System works, Basic Components of the Intel Core 2 Duo Processor: The CPU, Memory Controller, I/O Controller; Intel Core i7: Architecture, The Intel Core i7

7 Hours

6 Hours

6 Hours

UNIT - 5

Processor, Intel QuickPath Interconnect, The SCH; Intel Atom Architecture.

Introduction to Texas Instruments' Multi-Core Multilayer SoC architecture for communications, infrastructure equipment

UNIT 4

Parallel Algorithm Design

Introduction, The Task / Channel model, Foster's design methodology, Examples: Boundary value problem, Finding the maximum, The n-Body problem, Adding data input.

PART – B

UNIT 5

Parallel Programming – 1 (Using OpenMP)

Designing for threads: Task decomposition, Data decomposition, Data flow decomposition, Implications of different decompositions; Challenges in decomposition, Parallel programming patters, A motivating problem: Error diffusion.

Threading and Parallel Programming Constructs: Synchronization, Critical sections, Deadlocks, Synchronization primitives: Semaphores, Locks, Condition variables; Messages, Flow Control-Based concepts: Fence, Barrier; Implementation-Dependent threading issues.

UNIT 6

Parallel Programming – 2 (Using OpenMP)

Introduction, The shared-memory model, Parallel *for* loops, Declaring private variables, Critical sections, Reductions, Performance improvements, More general data parallelism, Functional parallelism.

UNIT 7

Solutions to Common Parallel Programming Problems

Too many threads, Data races, deadlocks, and live locks, Heavily contended locks, Non-blocking algorithms, Thread-safe functions and libraries, Memory issues, Cache-related issues, Avoiding pipeline stalls, Data organization for high performance.

UNIT 8

Threading in the Processor

Single-Core Processors: Processor architecture fundamentals, Comparing Superscalar and EPIC architectures.

Multi-Core Processors: Hardware-based threading, Hyper-threading technology, Multi-Core processors, Multiple processor interactions, Power consumption, Beyond multi-core architecture.

NOTE: In order to acquire a sound understanding of the subject, it is desirable for the students to work in the laboratory using OpenMP. The

hands-on experience would reinforce the concepts learnt in theory. Problems similar to the ones solved in the Algorithms Laboratory can be solved and issues like speed-up achieved can be analyzed in depth. Several free tools are available from companies like INTEL to facilitate such a study.

Text Books:

- 1. Calvin Lin, Lawrence Snyder: Principles of Parallel Programming, Pearson Education, 2009.
 - (Listed topics only from Chapters 1, 2, 3)
- 2. Michael J. Quinn: Parallel Programming in C with MPI and OpenMP, Tata McGraw Hill, 2004.

(Listed topics only from Chapters 3, 17)

3. Shameem Akhter, Jason Roberts: Multi-Core Programming, Increasing Performance through Software Multithreading, Intel Press, 2006.

(Listed topics only from Chapters 3, 4, 7, 9, 10)

 Web resources for Example Architectures of INTEL and Texas Instruments: <u>http://download.intel.com/design/intarch/papers/321087.pdf</u>; <u>http://focus.ti.com/lit/wp/spry133/spry133.pdf</u>

7 Hours

6 Hours

7 Hours

6 Hours

- 1. Introduction to Parallel Computing Ananth Grama et. al., Pearson Education, 2009.
- 2. Reinders : Intel Threading Building Blocks, O'reilly 2005
- 3. David Culler et. al.: Parallel Computer Architecture: A Hardware/Software Approach, Elsevier, 2006.
- Richard Gerber, Aart J.C. Bik, Kevin B. Smith, Xinmin Tian: Software Optimization Cookbook, High-Performance Recipes for IA-32 Platforms, 2nd Edition, Intel Press, 2006.

WIRELESS NETWORKS AND MOBILE COMPUTING

Sub Code: 10CS831	IA Marks	: 25
Hrs/Week: 04	Exam Hours	:03
Total Hrs: 52	Exam Marks	: 100

PART-A

UNIT - 1

6 Hours

Mobile Computing Architecture: Types of Networks, Architecture for Mobile Computing, 3-tier Architecture, Design Considerations for Mobile Computing.

UNIT - 2

Wireless Networks – 1: GSM and SMS: Global Systems for Mobile Communication (GSM and Short Service Messages (SMS): GSM Architecture, Entities, Call routing in GSM, PLMN Interface, GSM Addresses and Identities, Network Aspects in GSM, Mobility Management, GSM Frequency allocation. Introduction to SMS, SMS Architecture, SM MT, SM MO, SMS as Information bearer, applications

UNIT - 3

Wireless Networks – 2: GPRS : GPRS and Packet Data Network, GPRS Network Architecture, GPRS Network Operations, Data Services in GPRS, Applications for GPRS, Billing and Charging in GPRS

UNIT – 4

Wireless Networks – 3: CDMA, 3G and WiMAX: Spread Spectrum technology, IS-95, CDMA versus GSM, Wireless Data, Third Generation Networks, Applications on 3G, Introduction to WiMAX.

UNIT – 5

PART - B

Mobile Client: Moving beyond desktop, Mobile handset overview, Mobile phones and their features, PDA, Design Constraints in applications for handheld devices. Mobile IP: Introduction, discovery, Registration, Tunneling, Cellular IP, Mobile IP with IPv6

UNIT – 6

Mobile OS and Computing Environment: Smart Client Architecture, The Client: User Interface, Data Storage, Performance, Data Synchronization, Messaging. The Server: Data Synchronization, Enterprise Data Source, Messaging. Mobile Operating Systems: WinCE, Palm OS, Symbian OS, Linux, Proprietary OS Client Development : The development process, Need analysis phase, Design phase, Implementation and Testing phase, Deployment phase, Development Tools, Device Emulators.

UNIT – 7

Building, Mobile Internet Applications: Thin client: Architecture, the client, Middleware, messaging Servers, Processing a Wireless request, Wireless Applications Protocol (WAP) Overview, Wireless Languages: Markup Languages, HDML, WML, HTML, cHTML, XHTML, VoiceXML.

UNIT – 8

J2ME: Introduction, CDC, CLDC, MIDP; Programming for CLDC, MIDlet model, Provisioning, MIDlet life-cycle, Creating new application, MIDlet

7 Hours

6 Hours

7 Hours

6 Hours

7 Hours

6 Hours

event handling, GUI in MIDP, Low level GUI Components, Multimedia APIs; Communication in MIDP, Security Considerations in MIDP.

Text Books:

- Dr. Ashok Talukder, Ms Roopa Yavagal, Mr. Hasan Ahmed: Mobile Computing, Technology, Applications and Service Creation, 2d Edition, Tata McGraw Hill, 2010
- 2. Martyn Mallik: Mobile and Wireless Design Essentials, Wiley, 2003

Reference Books:

- 1. Raj kamal: Mobile Computing, Oxford University Press, 2007.
- 2. Iti Saha Misra: Wireless Communications and Networks, 3G and Beyond, Tata McGraw Hill, 2009.

DIGITAL SIGNAL PROCESSING

Subject Code: 10CS752	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT – 1 7 Hours The Discrete Fourier Transform: Its Properties and Applications : Frequency Domain Sampling: The Discrete Fourier Transform: Frequency Domain Sampling and Reconstruction of Discrete-Time Signals, The Discrete Fourier Transform (DFT), The DFT as a Linear Transformation, Relationship of the DFT to other Transforms. Properties of the DFT: Periodicity, Linearity and Symmetry Properties, Multiplication of Two DFT's and Circular Convolution, Additional DFT Properties; Linear

Filtering Methods Based on the DFT: Use of the DFT in Linear Filtering, Filtering of Long Data Sequences; Frequency Analysis of Signals using the DFT.

UNIT - 2

7 Hours

Efficient Computation of the DFT: Fast Fourier Transform Algorithms: Efficient Computation of the DFT: FFT Algorithms : Direct Computation of the DFT, Divide-and-Conquer Approach to Computation of the DFT, Radix-2 FFT Algorithms, Radix-4 FFT Algorithms, Split-Radix FFT Algorithms, Implementation of FFT Algorithms.

Applications of FFT Algorithms: Efficient computation of the DFT of Two Real Sequences, Efficient computation of the DFT of a 2N-Point Real Sequence, Use of the FFT Algorithm in Linear filtering and Correlation.

A Linear filtering approach to Computation of the DFT: The Goertzel Algorithm, The Chirp-Z Transform Algorithm.

Quantization Effects in the Computation of the DFT: Quantization Errors in the Direct Computation of the DFT, Quantization Errors in FFT Algorithms.

UNIT – 3

6 Hours

Implementation of Discrete-Time Systems – 1: Structures for the Realization of Discrete-Time Systems

Structures for FIR Systems: Direct-Form Structures, Cascade-Form Structures, Frequency-Sampling Structures, Lattice Structure.

Structures for IIR Systems: Direct-Form Structures, Signal Flow Graphs and Transposed Structures, Cascade-Form Structures, Parallel-Form Structures, Lattice and Lattice-Ladder Structures for IIR Systems.

UNIT - 4

6 Hours

Implementation of Discrete-Time Systems – **2:** State-Space System Analysis and Structures: State-Space Descriptions of Systems Characterized by Difference Equations, Solution of the State-Space Equations, Relationships between Input-Output and State-Space Descriptions, State-Space Analysis in the Z-Domain, Additional State-Space Structures.

Representation of Numbers: Fixed-Point Representation of Numbers, Binary Floating-Point Representation of Numbers, Errors Resulting from Rounding and Truncation.

UNIT – 5

Implementation of Discrete-Time Systems – **3:** Quantization of Filter Coefficients: Analysis of Sensitivity to Quantization of Filter Coefficients, Quantization of Coefficients in FIR Filters

Round-Off Effects in Digital Filters: Limit-Cycle Oscillations in Recursive Systems, Scaling to Prevent Overflow, Statistical Characterization of Quantization effects in Fixed-Point Realizations of Digital Filters.

UNIT - 6

7 Hours

Design of Digital Filters – 1: General Considerations: Causality and its Implications, Characteristics of Practical Frequency-Selective Filters.

Design of FIR Filters: Symmetric And Antisymetric FIR Filters, Design of Linear-Phase FIR Filters Using Windows, Design of Linear-Phase FIR Filters by the Frequency-Sampling Method, Design of Optimum Equiripple Linear-Phase FIR Filters, Design of FIR Differentiators, Design of Hilbert Transformers, Comparison of Design Methods for Linear-Phase FIR filters.

UNIT - 7

6 Hours

Design of Digital Filters – 2: Design of IIR Filters from Analog Filters: IIR Filter Design by Approximation of Derivatives, IIR Filter Design by Impulse Invariance, IIR Filter Design by the Bilinear Transformation, The Matched-Z Transformation, Characteristics of commonly used Analog Filters, Some examples of Digital Filters Designs based on the Bilinear Transformation.

UNIT – 8

7 Hours

Design of Digital Filters – **3:** Frequency Transformations: Frequency Transformations in the Analog Domain, Frequency Transformations in the Digital Domain.

Design of Digital Filters based on Least-Squares method: Padé Approximations method, Least-Square design methods, FIR least-Squares Inverse (Wiener) Filters, Design of IIR Filters in the Frequency domain.

Text Books:

 John G. Proakis and Dimitris G. Manolakis: Digital Signal Processing, 3rd Edition, Pearson Education, 2003. (Chapters 5, 6, 7 and 8)

Reference Books:

- 1. Paulo S. R. Diniz, Eduardo A. B. da Silva And Sergio L. Netto: Digital Signal Processing: System Analysis and Design, Cambridge University Press, 2002.
- 2. Sanjit K. Mitra: Digital Signal Processing: A Computer Based Approach, Tata Mcgraw-Hill, 2001.
- 3. Alan V Oppenheim and Ronald W Schafer: Digital Signal Processing, PHI, Indian Reprint, 2008.

DIGITAL SIGNAL PROCESSING

Subject Code: 10CS752	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT - 1

7 Hours

The Discrete Fourier Transform: Its Properties and Applications : Frequency Domain Sampling: The Discrete Fourier Transform: Frequency Domain Sampling and Reconstruction of Discrete-Time Signals, The Discrete Fourier Transform (DFT), The DFT as a Linear Transformation, Relationship of the DFT to other Transforms. Properties of the DFT: Periodicity, Linearity and Symmetry Properties, Multiplication of Two DFT's and Circular Convolution, Additional DFT Properties; Linear Filtering

Methods Based on the DFT: Use of the DFT in Linear Filtering, Filtering of Long Data Sequences; Frequency Analysis of Signals using the DFT.

UNIT - 2

7 Hours

Efficient Computation of the DFT: Fast Fourier Transform Algorithms: Efficient Computation of the DFT: FFT Algorithms : Direct Computation of the DFT, Divide-and-Conquer Approach to Computation of the DFT, Radix- 2 FFT Algorithms, Radix-4 FFT Algorithms, Split-Radix FFT Algorithms, Implementation of FFT Algorithms.

Applications of FFT Algorithms: Efficient computation of the DFT of Two Real Sequences, Efficient computation of the DFT of a 2N-Point Real Sequence, Use of the FFT Algorithm in Linear filtering and Correlation.

A Linear filtering approach to Computation of the DFT: The Goertzel Algorithm, The Chirp-Z Transform Algorithm.

Quantization Effects in the Computation of the DFT: Quantization Errors in the Direct Computation of the DFT, Quantization Errors in FFT Algorithms.

UNIT - 3

6 Hours

6 Hours

Implementation of Discrete-Time Systems - 1: Structures for the Realization of **Discrete-Time Systems**

Structures for FIR Systems: Direct-Form Structures, Cascade-Form Structures, Frequency-Sampling Structures, Lattice Structure.

Structures for IIR Systems: Direct-Form Structures, Signal Flow Graphs and Transposed Structures, Cascade-Form Structures, Parallel-Form Structures, Lattice and Lattice-Ladder Structures for IIR Systems.

UNIT - 4

Implementation of Discrete-Time Systems - 2: State-Space System Analysis and Structures: State-Space Descriptions of Systems Characterized by Difference Equations, Solution of the State-Space Equations, Relationships between Input-Output and State-Space Descriptions, State-Space Analysis in the Z-Domain, Additional State-Space Structures.

Representation of Numbers: Fixed-Point Representation of Numbers, Binary Floating-Point Representation of Numbers, Errors Resulting from Rounding and Truncation.

PART – B

UNIT - 5

6 Hours Implementation of Discrete-Time Systems - 3: Quantization of Filter Coefficients: Analysis of Sensitivity to Quantizatior of Filter Coefficients, Quantization of Coefficients in FIR Filters

Round-Off Effects in Digital Filters: Limit-Cycle Oscillations in Recursive Systems, Scaling to Prevent Overflow, Statistical Characterization of Quantization effects in Fixed-Point Realizations of Digital Filters.

UNIT - 6

7 Hours

6 Hours

Design of Digital Filters - 1: General Considerations: Causality and its Implications, Characteristics of Practical Frequency-Selective Filters.

Design of FIR Filters: Symmetric And Antisymetric FIR Filters, Design of Linear-Phase FIR Filters Using Windows, Design of Linear-Phase FIR Filters by the Frequency-Sampling Method, Design of Optimum Equiripple Linear- Phase FIR Filters, Design of FIR Differentiators, Design of Hilbert Transformers, Comparison of Design Methods for Linear-Phase FIR filters.

UNIT - 7

Design of Digital Filters - 2: Design of IIR Filters from Analog Filters: IIR Filter Design by Approximation of Derivatives, IIR Filter Design by Impulse Invariance, IIR Filter Design by the Bilinear Transformation, The Matched-Z Transformation, Characteristics of commonly used Analog Filters, Some examples of Digital Filters

Designs based on the Bilinear Transformation.

7 Hours

Design of Digital Filters – **3:** Frequency Transformations: Frequency Transformations in the Analog Domain, Frequency Transformations in the Digital Domain.

Design of Digital Filters based on Least-Squares method: Padé Approximations method, Least-Square design methods, FIR least-Squares Inverse (Wiener) Filters, Design of IIR Filters in the Frequency domain.

Text Books:

UNIT – 8

 John G. Proakis and Dimitris G. Manolakis: Digital Signal Processing, 3rd Edition, Pearson Education, 2003. (Chapters 5, 6, 7 and 8)

Reference Books:

- 4. Paulo S. R. Diniz, Eduardo A. B. da Silva And Sergio L. Netto: Digital Signal Processing: System Analysis and Design, Cambridge University Press, 2002.
- 5. Sanjit K. Mitra: Digital Signal Processing: A Computer Based Approach, Tata Mcgraw-Hill, 2001.
- 6. Alan V Oppenheim and Ronald W Schafer: Digital Signal Processing, PHI, Indian Reprint, 2008.

8

Year: 2014-2015

Course Title: Cloud Computing	Course Code: 14SCS12
Credits(L:T:P):3:0:1	Core/Elective: Core
Type of Course: Lecture & Practical	Total Contact Hours: 50 Hrs

COURSE OBJECTIVES

-To learn how to use Cloud Services.

-To implement Virtualization

- To implement Task Scheduling algorithms.

-Apply Map-Reduce concept to applications.

-To build Private Cloud.

Topics:

Semester: I

Module I

Introduction. Cloud Infrastructure

Cloud computing, Cloud computing delivery models and services, Ethical issues, Cloud vulnerabilities, Cloud computing at Amazon, Cloud computing the Google perspective, Microsoft Windows Azure and online services, Open-source software platforms for private clouds, Cloud storage diversity and vendor lock-in, Energy use and ecological impact, Service level agreements, User experience and software licensing. Exercises and problems.

10 Hours

Module II

Cloud Computing: Application Paradigms.

Challenges of cloud computing, Architectural styles of cloud computing, Workflows: Coordination of multiple activities, Coordination based on a state machine model: The Zookeeper, The Map Reduce programming model, A case study: The GrepTheWeb application, Cloud for science and engineering, High-performance computing on a cloud, Cloud computing for Biology research, Social computing, digital content and cloud computing.

10 Hours

10 Hours

Module III

Cloud Resource Virtualization.

Virtualization, Layering and virtualization, Virtual machine monitors, Virtual Machines, Performance and Security Isolation, Full virtualization and paravirtualization, Hardware support for virtualization, Case Study: Xen a VMM based paravirtualization, Optimization of network virtualization, vBlades, Performance comparison of virtual machines, The dark side of virtualization, Exercises and problems.

Module IV

Cloud Resource Management and Scheduling.

Policies and mechanisms for resource management, Application of control theory to task scheduling on a cloud, Stability of a two-level resource allocation architecture, Feedback control based on dynamic thresholds, Coordination of specialized autonomic performance managers, A utility-based model for cloud-based Web services, Resourcing bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems.

Module V **Cloud Security, Cloud Application Development.**

Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, Amazon web services: EC2 instances, Connecting clients to cloud instances through firewalls, Security rules for application and transport layer protocols in EC2, How to launch an EC2 Linux instance and connect to it, How to use S3 in java, Cloud-based simulation of a distributed trust algorithm, A trust management service, A cloud service for adaptive data streaming, Cloud based optimal FPGA synthesis .Exercises and problems.

10 Hours

LAB EXPERIMENTS

NOTE: Simulate using object oriented programming, any available cloud environment (Eg; Amazon cloud) and VM ware for resource virtualization.

1. Create a Collaborative learning environment for a particular learning topic using Google Apps. Google Drive, Google Docs and Google Slides must be used for hosting e-books, important articles and presentations respectively. The instructor must use the Google Sheets to convey the timetable for different events and for analyzing the scores for individual assignment submission.

2. Modeling and simulation Cloud computing environments, including Data Centers, Hosts and Cloudlets and perform VM provisioning using CloudSim: Design a host with two CPU cores, which receives request for hosting two VMs, such that each one requires two cores and plans to host four tasks units. More specifically, tasks t1, t2, t3 and t4 to be hosted in VM1, while t5, t6, t7, and t8 to be hosted in VM2. Implement space-shared allocation policy and time-shared allocation policy. Compare the results.

3. Model a Cloud computing environment having Data center that had 100 hosts. The hosts are to be modeled to have a CPU core (1000 MIPS), 2 GB of RAM and 1 TB of storage. Consider the workload model for this evaluation included provisioning requests for 400 VMs, with each request demanding 1 CPU core (250 MIPS), 256 MB of RAM and 1 GB of storage. Each VM hosts a *web-hosting application service*, whose CPU utilization distribution was generated according to the uniform distribution. Each instance of a webhosting service required 150,000 MIPS or about 10 minutes to complete execution assuming 100% utilization. Simulate Energy-conscious model for power consumption and power management techniques such as Dynamic Voltage and Frequency Scaling (DVFS). Initially, VMs are to be allocated according to requested parameters (4 VMs on each host). The Cloud computing architecture that is to be considered for studying energy conscious resource management techniques/policies included a data center, CloudCoordinator, and Sensor component. The CloudCoordinator and Sensor perform their usual roles. Via the attached Sensors (which are connected with every host), CloudCoordinator must periodically monitor the performance status of active VMs such as load conditions, and processing share. This real time information is to be passed to VMM, which can use it for performing appropriate resizing of VMs and application of DVFS and soft scaling. CloudCoordinator continuously1 has to adapt allocation of VMs by issuing VM migration commands and changing power states of nodes according to its policy and current utilization of resources.

4. Model and simulate the environment consisting of a data center with 10,000 hosts where each host was modeled to have a single CPU core (1200MIPS), 4GB of RAM memory and 2TB of storage. Consider the provisioning policy for VMs as space-shared, which allows one VM to be active in a host at a given instance of time. Make a request from the end-user (through the Datacenter Broker) for creation and instantiation of 50 VMs that had following constraints: 1024MB of physical memory, 1 CPU core and 1GB of storage. The application granularity was modeled to be composed of 300 task units, with each task unit requiring 1,440,000 million instructions (20 minutes in the simulated hosts) to be executed on a host. Minimal data transfer (300 KB) overhead can be considered for the task units (to and from the data center). After the creation of VMs, task units were submitted in small groups of 50 (one for each VM) at inter-arrival delay of 10 minutes.

- 5. Implement Map Reduce concept for
- a. Strassen's Matrix Multiplication for a huge matrix.

b. Computing the average number of citation index a researcher has according to age among some 1 billion journal articles. Consider a network of entities and relationships between them. It is required to calculate a state of each entity on

the basis of properties of the other entities in its neighborhood. This state can represent a distance to other nodes, indication that there is a neighbor

with the certain properties, characteristic of neighborhood density and so on. A network is stored as a set of nodes and each node contains a list of adjacent node IDs. Mapper emits messages for each node using ID of the adjacent node as a key. Reducer must re compute state and rewrite node with the new state. Implement this scenario.

Course Outcomes:

The students should be able to:

-Demonstrate and experiment simple Cloud Applications

- -Apply resource allocation, scheduling algorithms.
- Implement Map-Reduce concept.
- Create virtual machines from available physical resources.
- Setup a private cloud.
- Familiarize with Open Stack.

Text Book:

1. Dan C Marinescu: Cloud Computing Theory and Practice. Elsevier(MK) 2013.

REFERENCES:

- 1. Rajkumar Buyya, James Broberg, Andrzej Goscinski: Cloud Computing Principles and Paradigms, Willey 2014.
- 2. John W Rittinghouse, James F Ransome: Cloud Computing Implementation, Management and Security, CRC Press 2013.

Semester: I

Year: 2014-2015

Course Title: Embedded Computing Systems	Course Code: 14SCS153	
Credits(L:T:P):4:0:0	Core/Elective: Elective	
Type of Course: Lecture	Total Contact Hours: 50 Hrs	COUR

OBJECTIVES

- Provide a general overview of Embedded Systems
- Show current statistics of Embedded Systems
- Design a complete microprocessor-based hardware system
- Design, code, compile, and test real-time software
- Integrate a fully functional system including hardware and software
- Gain the ability to make intelligent choices between hardware/software tradeoffs.

Topics:

MODULE I

Introduction to embedded systems: Embedded systems, Processor embedded into a system, Embedded hardware units and device in a system, Embedded software in a system, Examples of embedded systems, Design process in embedded system, Formalization of system design, Design process and design examples, Classification of embedded systems, skills required for an embedded system designer.

MODULE II

Devices and communication buses for devices network :IO types and example, Serial communication devices, Parallel device ports, Sophisticated interfacing features in device ports, Wireless devices, Timer and counting devices, Watchdog timer, Real time clock, Networked embedded systems, Serial bus communication protocols, Parallel bus device protocolsparallel communication internet using ISA, PCI, PCI-X and advanced buses, Internet enabled systems- network protocols, Wireless and mobile system protocols.

13 Hours

MODULE III

Device drivers and interrupts and service mechanism: Programming-I/O busy-wait approach without interrupt service mechanism, ISR concept, Interrupt sources, Interrupt servicing (Handling) Mechanism, Multiple interrupts, Context and the periods for context switching, interrupt latency and deadline, Classification of processors interrupt service mechanism from Context-saving angle, Direct memory access, Device driver programming.

MODULE IV

Interprocesses communication and synchronization of processes, Threads and tasks: Multiple process in an application, Multiple threads in an application, Tasks, Task states, Task and Data, Clear-cut distinction between functions. ISRS and tasks by their characteristics, concept and semaphores, Shared data, Inter-process communication, Signal function, Semaphore functions, Message Queue functions, Mailbox functions, Pipe functions, Socket functions, RPC functions. 10 Hours

MODULE V

Real-time operating systems: OS Services, Process management, Timer functions, Event functions, Memory management, Device, file and IO subsystems management, Interrupt routines in RTOS environment and handling of interrupt source calls, Real-time operating systems, Basic design using an RTOS, RTOS task scheduling models, interrupt latency and response of the tasks as performance metrics, OS security issues. Introduction to embedded

7 Hours

10 Hours

SE
software development process and tools, Host and target machines, Linking and location software.

10 Hours

Course Outcomes:

The students should be able to:

- Knowledge to distinguish the characteristics of embedded computer systems.
- Ability examines the various vulnerabilities of embedded computer systems.
- Ability to design embedded systems.
- Awareness of the changing landscape in embedded systems

Text Books:

1. Raj Kamal, "Embedded Systems: Architecture, Programming, and Design" 2nd edition, Tata McGraw hill-2013

Chapters: Chapter 1.1 to 1.5, 1.8 to 1.12, Chapter 3, 4, 7, 8 and 13.1 to 13.3.

References:

2. Marilyn Wolf ,"Computer as Components, Principles of Embedded Computing System Design" 3rd edition , Elsevier-2014 .

Semester: II

Year: 2014-2015

Course Title: Managing Big Data	Course Code: 14SCS21
Credits(L:T:P):3:0:1	Core/Elective: Core
Type of Course: Lecture & Practical	Total Contact Hours: 50 Hrs

Course Objectives:

- To Understand big data for business intelligence
- To Learn business case studies for big data analytics
- To Understand Nosql big data management
- To manage Big data without SQL
- To understanding map-reduce analytics using Hadoop and related tools

TOPICS:

MODULE I

UNDERSTANDING BIG DATA What is big data – why big data –.Data!, Data Storage and Analysis, Comparison with Other Systems, Rational Database

Management System, Grid Computing, Volunteer Computing, convergence of key trends - unstructured data - industry examples of big data - web analytics - big data and marketing - fraud and big data - risk and big data - credit risk management - big data and algorithmic trading - big data and healthcare - big data in medicine - advertising and big data - big data technologies - introduction to Hadoop - open source technologies - cloud and big data - mobile business intelligence - Crowd sourcing analytics - inter and trans firewall analytics

MODULE II NOSOL DATA MANAGEMENT

10 Hours Introduction to NoSQL - aggregate data models - aggregates - key-value and document data models - relationships graph databases - schema less databases - materialized views - distribution models - sharding - version - Map reduce partitioning and combining - composing map-reduce calculations

MODULE III BASICS OF HADOOP

Data format – analyzing data with Hadoop – scaling out – Hadoop streaming – Hadoop pipes – design of Hadoop distributed file system (HDFS) - HDFS concepts - Java interface - data flow - Hadoop I/O - data integrity - compression - serialization - Avro - file-based data structures

MODULE IV

MAPREDUCE APPLICATIONS

MapReduce workflows - unit tests with MRUnit - test data and local tests - anatomy of MapReduce job run - classic Mapreduce - YARN - failures in classic Map-reduce and YARN - job scheduling - shuffle and sort - task execution -MapReduce types - input formats - output formats

MODULE V

HADOOP RELATED TOOLS

Hbase - data model and implementations - Hbase clients - Hbase examples - praxis. Cassandra - Cassandra data model cassandra examples - cassandra clients -Hadoop integration. Pig - Grunt - pig data model - Pig Latin - developing and testing Pig Latin scripts. Hive – data types and file formats – HiveQL data definition – HiveQL data manipulation – HiveQL queries.

LAB Experiments

Exercise 1 --- HDFS

10 Hours

10 Hours

10 Hours

10 Hours

Start by reviewing HDFS. You will find that its composition is similar to your local Linux file system. You will use the hadoop fs command when interacting with HDFS.

- 1. Review the commands available for the Hadoop Distributed File System:
- 2. Copy file foo.txt from local disk to the user's directory in HDFS
- 3. Get a directory listing of the user's home directory in HDFS
- 4. Get a directory listing of the HDFS root directory
- 5. Display the contents of the HDFS file user/fred/bar.txt
- 6. Move that file to the local disk, named as baz.txt
- 7. Create a directory called input under the user's home directory
- 8. Delete the directory input old and all its contents
- 9. Verify the copy by listing the directory contents in HDFS:

Exercise 2 --- MapReduce

- 1. Create a JOB and submit to cluster
- 2. Track the job information
- 3. Terminate the job
- 4. Counters in MR Jobs with example
- 5. Map only Jobs and generic map examples
- 6. Distributed cache example
- 7. Combiners, Secondary sorting and Job chain examples

Exercise 3 --- MapReduce (Programs)

Using movie lens data

- 1. List all the movies and the number of ratings
 - 2. List all the users and the number of ratings they have done for a movie
 - 3. List all the Movie IDs which have been rated (Movie Id with at least one user rating it)
 - 4. List all the Users who have rated the movies (Users who have rated at least one movie)
 - 5. List of all the User with the max, min, average ratings they have given against any movie
 - 6. List all the Movies with the max, min, average ratings given by any user

Exercise4 – Extract facts using Hive

Hive allows for the manipulation of data in HDFS using a variant of SQL. This makes it excellent for transforming and consolidating data for load into a relational database. In this exercise you will use HiveQL to filter and aggregate click data to build facts about user's movie preferences. The query results will be saved in a staging table used to populate the Oracle Database.

The moveapp_log_json table contains an activity column. Activity states are as follows:

RATE_MOVIE
 COMPLETED_MOVIE
 PAUSE_MOVIE
 START_MOVIE
 BROWSE_MOVIE
 LIST_MOVIE
 LOGIN
 LOGOUT
 INCOMPLETE_MOVIE

hive> SELECT * FROM movieapp_log_json LIMIT 5; hive> drop table movieapp_log_json; hive> CREATE EXTERNAL TABLE movieapp_log_json (custId INT, movieId INT, genreId INT, time STRING, recommended STRING, activity INT, rating INT, price FLOAT) ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.JsonSerde' LOCATION '/user/oracle/moviework/applog/';

hive> SELECT * FROM movieapp_log_json LIMIT 20;

hive> SELECT MIN(time), MAX(time) FROM movieapp_log_json

1. PURCHASE_MOVIE

Hive maps queries into Map Reduce jobs, simplifying the process of querying large datasets in HDFS. HiveQL statements can be mapped to phases of the Map Reduce framework. As illustrated in the following figure, selection and transformation operations occur in map tasks, while aggregation is handled by reducers. Join operations are flexible: they can be performed in the reducer or mappers depending on the size of the leftmost table.

1. Write a query to select only those clicks which correspond to starting, browsing, completing, or purchasing movies. Use a CASE statement to transform the RECOMMENDED column into integers where 'Y' is 1 and 'N' is 0. Also, ensure GENREID is not null. Only include the first 25 rows.

2. Write a query to select the customer ID, movie ID, recommended state and most recent rating for each movie.

3. Load the results of the previous two queries into a staging table. First, create the staging table:

4. Next, load the results of the queries into the staging table.

Exercise 5 Extract sessions using Pig

While the SQL semantics of HiveQL are useful for aggregation and projection, some analysis is better described as the flow of data through a series of sequential operations. For these situations, Pig Latin provides a convenient way of implementing data flows over data stored in HDFS. Pig Latin statements are translated into a sequence of Map Reduce jobs on the execution of any STORE or DUMP command. Job construction is optimized to exploit as much parallelism as possible, and much like Hive, temporary storage is used to hold intermediate results. As with Hive, aggregation occurs largely in the reduce

tasks. Map tasks handle Pig's FOREACH and LOAD, and GENERATE statements. The EXPLAIN command will show the execution plan for any Pig Latin script. As of Pig 0.10, the ILLUSTRATE command will provide sample results for each stage of the execution plan.

In this exercise you will learn basic Pig Latin semantics and about the fundamental types in Pig Latin, Data Bags and Tuples.

- 1. Start the Grunt shell and execute the following statements to set up a dataflow with the click stream data. Note: Pig Latin statements are assembled into Map Reduce jobs which are launched at execution of a DUMP or STORE statement.
- 2. Group the log sample by movie and dump the resulting bag.

3. Add a GROUP BY statement to the sessionize.pig script to process the click stream data into user sessions.

Course Outcomes:

The students should be able to:

- Describe big data and use cases from selected business domains
- Explain NoSQL big data management
- Install, configure, and run Hadoop and HDFS
- Perform map-reduce analytics using Hadoop
- Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data Analytics

TEXT BOOKS:

- 1. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 2. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.

REFERENCES:

- 1. Vignesh Prajapati, Big data analytics with R and Hadoop, SPD 2013.
- 2. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 3. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 4. Alan Gates, "Programming Pig", O'Reilley, 2011.

Semester: II

Course Title: Advances in Computer Networks	Course Code: 14SCS22
Credits(L:T:P):3:0:1	Core/Elective: Core
Type of Course: Lecture & Practical	Total Contact Hours: 50 Hrs

Course Objectives:

- To become familiar with the basics of Computer Networks
- To understand various Network architectures
- Concepts of fundamental protocols
- To understand the network traffic, congestion, controlling and resource allocation.

Topics:

MODULE I

Foundation

Building a Network, Requirements, Perspectives, Scalable Connectivity, Cost-Effective Resource sharing, Support for Common Services, Manageability, Protocol layering, Performance, Bandwidth and Latency, Delay X Bandwidth Product, Perspectives on Connecting, Classes of Links, Reliable Transmission, Stop-and-Wait, Sliding Window, Concurrent Logical Channels.

T1: Chapter 1.1, 1.2, 1.5.1, 1.5.2., 2.1, 2.5 T2: Chapter 4

MODULE II

Internetworking- I

Switching and Bridging, Datagram's, Virtual Circuit Switching, Source Routing, Bridges and LAN Switches, Basic Internetworking (IP), What is an Internetwork ?, Service Model, Global Addresses, Datagram Forwarding in IP, sub netting and classless addressing, Address Translation(ARP), Host Configuration(DHCP), Error Reporting(ICMP), Virtual Networks and Tunnels.

T1: Chapter 3.1, 3.2,

MODULE III

Internetworking- II

Network as a Graph, Distance Vector(RIP), Link State(OSPF), Metrics, The Global Internet, Routing Areas, Routing among Autonomous systems(BGP), IP Version 6(IPv6), Mobility and Mobile IP T2:Chapter 13.1 to 13.18, Ch 18. **10 Hours T1:** Chapter 3.3, 4.1.1,4.1.3

MODULE IV

End-to-End Protocols

Simple Demultiplexer (UDP), Reliable Byte Stream(TCP), End-to-End Issues, Segment Format, Connecting Establishment and Termination, Sliding Window Revisited, Triggering Transmission, Adaptive Retransmission, Record Boundaries, TCP Extensions, Queuing Disciplines, FIFO, Fair Queuing, TCP Congestion Control, Additive Increase/ Multiplicative Decrease, Slow Start, Fast Retransmit and Fast Recovery. **T1:** Chapter 5.1, 5.2.1 to 5.2.8, 6.2, 6.3 **10 Hours**

MODULE V

Congestion Control and Resource Allocation

Congestion-Avoidance Mechanisms, DEC bit, Random Early Detection (RED), Source-Based Congestion Avoidance. The Domain Name System(DNS), Electronic Mail(SMTP, POP, IMAP, MIME), World Wide Web(HTTP), Network Management(SNMP).

T1: Chapter 6.4 T2: Chapter 23.1 to 23.16, Chapter 24, Chapter 25, Chapter 27.1 to 27.8

10 Hours

10 Hours

10 Hours

Laboratory Work:

PART A: Implement the following using C/C++:

1. Write a program to transfer the contents of a requested file from server to the client using TCP/IP Sockets (using TCP/IP Socket programming).

2. Write a program to archive Traffic management at Flow level by implementing Closed Loop Control technique. (Leaky Bucket Algorithm)

3. Write a program to implement dynamic routing strategy in finding optimal path for data transmission. (Bellman ford algorithm).

4. Write a program to implement Link State Routing (Dijkstra Algorithm).

5. Write a program for implementing the error detection technique while data transfer in unreliable network code using CRC (16-bits) Technique.

6. Write a program for providing security for transfer of data in the network. (RSA Algorithm)

7. Write a program for encrypting 64 bit playing text using DES algorithm.

PART B: Simulation Programs using OPNET /NS2 or any other equivalent software

1. Simulate a 3 node point to point network with duplex links between them. Set the Queue size and vary the bandwidth and find the number of packets dropped.

2. Simulate a four-node point-to-point network, and connect the links as follows: n0->n2, n1->n2 and n2->n3. Apply TCP agent changing the parameters and determine the number of packets sent/received by TCP/UDP

3. Simulate the different types of internet traffic such as FTP and TELNET over network and analyze the throughput.

Course Outcomes:

The students should be able to:

- List and classify network services, protocols and architectures, explain why they are layered.
- Choose key Internet applications and their protocols, and apply to develop their own applications (e.g. Client Server applications, Web Services) using the sockets API.
- Explain develop effective communication mechanisms using techniques like connection establishment, queuing theory, recovery Etc.
- Explain various congestion control techniques.

Text books:

- 1. T1: Larry Peterson and Bruce S Davis "Computer Networks : A System Approach" 5th Edition, Elsevier -2014
- 2. T2: Douglas E Comer, "Internetworking with TCP/IP, Principles, Protocols and Architecture" 6th Edition, PHI 2014

References:

- 1. Uyless Black "Computer Networks, Protocols, Standards and Interfaces" 2nd Edition PHI
- 2. Behrouz A Forouzan "TCP/IP Protocol Suite" 4th Edition Tata McGraw-Hill

Semester: II

10 Hours

10 Hours

10 Hours

Course Title: Advanced Algorithms	Course Code: 14SCS23
Credits(L:T:P):4:0:0	Core/Elective: Core
Type of Course: Lecture	Total Contact Hours: 50 Hrs

COURSE OBJECTIVES

- To learn the graph search algorithms.
- To study network flow and linear programming problems.
- To learn the hill climbing and dynamic programming design techniques.
- To develop recursive backtracking algorithms.
- To get an awareness of NP completeness and randomized algorithms.

Topics:

MODULE I

Review of Analysis Techniques: Growth of Functions: Asymptotic notations; Standard notations and common functions; Recurrences and Solution of Recurrence equations- The substitution method, The recurrence – tree method, The master method; Amortized Analysis: Aggregate, Accounting and Potential Methods.

MODULE II

Graph Algorithms: Bellman - Ford Algorithm; Single source shortest paths in a DAG; Johnson's Algorithm for sparse graphs; Flow networks and Ford-Fulkerson method; Maximum bipartite matching. **Polynomials and the FFT:** Representation of polynomials; The DFT and FFT; Efficient implementation of FFT.

10 Hours MODULE III Number - Theoretic Algorithms: Elementary notions; GCD; Modular Arithmetic; Solving modular linear equations; The Chinese remainder theorem; Powers of an element; RSA cryptosystem; Primality testing; Integer factorization. 10 Hours

MODULE IV

String-Matching Algorithms: Naïve string Matching; Rabin - Karp algorithm; String matching with finite automata; Knuth-Morris-Pratt algorithm; Boyer – Moore algorithms.

MODULE V

Probabilistic and Randomized Algorithms: Probabilistic algorithms; Randomizing deterministic algorithms, Monte Carlo and Las Vegas algorithms; Probabilistic numeric algorithms.

Course Outcomes:

Upon completion of the course, the students will be able to

- Design and apply iterative and recursive algorithms.
- Design and implement optimization algorithms in specific applications.
- Design appropriate shared objects and concurrent objects for applications.

TEXT BOOKS:

1. T. H Cormen, C E Leiserson, R L Rivest and C Stein: Introduction to Algorithms, 3rd Edition, Prentice-Hall of India, 2010.

2. Kenneth A. Berman, Jerome L. Paul: Algorithms, Cengage Learning, 2002.

REFERENCE BOOKS:

1. Ellis Horowitz, Sartaj Sahni, S.Rajasekharan: Fundamentals of Computer Algorithms, 2nd Edition, Universities press, 2007.

Semester: II

Year: 2014-2015

Course Title: Web Services	Course Code: 14SCS251
Credits(L:T:P):4:0:0	Core/Elective: Elective
Type of Course: Lecture	Total Contact Hours: 50 Hrs

Course objectives:

- To provide an in-depth knowledge of Web Services.
- To understand the fundamental concepts of Web services.
- To understand the fundamental concepts of WSDL Web Services.
- To design Web service Architecture.
- To Study Building Blocks of Web services.

TOPICS:

MODULE I

Middleware: Understanding the middle ware, RPC and Related Middle ware, TP Monitors, Object Brokers, Message-Oriented Middleware. 10 Hours

MODULE II

Web Services: Web Services Technologies, Web Services Architecture.

MODULE III

Basic Web Services Technology: WSDL Web Services Description Language, UDDI Universal Description Discovery and Integration, Web Services at work interactions between the Specifications, Related Standards.

10 Hours

10 Hours

10 Hours

MODULE IV

Service Coordination Protocols: Infrastructure for Coordination Protocols, WS- Coordination, WS-Transaction, Rosetta Net and Other Standards Related to Coordination Protocols. 10 Hours

MODULE V

Service Composition: Basic of Service Composition, A New Chance of Success for Composition, Services Composition Models, Dependencies between Coordination and Composition, BPEL: Business Process Execution Language for Web Services, Outlook, Applicability of the Web Services, Web services as a Problem and a Solution : AN Example.

Course Outcomes:

The students should be able to:

- Bind and unbind services in UDDI.
- Develop WSDL document
- Implement web service client to call public service.
- Implement a service and exposing it as public service.

Text Books:

1. Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju: Web Services(Concepts, Architectures and Applications), Springer International Edition 2009.

Semester: II	Year: 2		

Course Title: Information And Network Security	Course Code: 14SCS252
Credits(L:T:P):4:0:0	Core/Elective: Elective
Type of Course: Lecture	Total Contact Hours: 50 Hrs

Course Objectives:

- To understand the fundamentals of Cryptography
- To acquire knowledge on standard algorithms used to provide confidentiality, integrity and authenticity.
- To understand the various key distribution and management schemes.
- To understand how to deploy encryption techniques to secure data in transit across data networks
- To design security applications in the field of Information technology

TOPICS:

MODULE I

Classical Encryption Techniques

Symmetric Cipher Model, Cryptography, Cryptanalysis and Brute-Force Attack, Substitution Techniques, Caesar Cipher, Monoalphabetic Cipher, Playfair Cipher, Hill Cipher, Polyalphabetic Cipher, One Time Pad. **Block Ciphers and the data encryption standard:** Traditional block Cipher structure, stream Ciphers and block Ciphers, Motivation for the feistel Cipher structure, the feistel Cipher, The data encryption standard, DES encryption, DES decryption, A DES example, results, the avalanche effect, the strength of DES, the use of 56-Bit Keys, the nature of the DES algorithm, timing attacks, Block cipher design principles, number of rounds, design of function F, key schedule algorithm.

10 Hours

MODULE II

Public-Key Cryptography and RSA: Principles of public-key cryptosystems. Public-key cryptosystems. Applications for public-key cryptosystems, requirements for public-key cryptosystems. public-key cryptanalysis. The RSA algorithm, description of the algorithm, computational aspects, the security of RSA. Other Public-Key Cryptosystems: Diffiehellman key exchange, The algorithm, key exchange protocols, man in the middle attack, Elgamal Cryptographic systems, Elliptic curve arithmetic, abelian groups, elliptic curves over real numbers, elliptic curves over Zp, elliptic curves overGF(2m), Elliptic curve cryptography, Analog of Diffie-hellman key exchange, Elliptic curve encryption/ decryption, security of Elliptic curve cryptography, Pseudorandom number generation based on an asymmetric cipher, PRNG based on RSA.

MODULE III

Key Management and Distribution: Symmetric key distribution using Symmetric encryption, A key distribution scenario, Hierarchical key control, session key lifetime, a transparent key control scheme, Decentralized key control, controlling key usage, Symmetric key distribution using asymmetric encryption, simple secret key distribution, secret key distribution with confidentiality and authentication, A hybrid scheme, distribution of public keys, public announcement of public keys, publicly available directory, public key authority, public keys certificates, X-509 certificates. Certificates, X-509 version 3, public key infrastructure .**User Authentication:** Remote user Authentication principles, Mutual Authentication, one way Authentication, remote user Authentication using Symmetric encryption, Mutual Authentication using Asymmetric encryption, Mutual Authentication, one way Authentication, personal identity verification.

MODULE IV

Wireless network security: Wireless security, Wireless network threats, Wireless network measures, mobile device security, security threats, mobile device security strategy, IEEE 802.11 Wireless LAN overview, the Wi-Fi alliance, IEEE 802 protocol architecture. Security, IEEE 802.11 is services, IEEE 802.11 iphases of operation, discovery phase, Authentication phase, key management phase, protected data transfer phase, the IEEE 802.11 ipseudorandom function, .
Web Security Considerations: Web Security Threats, Web Traffic Security Approaches. Secure Sockets Layer: SSL Architecture, SSL Record Protocol, Change Cipher Spec Protocol, Alert Protocol, and shake Protocol, Cryptographic

10 Hours

Computations. **Transport Layer Security:** Version Number, Message Authentication Code, Pseudorandom Functions, Alert Codes, Cipher Suites, Client Certificate Types, Certificate Verify And Finished Messages, Cryptographic Computations, Padding. **HTTPS** Connection Initiation, Connection Closure. **Secure Shell** (SSH) Transport Layer Protocol, User Authentication Protocol, Connection Protocol.

10 Hours

MODULE V

Electronic Mail Security: Pretty good privacy, notation, operational; description, S/MIME, RFC5322, Multipurpose internet mail extensions, S/MIME functionality, S/MIME messages, S/MIME certificate processing, enhanced security services, Domain keys identified mail, internet mail architecture, E-Mail threats, DKIM strategy, DKIM functional flow. **IP Security:** IP Security overview, applications of IPsec, benefits of IPsec, Routing applications, IPsec documents, IPsec services, transport and tunnel modes, IP Security policy, Security associations, Security associations database, Security policy database, IP traffic processing, Encapsulating Security payload, ESP format, encryption and authentication algorithms, Padding, Anti replay service, transport and tunnel modes, combining security associations, authentication plus confidentiality, basic combinations of security associations, internet key exchange, key determinations protocol, header and payload formats, cryptographic suits.

Course Outcomes:

- The students be able to
- Analyze the vulnerabilities in any computing system and hence be able to design a
- security solution.
- Identify the security issues in the network and resolve it.
- Evaluate security mechanisms using rigorous approaches, including theoretical.
 - **Text Books:**
- 1. William Stallings: Cryptography and Network Security, Pearson 6th edition. 2013

References

1. V k Pachghare: Cryptography and Information Security, PHE ,2013.

Semester: II

Year: 2014-2015

Course Title : Pattern Recognition	Course Code: 14SCS253
Credits(L:T:P):4:0:0	Core/Elective: Elective
Type of Course: Lecture	Total Contact Hours: 50 Hrs

Course Objectives:

- To study the mathematical morphology necessary for Pattern recognition.
- To introduce the student to various Pattern recognition techniques.
- To study the Representation and description and feature extraction.
- To study the principles of decision trees and clustering in pattern recognition.

TOPICS:

MODULE I

Introduction: Definition of PR, Applications, Datasets for PR, Different paradigms for PR, Introduction to probability, events, random variables, Joint distributions and densities, moments. Estimation minimum risk estimators, problems.

10 Hours

MODULE II

Representation: Data structures for PR, Representation of clusters, proximity measures, size of patterns, Abstraction of
Data set, Feature extraction, Feature selection, Evaluation.10 Hours

MODULE III

Nearest Neighbor based classifiers & Bayes classifier: Nearest neighbor algorithm, variants of NN algorithms, use of NN for transaction databases, efficient algorithms, Data reduction, prototype selection, Bayes theorem, minimum error rate classifier, estimation of probabilities, estimation of probabilities, comparison with NNC, Naive Bayes classifier, Basyessian belief network. 10 Hours

MODULE IV

Decision Trees: Introduction, DT for PR, Construction of DT, Splitting at the nodes, Over-fitting & Pruning, Examples.

10 Hours

MODULE V

Clustering: Hierarchical (Agglomerative, single/complete/average linkage, wards, Partitional (Forgy's, k-means, Isodata), clustering large data sets, examples. 10 Hours

COURSE OUTCOMES:

Upon Completion of the course, the students will be able to

- Develop and analyze decision tress.
- Design the nearest neighbor classifier.
- Develop algorithms for Pattern Recognition.

Text Books:

- Pattern Recognition (An Introduction), V Susheela Devi, M Narsimha Murthy, Universities Press, ISBN 978-81-7371-725-3,2011.
- Pattern Recognition & Image Analysis, Earl Gose, Richard Johnsonbaugh, Steve Jost. PHI ISBN-81-203-1484-0, 1996.

References

1. Duda R. O., P.E. Hart, D.G. Stork., Pattern Classification, John Wiley and sons, 2000.

05.

To understand the basic concepts of learning and decision trees.To understand the neural networks and genetic algorithms

• To understand the Bayesian techniques

Course Title: Mach Credits(L:T:P):3:0:1

COURSE OBJECTIVES:

Semester: IV

- To understand the instant based learning
- To understand the analytical learning and reinforced learning

Type of Course: Lecture & Practical

TOPICS:

MODULE I

INTRODUCTION, CONCEPT LEARNING AND DECISION TREES

Machine Learning Techniques

Learning Problems – Designing Learning systems, Perspectives and Issues – Concept Learning – Version Spaces and Candidate Elimination Algorithm – Inductive bias – Decision Tree learning – Representation – Algorithm – Heuristic Space Search. **10 Hrs**

MODULE II

NEURAL NETWORKS AND GENETIC ALGORITHMS

Neural Network Representation – Problems – Perceptrons – Multilayer Networks and Back Propagation Algorithms – Advanced Topics – Genetic Algorithms – Hypothesis Space Search – Genetic Programming – Models of Evolution and Learning.

MODULE III

BAYESIAN AND COMPUTATIONAL LEARNING

Bayes Theorem – Concept Learning – Maximum Likelihood – Minimum Description	
Length Principle – Bayes Optimal Classifier – Gibbs Algorithm – Naïve Bayes Classifier	
– Bayesian Belief Network – EM Algorithm – Probably Learning – Sample Complexity for	
Finite and Infinite Hypothesis Spaces – Mistake Bound Model.	10 Hrs

MODULE IV

INSTANT BASED LEARNING AND LEARNING SET OF RULES

K- Nearest Neighbor Learning – Locally Weighted Regression – Radial Basis Functions – Case-Based Reasoning – Sequential Covering Algorithms – Learning Rule Sets – Learning First Order Rules – Learning Sets of First Order Rules – Induction as Inverted Deduction – Inverting Resolution 10 Hrs

MODULE V

ANALYTICAL LEARNING AND REINFORCED LEARNING

Perfect Domain Theories – Explanation Based Learning – Inductive-Analytical Approaches - FOCL Algorithm – Reinforcement Learning – Task – Q-Learning – Temporal Difference Learning

LABORATORY WORK

(The following tasks can be implemented in a language of your choice or any tools available)

- 1) Implement the CANDIDATE ELIMINATION algorithm. Show how it is used to learn from training examples and hypothesize new instances in Version Space.
- 2) Implement the FIND–S algorithm. Show how it can be used to classify new instances of target concepts. Run the experiments to deduce instances and hypothesis consistently.

Year: 2014-2015

Course Code: 14SCS41

Total Contact Hours: 50 Hrs

Core/Elective: Core

10 Hrs

10 Hrs

- 3) Implement the ID3 algorithm for learning Boolean–valued functions for classifying the training examples by searching through the space of a Decision Tree.
- 4) Design and implement the Back-propagation algorithm by applying it to a learning task involving an application like FACE RECOGNITION.
- 5) Design and implement Naïve Bayes Algorithm for learning and classifying TEXT DOCUMENTS.

COURSE OUTCOMES:

On Completion of the course, the students will be able to

- Choose the learning techniques with this basic knowledge.
- Apply effectively neural networks and genetic algorithms for appropriate applications.
- Apply bayesian techniques and derive effectively learning rules.
- Choose and differentiate reinforcement and analytical learning techniques

TEXT BOOK:

1. Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (INDIAN EDITION), 2013.

REFERENCES:

- 2. Ethem Alpaydin, "Introduction to Machine Learning", 2nd Ed., PHI Learning Pvt. Ltd., 2013.
- 3. T. Hastie, R. Tibshirani, J. H. Friedman, "The Elements of Statistical Learning", Springer; 1st edition, 2001.

ANALOG ELECTRONIC CIRCUITS (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES32	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

$\mathbf{PART} - \mathbf{A}$

UNIT 1:

Diode Circuits: Diode Resistance, Diode equivalent circuits, Transition and diffusion capacitance, Reverse recovery time, Load line analysis, Rectifiers, Clippers and clampers. **6 Hours**

UNIT 2:

Transistor Biasing: Operating point, Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased, DC bias with voltage feedback, Miscellaneous bias configurations, Design operations, Transistor switching networks, PNP transistors, Bias stabilization. **6 Hours**

UNIT 3:

Transistor at Low Frequencies: BJT transistor modeling, CE Fixed biasconfiguration, Voltage divider bias, Emitter follower, CB configuration,Collector feedback configuration, Analysis of circuits r_e model; analysis ofCE configuration using h- parameter model; Relationship between h-parameter model of CE,CC and CE configuration.7 Hours

UNIT 4:

Transistor Frequency Response: General frequency considerations, low frequency response, Miller effect capacitance, High frequency response, multistage frequency effects. 7 Hours

PART – B

UNIT 5:

(a) General Amplifiers: Cascade connections, Cascode connections, Darlington connections. 3 Hours

(b) Feedback Amplifier: Feedback concept, Feedback connections type, Practical feedback circuits. Design procedures for the feedback amplifiers. 4 Hours

UNIT 6:

Power Amplifiers: Definitions and amplifier types, series fed class Aamplifier, Transformer coupled Class A amplifiers, Class B amplifieroperations, Class B amplifier circuits, Amplifier distortions. Designing ofPower amplifiers.7 Hours

UNIT 7:

Oscillators: Oscillator operation, Phase shift Oscillator, Wienbridge Oscillator, Tuned Oscillator circuits, Crystal Oscillator. (BJT Version Only) Simple design methods of Oscillators. **6 Hours**

UNIT 8:

FET Amplifiers: FET small signal model, Biasing of FET, Common drain common gate configurations, MOSFETs, FET amplifier networks.

6 Hours

TEXT BOOK:

1. **"Electronic Devices and Circuit Theory"**, Robert L. Boylestad and Louis Nashelsky, PHI/Pearson Eduication. 9TH Edition.

REFERENCE BOOKS:

- 'Integrated Electronics', Jacob Millman & Christos C. Halkias, Tata - McGraw Hill, 2nd Edition, 2010
- 2. **"Electronic Devices and Circuits",** David A. Bell, PHI, 4th Edition, 2004
- 3. "Analog Electronics Circuits: A Simplified Approach", U.B. Mahadevaswamy, Pearson/Saguine, 2007.

LOGIC DESIGN (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES33	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Principles of combinational logic-1: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables,

PART – A

UNIT 6:

Power Amplifiers: Definitions and amplifier types, series fed class Aamplifier, Transformer coupled Class A amplifiers, Class B amplifieroperations, Class B amplifier circuits, Amplifier distortions. Designing ofPower amplifiers.7 Hours

UNIT 7:

Oscillators: Oscillator operation, Phase shift Oscillator, Wienbridge Oscillator, Tuned Oscillator circuits, Crystal Oscillator. (BJT Version Only) Simple design methods of Oscillators. **6 Hours**

UNIT 8:

FET Amplifiers: FET small signal model, Biasing of FET, Common drain common gate configurations, MOSFETs, FET amplifier networks.

6 Hours

TEXT BOOK:

1. **"Electronic Devices and Circuit Theory"**, Robert L. Boylestad and Louis Nashelsky, PHI/Pearson Eduication. 9TH Edition.

REFERENCE BOOKS:

- 'Integrated Electronics', Jacob Millman & Christos C. Halkias, Tata - McGraw Hill, 2nd Edition, 2010
- 2. **"Electronic Devices and Circuits",** David A. Bell, PHI, 4th Edition, 2004
- 3. "Analog Electronics Circuits: A Simplified Approach", U.B. Mahadevaswamy, Pearson/Saguine, 2007.

LOGIC DESIGN (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES33	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Principles of combinational logic-1: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables,

PART – A

Karnaugh maps-3, 4 and 5 variables, Incompletely specified functions (Don't Care terms), Simplifying Max term equations. **6 Hours**

UNIT 2:

Principles of combinational Logic-2: Quine-McCluskey minimization technique- Quine-McCluskey using don't care terms, Reduced Prime Implicant Tables, Map entered variables. 7 Hours

UNIT 3:

Analysis and design of combinational logic - I: General approach,
Decoders-BCD decoders, Encoders.6 Hours

UNIT 4:

Analysis and design of combinational logic - II: Digital multiplexers-Using multiplexers as Boolean function generators. Adders and subtractors-Cascading full adders, Look ahead carry, Binary comparators. Design methods of building blocks of combinational logics.

7 Hours

PART – B

UNIT 5:

Sequential Circuits – 1: Basic Bistable Element, Latches, SR Latch,Application of SR Latch, A Switch Debouncer, The $\overline{S^{\Box}} \ \overline{R^{\Box}}$ Latch, The gated D Latch, The Master-Slave Flip-Flops (Pulse-TriggeredFlip-Flops): The Master-Slave SR Flip-Flops, The Master-Slave JK Flip-Flop, Edge Triggered Flip-Flop: The Positive Edge-Triggered D Flip-Flop,Negative-Edge Triggered D Flip-Flop.7 Hours

UNIT 6:

Sequential Circuits – **2:** Characteristic Equations, Registers, Counters -Binary Ripple Counters, Synchronous Binary counters, Counters based on Shift Registers, Design of a Synchronous counters, Design of a Synchronous Mod-6 Counter using clocked JK Flip-Flops Design of a Synchronous Mod-6 Counter using clocked D, T, or SR Flip-Flops **7 Hours**

UNIT 7:

Sequential Design - I: Introduction, Mealy and Moore Models, State Machine Notation, Synchronous Sequential Circuit Analysis and Design. 6 Hours

UNIT 8:

Sequential Design - II: Construction of state Diagrams, Counter Design.

6 Hours

TEXT BOOKS:

- 1. **"Digital Logic Applications and Design"**, John M Yarbrough, Thomson Learning, 2001.
- 2. **"Digital Principles and Design ",** Donald D Givone, Tata McGraw Hill Edition, 2002.

REFERENCE BOOKS:

- 1. **"Fundamentals of logic design",** Charles H Roth, Jr; Thomson Learning, 2004.
- 2. "Logic and computer design Fundamentals", Mono and Kim, Pearson, Second edition, 2001.
- 3. "Logic Design", Sudhakar Samuel, Pearson/Saguine, 2007

NETWORK ANALYSIS (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES34	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Basic Concepts: Practical sources, Source transformations, Network reduction using Star – Delta transformation, Loop and node analysis With linearly dependent and independent sources for DC and AC networks, Concepts of super node and super mesh. 7 Hours UNIT 2:

Network Topology: Graph of a network, Concept of tree and co-tree, incidence matrix, tie-set, tie-set and cut-set schedules, Formulation of equilibrium equations in matrix form, Solution of resistive networks, Principle of duality. **7 Hours**

UNIT 3:

Network Theorems – 1: Superposition, Reciprocity and Millman's theorems. 6 Hours

transform representation of discrete time signals. Sampling theorm and Nyquist rate. **7 Hours**

UNIT 7:

Z-Transforms – 1: Introduction, Z – transform, properties of ROC, properties of Z – transforms, inversion of Z – transforms.

UNIT 8:

6 Hours

Z-transforms – **2:** Transform analysis of LTI Systems, unilateral Z-Transform and its application to solve difference equations. **6 Hours**

TEXT BOOK

- 1. Simon Haykin, "Signals and Systems", John Wiley India Pvt. Ltd., 2nd Edn, 2008.
- 2. Michael Roberts, "Fundamentals of Signals & Systems", 2nd ed, Tata McGraw-Hill, 2010.

REFERENCE BOOKS:

- 1. Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson Education Asia / PHI, 2nd edition, 1997. Indian Reprint 2002.
- 2. H. P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006.
- 3. **B. P. Lathi**, "Linear Systems and Signals", Oxford University Press, 2005.
- 4. Ganesh Rao and Satish Tunga, "Signals and Systems", Pearson/Sanguine Technical Publishers, 2004.

FUNDAMENTALS OF HDL (Common to EC/TC/IT/BM/ML)

Sub Code	:	10EC45	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Introduction: Why HDL?, A Brief History of HDL, Structure of HDL Module, Operators, Data types, Types of Descriptions, simulation and synthesis, Brief comparison of VHDL and Verilog

7 Hours

UNIT 2:

Data –Flow Descriptions: Highlights of Data-Flow Descriptions, Structureof Data-Flow Description, Data Type – Vectors.6 Hours

UNIT 3:

Behavioral Descriptions: Behavioral Description highlights, structure of HDL behavioral Description, The VHDL variable –Assignment Statement, sequential statements. **6 Hours**

UNIT 4:

Structural Descriptions: Highlights of structural Description, Organization of the structural Descriptions, Binding, state Machines, Generate, Generic, and Parameter statements.

7 Hours

PART – B

UNIT 5:

Procedures, Tasks, and Functions: Highlights of Procedures, tasks, and Functions, Procedures and tasks, Functions.

Advanced HDL Descriptions: File Processing, Examples of File Processing 7 Hours

UNIT 6:

Mixed –Type Descriptions: Why Mixed-Type Description? VHDL User-Defined Types, VHDL Packages, Mixed-Type Description examples

UNIT 7:

Mixed –Language Descriptions: Highlights of Mixed-Language Description, How to invoke One language from the Other, Mixed-language Description Examples, Limitations of Mixed-Language Description.

UNIT 8:

7 Hours

6 Hours

Synthesis Basics: Highlights of Synthesis, Synthesis information from Entity and Module, Mapping Process and Always in the Hardware Domain.

6 Hours

TEXT BOOKS:

1. HDL Programming (VHDL and Verilog)- Nazeih M.Botros- John Weily India Pvt. Ltd. 2008.

REFERENCE BOOKS:

- 1. Fundamentals of HDL Cyril P.R. Pearson/Sanguin 2010.
- 2. VHDL -Douglas perry-Tata McGraw-Hill.
- 3. A Verilog HDL Primer- J.Bhaskar BS Publications
- 4. Circuit Design with VHDL-Volnei A.Pedroni-PHI.

MICROCONTROLLERS LAB (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ESL47	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

I. PROGRAMMING

- 1. Data Transfer Block move, Exchange, Sorting, Finding largest element in an array.
- 2. Arithmetic Instructions Addition/subtraction, multiplication and division, square, Cube (16 bits Arithmetic operations bit addressable).
- 3. Counters.
- 4. Boolean & Logical Instructions (Bit manipulations).
- 5. Conditional CALL & RETURN.
- 6. Code conversion: BCD ASCII; ASCII Decimal; Decimal ASCII; HEX Decimal and Decimal HEX .
- 7. Programs to generate delay, Programs using serial port and on-Chip timer / counter.

Note: Programming exercise is to be done on both 8051 & MSP430.

II. INTERFACING:

Write C programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

- 8. Simple Calculator using 6 digit seven segment displays and Hex Keyboard interface to 8051.
- 9. Alphanumeric LCD panel and Hex keypad input interface to 8051.
- 10. External ADC and Temperature control interface to 8051.
- 11. Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC interface to 8051; change the frequency and amplitude.

- 12. Stepper and DC motor control interface to 8051.
- 13. Elevator interface to 8051.

HDL LAB (Common to EC/TC/IT/BM/ML)

Sub Code	:	10ECL48	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

Note: Programming can be done using any compiler. Download the programs on a FPGA/CPLD boards such as Apex/Acex/Max/Spartan/Sinfi/TK Base or equivalent and performance testing may be done using 32 channel pattern generator and logic analyzer apart from verification by simulation with tools such as Altera/Modelsim or equivalent.

PROGRAMMING (using VHDL /Verilog)

- 1. Write HDL code to realize all the logic gates
- 2. Write a HDL program for the following combinational designs
 - a. 2 to 4 decoder
 - b. 8 to 3 (encoder without priority & with priority)
 - c. 8 to 1 multiplexer
 - d. 4 bit binary to gray converter
 - e. Multiplexer, de-multiplexer, comparator.
- 2. Write a HDL code to describe the functions of a Full Adder Using three modeling styles.

3. Write a model for 32 bit ALU using the schematic diagram shown below A (31:0) B (31:0)

- ALU should use combinational logic to calculate an output based on the four bit op-code input.
- ALU should pass the result to the out bus when enable line in high, and tri-state the out bus when the enable line is low.
- ALU should decode the 4 bit op-code according to the given in example below.

OPCODE	ALU OPERATION
1.	A + B
2.	A - B
3.	A Complement
4.	A * B
5.	A AND B
6.	A OR B
7.	A NAND B
8.	A XOR B

- 4. Develop the HDL code for the following flip-flops, SR, D, JK, T.
- 5. Design 4 bit binary, BCD counters (Synchronous reset and Asynchronous reset) and "any sequence" counters

<u>INTERFACING</u> (at least four of the following must be covered using VHDL/Verilog)

- 1. Write HDL code to display messages on the given seven segment display and LCD and accepting Hex key pad input data.
- 2. Write HDL code to control speed, direction of DC and Stepper motor.
- 3. Write HDL code to accept 8 channel Analog signal, Temperature sensors and display the data on LCD panel or Seven segment display.
- 4. Write HDL code to generate different waveforms (Sine, Square, Triangle, Ramp etc.,) using DAC change the frequency and amplitude.
- 5. Write HDL code to simulate Elevator operations
- 6. Write HDL code to control external lights using relays.

DIGITAL SIGNAL PROCESSING

Subject Code	: 10EC52	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Discrete Fourier Transforms (DFT): Frequency domain sampling and reconstruction of discrete time signals. DFT as a linear transformation, its relationship with other transforms. **6** Hours

UNIT - 2

Properties of DFT, multiplication of two DFTs- the circular convolution, additional DFT properties. **6** Hours

UNIT - 3

Use of DFT in linear filtering, overlap-save and overlap-add method. Direct computation of DFT, need for efficient computation of the DFT (FFT algorithms). 7 Hours

UNIT - 4

Radix-2 FFT algorithm for the computation of DFT and IDFT-decimationin-time and decimation-in-frequency algorithms. Goertzel algorithm, and chirp-z transform. 7 Hours

PART – B

UNIT - 5

IIR filter design: Characteristics of commonly used analog filters -Butterworth and Chebysheve filters, analog to analog frequency transformations. **6** Hours

UNIT - 6

Implementation of discrete-time systems: Structures for IIR and FIR systemsdirect form I and direct form II systems, cascade, lattice and parallel 7 Hours realization.

UNIT - 7

FIR filter design: Introduction to FIR filters, design of FIR filters using -Rectangular, Hamming, Bartlet and Kaiser windows, FIR filter design using frequency sampling technique. **6** Hours

UNIT - 8

Design of IIR filters from analog filters (Butterworth and Chebyshev) impulse invariance method. Mapping of transfer functions: Approximation of derivative (backward difference and bilinear transformation) method, Matched z transforms, Verification for stability and linearity during mapping **7 Hours**

TEXT BOOK:

 Digital signal processing – Principles Algorithms & Applications, Proakis & Monalakis, Pearson education, 4th Edition, New Delhi, 2007.

REFERENCE BOOKS:

- 1. Discrete Time Signal Processing, Oppenheim & Schaffer, PHI, 2003.
- 2. **Digital Signal Processing**, S. K. Mitra, Tata Mc-Graw Hill, 3rd Edition, 2010.
- 3. Digital Signal Processing, Lee Tan: Elsivier publications, 2007

ANALOG COMMUNICATION

Subject Code	: 10EC53	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

RANDOM PROCESS: Random variables: Several random variables. Statistical averages: Function of Random variables, moments, Mean, Correlation and Covariance function: Principles of autocorrelation function, cross – correlation functions. Central limit theorem, Properties of Gaussian process. **7 Hours**

UNIT - 2

AMPLITUDE MODULATION: Introduction, AM: Time-Domain description, Frequency – Domain description. Generation of AM wave: square law modulator, switching modulator. Detection of AM waves: square law detector, envelop detector. Double side band suppressed carrier modulation (DSBSC): Time-Domain description, Frequency-Domain representation, Generation of DSBSC waves: balanced modulator, ring modulator. Coherent detection of DSBSC modulated waves. Costas loop.

7 Hours

TEXT BOOKS:

- 1. **Communication Systems**, Simon Haykins, 5th Edition, John Willey, India Pvt. Ltd, 2009.
- 2. An Introduction to Analog and Digital Communication, Simon Haykins, John Wiley India Pvt. Ltd., 2008

REFERENCE BOOKS:

- Modern digital and analog Communication systems B. P. Lathi, Oxford University Press., 4th ed, 2010,
- 2. **Communication Systems**, Harold P.E, Stern Samy and A Mahmond, Pearson Edn, 2004.
- 3. **Communication Systems**: Singh and Sapre: Analog and digital TMH 2nd, Ed 2007.

MICROWAVES AND RADAR

Subject Code	: 10EC54	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

MICROWAVE TRANSMISSION LINES: Introduction, transmission lines equations and solutions, reflection and transmission coefficients, standing waves and SWR, line impedance and line admittance. Smith chart, impedance matching using single stubs, Microwave coaxial connectors.

7 Hours

UNIT - 2

MICROWAVE WAVEGUIDES AND COMPONENTS: Introduction, rectangular waveguides, circular waveguides, microwave cavities, microwave hybrid circuits, directional couplers, circulators and isolators.

6 Hours

UNIT - 3

MICROWAVE DIODES,

Transfer electron devices: Introduction, GUNN effect diodes – GaAs diode, RWH theory, Modes of operation, Avalanche transit time devices: READ diode, IMPATT diode, BARITT diode, Parametric amplifiers Other diodes: PIN diodes, Schottky barrier diodes. **7 Hours**

UNIT - 4

Microwave network theory and passive devices. Symmetrical Z and Y parameters, for reciprocal Networks, S matrix representation of multi port networks. 6 Hours

PART – B

UNIT - 5

Microwave passive devices, Coaxial connectors and adapters, Phase shifters, Attenuators, Waveguide Tees, Magic tees. **6 Hours**

UNIT - 6

STRIP LINES: Introduction, Microstrip lines, Parallèle strip lines, Coplanar strip lines, Shielded strip Lines. **6 Hours**

UNIT - 7

AN INTRODUCTION TO RADAR: Basic Radar, The simple form of the Radar equation, Radar block diagram, Radar frequencies, application of Radar, the origins of Radar. 7 Hours

UNIT - 8

MTI AND PULSE DOPPLER RADAR: Introduction to Doppler and MTI Radar, delay line Cancellers, digital MTI processing, Moving target detector, pulse Doppler Radar. 7 Hours

TEXT BOOKS:

- 1. Microwave Devices and circuits- Liao / Pearson Education.
- 2. Introduction to Radar systems-Merrill I Skolnik, 3rd Ed, TMH, 2001.
- 3. **Microwave Engineering** Annapurna Das, Sisir K Das TMH Publication, 2nd, 2010.

REFERENCE BOOK:

1. **Microwave Engineering** – David M Pozar, John Wiley India Pvt. Ltd., 3rd Edn, 2008.

INFORMATION THEORY AND CODING

Subject Code	: 10EC55	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

INFORMATION THEORY: Introduction, Measure of information, Average information content of symbols in long independent sequences, Average information content of symbols in long dependent sequences. Markoff statistical model for information source, Entropy and information rate of mark-off source. **7 Hours**

UNIT - 2

SOURCE CODING: Encoding of the source output, Shannon's encoding algorithm. Communication Channels, Discrete communication channels, Continuous channels. 6 Hours

UNIT - 3

FUNDAMENTALLIMITSONPERFORMANCE:Sourcecodingtheorem,Huffmancoding,DiscretememorylessChannels,Mutualinformation,Channel Capacity.7Hours

UNIT - 4

Channel coding theorem, Differential entropy and mutual information for continuous ensembles, Channel capacity Theorem. **6 Hours**

PART – B

UNIT - 5

INTRODUCTION TO ERROR CONTROL CODING: Introduction, Types of errors, examples, Types of codes Linear Block Codes: Matrix description, Error detection and correction, Standard arrays and table look up for decoding. 7 Hours

UNIT - 6

Binary Cycle Codes, Algebraic structures of cyclic codes, Encoding using an (n-k) bit shift register, Syndrome calculation. BCH codes. **6 Hours**

UNIT - 7

RS codes, Golay codes, Shortened cyclic codes, Burst error correcting codes. Burst and Random Error correcting codes. **7 Hours**

UNIT - 8

Convolution Codes, Time domain approach. Transform domain approach. 6 Hours

TEXT BOOKS:

- 1. **Digital and analog communication systems**, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 1996.
- 2. **Digital communication**, Simon Haykin, John Wiley India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **ITC and Cryptography**, Ranjan Bose, TMH, II edition, 2007
- 2. **Digital Communications** Glover and Grant; Pearson Ed. 2nd Ed 2008.

FUNDAMENTALS OF CMOS VLSI

Subject Code	: 10EC56	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	:100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

BASIC MOS TECHNOLOGY: Integrated circuit's era. Enhancement and depletion mode MOS transistors. nMOS fabrication. CMOS fabrication. Thermal aspects of processing. BiCMOS technology. Production of E-beam masks. **3 Hours**

MOS TRANSISTOR THEORY: Introduction, MOS Device Design Equations, The Complementary CMOS Inverter – DC Characteristics, Static Load MOS Inverters, The Differential Inverter, The Transmission Gate, Tristate Inverter. 4 Hours

UNIT - 8

TESTABILITY: Performance parameters. Layout issues. I/O pads. Real estate. System delays. Ground rules for design. Test and testability.

7 Hours

TEXT BOOKS:

- CMOS VLSI Design A Circuits and Systems Perspective. 3rd Edition. N.H. Weste and David Harris. Addison-Wesley, 2005. (Refer to http://www.cmosvlsi.com).
- Principles of CMOS VLSI Design: A Systems Perspective, Neil H. E. Weste, K. Eshragian, and ??? 3rd edition, Pearson Education (Asia) Pvt. Ltd., 200?. (Shift to the latest edition.).
- Basic VLSI Design Douglas A. Pucknell & Kamran Eshraghian, PHI 3rd Edition (original Edition – 1994), 2005.

REFERENCE BOOKS:

- 1. R. Jacob Baker. CMOS Circuit Design, Layout and Simulation. John Wiley India Pvt. Ltd, 2008.
- 2. Fundamentals of Semiconductor Devices, M. K. Achuthan and K. N. Bhat, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2007.
- CMOS Digital Integrated Circuits: Analysis and Design, Sung-Mo Kang & Yusuf Leblebici, 3rd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007.
- 4. **Analysis and Design of Digital Integrated Circuits** D.A Hodges, H.G Jackson and R.A Saleh. 3rd Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2007.

DIGITAL SIGNAL PROCESSING LABORATORY

Subject Code	: 10ECL57	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

A LIST OF EXPERIMENTS USING MATLAB / SCILAB / OCTAVE / WAB

- 3. Verification of Sampling theorem.
- 4. Impulse response of a given system
- 5. Linear convolution of two given sequences.
- 6. Circular convolution of two given sequences

- 7. Autocorrelation of a given sequence and verification of its properties.
- 8. Cross correlation of given sequences and verification of its properties.
- 9. Solving a given difference equation.
- 10. Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum.
- 11. Linear convolution of two sequences using DFT and IDFT.
- 12. Circular convolution of two given sequences using DFT and IDFT
- 13. Design and implementation of FIR filter to meet given specifications.
- 14. Design and implementation of IIR filter to meet given specifications.

B. LIST OF EXPERIMENTS USING DSP PROCESSOR

1.Linear convolution of two given sequences.

2. Circular convolution of two given sequences.

3.Computation of N- Point DFT of a given sequence

4.Realization of an FIR filter (any type) to meet given specifications .The input can be a signal from function generator / speech signal.

5.Audio applications such as to plot time and frequency (Spectrum) display of Microphone output plus a cosine using DSP. Read a wav file and match with their respective spectrograms

6.Noise: Add noise above 3kHz and then remove; Interference suppression using 400 Hz tone.

7.Impulse response of first order and second order system

REFERENCE BOOKS:

- 1. Digital signal processing using MATLAB Sanjeet Mitra, TMH, 2001
- 2. Digital signal processing using MATLAB J. G. Proakis & Ingale, MGH, 2000
- 3. Digital Signal Processors, B. Venkataramani and Bhaskar, TMH,2002

ANALOG COMMUNICATION LAB + LIC LAB

Subject Code	: 10ECL58	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

EXPERIMENTS USING DESCERTE COMPONENTS and LABVIEW - 2009 CAN BE USED FOR VERIFICATION AND TESTING.

- 1. Second order active LPF and HPF
- 2. Second order active BPF and BE
- 3. Schmitt Trigger Design and test a Schmitt trigger circuit for the given values of UTP and LTP

VI SEMESTER

DIGITAL COMMUNICATION

Subject Code	: 10EC61	IA Marks	: 25
No. of Lecture Hrs/Wee	k : 04	Exam Hours	: 03
Total no. of Lecture Hrs	. : 52	Exam Marks	: 100

PART – A

UNIT - 1

Basic signal processing operations in digital communication. Sampling Principles: Sampling Theorem, Quadrature sampling of Band pass signal, Practical aspects of sampling and signal recovery. **7 Hours**

UNIT - 2

PAM, TDM. Waveform Coding Techniques, PCM, Quantization noise and SNR, robust quantization. **6 Hours**

UNIT - 3

DPCM, DM, applications. Base-Band Shaping for Data Transmission, Discrete PAM signals, power spectra of discrete PAM signals. **7 Hours**

UNIT - 4

ISI, Nyquist's criterion for distortion less base-band binary transmission, correlative coding, eye pattern, base-band M-ary PAM systems, adaptive equalization for data transmission. **6 Hours**

PART - B

UNIT - 5

DIGITAL MODULATION TECHNIQUES: Digital Modulation formats, Coherent binary modulation techniques, Coherent quadrature modulation techniques. Non-coherent binary modulation techniques. **6 Hours**

UNIT - 6

Detection and estimation, Model of DCS, Gram-Schmidt Orthogonalization procedure, geometric interpretation of signals, response of bank of correlators to noisy input. **6 Hours**

UNIT - 7

Detection of known signals in noise, correlation receiver, matched filter receiver, detection of signals with unknown phase in noise. **7 Hours**

UNIT - 8

Spread Spectrum Modulation: Pseudo noise sequences, notion of spread spectrum, direct sequence spread spectrum, coherent binary PSK, frequency hop spread spectrum, applications. **7 Hours**

TEXT BOOK:

1. **Digital communications**, Simon Haykin, John Wiley India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **Digital and Analog communication systems,** Simon Haykin, John Wildy India Lts, 2008
- 2. An introduction to Analog and Digital Communication, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 2008.
- 3. Digital communications Bernard Sklar: Pearson education 2007

MICROPROCESSOR

Subject Code	: 10EC62	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

8086 PROCESSORS: Historical background, The microprocessor-based personal computer system, 8086 CPU Architecture, Machine language instructions, Instruction execution timing. **6 Hours**

UNIT - 2

INSTRUCTION SET OF 8086: Assembler instruction format, data transfer and arithmetic, branch type, loop, NOP & HALT, flag manipulation, logical and shift and rotate instructions. Illustration of these instructions with example programs, Directives and operators. **6 Hours**

UNIT - 3

BYTE AND STRING MANIPULATION: String instructions, REP Prefix, Table translation, Number format conversions, Procedures, Macros, Programming using keyboard and video display. **7 Hours**

UNIT - 4

8086 INTERRUPTS: 8086 Interrupts and interrupt responses, Hardware interrupt applications, Software interrupt applications, Interrupt examples.

7 Hours

Stability problem. Effect of feedback an amplifier poles. Stability study using Bode plots. Frequency compensation. SPICE examples. **7 Hours**

UNIT - 6

Operational Amplifiers: The two stage CMOS Op-amp, folded cascade CMOS op-amp, 741 op-amp circuit, DC analysis of the 741, small signal analysis of 741, gain, frequency response and slew rate of 741. Data Converters. A-D and D-A converters. **6 Hours**

UNIT – 7 & 8

Digital CMOS circuits. Overview. Design and performance analysis of CMOS inverter. Logic Gate Circuits. Pass-transistor logic. Dynamic Logic Circuits. SPICE examples. 12 Hours

TEXT BOOK:

1. **"Microelectronic Circuits"**, Adel Sedra and K.C. Smith, 5th Edition, Oxford University Press, Interantional Version, 2009.

REFERENCE BOOK:

- 1. "Fundamentals of Microelectronics", Behzad Razavi, John Wiley India Pvt. Ltd, 2008.
- 2. "Microelectronics Analysis and Design", Sundaram Natarajan,
- 3. Tata McGraw-Hill, 2007

ANTENNAS AND PROPAGATION

Subject Code	: 10EC64	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

ANTENNA BASICS: Introduction, basic Antenna parameters, patterns, beam area, radiation intensity, beam efficiency, diversity and gain, antenna apertures, effective height, bandwidth, radiation, efficiency, antenna temperature and antenna filed zones.

7 Hours

UNIT - 2

POINT SOURCES AND ARRAYS: Introduction, point sources, power patterns, power theorem, radiation intensity, filed patterns, phase patterns. Array of two isotropic point sources. Endfire array and Broadside array.

6 Hours

UNIT - 3

ELECTRIC DIPOLES AND THIN LINEAR ANTENNAS: Introduction, short electric dipole, fields of a short dipole(no derivation of field components), radiation resistance of short dipole, radiation resistances of lambda/2 Antenna, thin linear antenna, micro strip arrays, low side lobe arrays, long wire antenna, folded dipole antennas. **7 Hours**

UNIT - 4

LOOP, SLOT, PATCH AND HORN ANTENNA: Introduction, small loop, comparison of far fields of small loop and short dipole, loop antenna general case, far field patterns of circular loop, radiation resistance, directivity, slot antenna, Babinet's principle and complementary antennas, impedance of complementary and slot antennas, patch antennas.

8 Hours

PART – B

UNIT – 5 & 6

ANTENNA TYPES: Horn antennas, rectangular horn antennas, Helical Antenna, Yagi-Uda array, corner reflectors, parabolic reflectors, log periodic antenna, lens antenna, antenna for special applications – sleeve antenna, turnstile antenna, omni directional antennas, antennas for satellite antennas for ground penetrating radars, embedded antennas, ultra wide band antennas, plasma antenna, high-resolution data, intelligent antennas, antenna for remote sensing.

12 Hours

UNIT - 7 & 8

RADIO WAVE PROPAGATION: Introduction, Ground wave propagation, free space propagation, ground reflection, surface wave, diffraction.

TROPOSPHERE WAVE PROPAGATION:Troposcopic scatter,Ionosphere propagation, electrical properties of the ionosphere, effects of
earth's magnetic field.10 Hours
TEXT BOOKS:

- 1. Antennas and Wave Propagation, John D. Krauss, 4th Edn,McGraw-Hill International edition, 2010.
- 2. Antennas and Wave Propagation Harish and Sachidananda: Oxford Press 2007.

REFERENCE BOOKS:

- 1. Antenna Theory Analysis and Design C A Balanis, 3rd Edn, John Wiley India Pvt. Ltd, 2008.
- 2. Antennas and Propagation for Wireless Communication Systems Sineon R Saunders, John Wiley, 2003.
- 3. Antennas and wave propagation G S N Raju: Pearson Education 2005.

OPERATING SYSTEMS

Subject Code	: 10EC65	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION AND OVERVIEW OF OPERATING SYSTEMS: Operating system, Goals of an O.S, Operation of an O.S, Resource allocation and related functions, User interface related functions, Classes of operating systems, O.S and the computer system, Batch processing system, Multi programming systems, Time sharing systems, Real time operating systems, distributed operating systems. **6 Hours**

UNIT - 2

STRUCTURE OF THE OPERATING SYSTEMS: Operation of an O.S, Structure of the supervisor, Configuring and installing of the supervisor, Operating system with monolithic structure, layered design, Virtual machine operating systems, Kernel based operating systems, and Microkernel based operating systems. **7 Hours**

TEXT BOOKS:

- 1. Antennas and Wave Propagation, John D. Krauss, 4th Edn,McGraw-Hill International edition, 2010.
- 2. Antennas and Wave Propagation Harish and Sachidananda: Oxford Press 2007.

REFERENCE BOOKS:

- 1. Antenna Theory Analysis and Design C A Balanis, 3rd Edn, John Wiley India Pvt. Ltd, 2008.
- 2. Antennas and Propagation for Wireless Communication Systems Sineon R Saunders, John Wiley, 2003.
- 3. Antennas and wave propagation G S N Raju: Pearson Education 2005.

OPERATING SYSTEMS

Subject Code	: 10EC65	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION AND OVERVIEW OF OPERATING SYSTEMS: Operating system, Goals of an O.S, Operation of an O.S, Resource allocation and related functions, User interface related functions, Classes of operating systems, O.S and the computer system, Batch processing system, Multi programming systems, Time sharing systems, Real time operating systems, distributed operating systems. **6 Hours**

UNIT - 2

STRUCTURE OF THE OPERATING SYSTEMS: Operation of an O.S, Structure of the supervisor, Configuring and installing of the supervisor, Operating system with monolithic structure, layered design, Virtual machine operating systems, Kernel based operating systems, and Microkernel based operating systems. **7 Hours**

PROCESS MANAGEMENT: Process concept, Programmer view of
processes, OS view of processes, Interacting processes, Threads, Processes in
UNIX, Threads in Solaris.**6 Hours**

UNIT - 4

MEMORY MANAGEMENT: Memory allocation to programs, Memory allocation preliminaries, Contiguous and noncontiguous allocation to programs, Memory allocation for program controlled data, kernel memory allocation. 7 Hours

PART – B

UNIT - 5

VIRTUAL MEMORY: Virtual memory basics, Virtual memory using paging, Demand paging, Page replacement, Page replacement policies, Memory allocation to programs, Page sharing, UNIX virtual memory.

6 Hours

UNIT - 6

FILE SYSTEMS: File system and IOCS, Files and directories, Overview of I/O organization, Fundamental file organizations, Interface between file system and IOCS, Allocation of disk space, Implementing file access, UNIX file system. 7 Hours

UNIT - 7

SCHEDULING: Fundamentals of scheduling, Long-term scheduling, Medium and short term scheduling, Real time scheduling, Process scheduling in UNIX. 6 Hours

UNIT - 8

MESSAGE PASSING: Implementing message passing, Mailboxes, Inter process communication in UNIX. 7 Hours

TEXT BOOK:

1. "Operating Systems - A Concept based Approach", D. M. Dhamdhare, TMH, 3rd Ed, 2010.

REFERENCE BOOK:

- 1. **Operating Systems Concepts**, Silberschatz and Galvin, John Wiley India Pvt. Ltd, 5th Edition, 2001.
- 2. **Operating System Internals and Design Systems**, Willaim Stalling, Pearson Education, 4th Ed, 2006.
- 3. Design of Operating Systems, Tennambhaum, TMH, 2001.

POWER ELECTRONICS

Subject Code	: 10EC73	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction, Applications of power electronics, Power semiconductor devices, Control characteristics, Types of power electronics circuits, Peripheral effects. 6 Hours

UNIT - 2

POWER TRANSISTOR: Power BJT's, Switching characteristics, Switching limits, Base derive control, Power MOSFET's, Switching characteristics, Gate drive, IGBT's, Isolation of gate and base drives.

6 Hours

7 Hours

UNIT - 3

INTRODUCTION TO THYRISTORS: Principle of operation states anode-cathode characteristics, Two transistor model. Turn-on Methods, Dynamic Turn-on and turn-off characteristics, Gate characteristics, Gate trigger circuits, di / dt and dv / dt protection, Thyristor firing circuits.

UNIT - 4

CONTROLLED RECTIFIERS: Introduction, Principles of phase controlled converter operation, 1\u03c6 fully controlled converters, Duel

7 Hours

PART – B

converters, 1 ϕ semi converters (all converters with R & RL load).

UNIT - 5

Thyristor turn off methods, natural and forced commutation, self commutation, class A and class B types, Complementary commutation, auxiliary commutation, external pulse commutation, AC line commutation, numerical problems. 7 Hours

UNIT - 6

AC VOLTAGE CONTROLLERS: Introduction, Principles of on and off control, Principles of phase control, Single phase controllers with restive loads and Inductive loads, numerical problems.

6 Hours

DC CHOPPERS: Introduction, Principles of step down and step up choppers, Step down chopper with RL loads, Chopper classification, Switch mode regulators – buck, boost and buck – boost regulators. **6 Hours**

UNIT - 8

INVERTORS: Introduction, Principles of operation, Performance parameters, 1ϕ bridge inverter, voltage control of 1ϕ invertors, current source invertors, Variable DC link inverter.

7 Hours

TEXT BOOKS:

- 1. **"Power Electronics" -** M. H. Rashid 3rd edition, PHI / Pearson publisher 2004.
- 2. **"Power Electronics" -** M. D. Singh and Kanchandani K.B. TMH publisher, 2nd Ed. 2007.

REFERENCE BOOKS:

- 1. **"Power Electronics, Essentials and Applications", L Umanand, John** Wiley India Pvt. Ltd, 2009.
- 2. "Power Electronics", Daniel W. Hart, McGraw Hill, 2010.
- 3. "Power Electronics", V Nattarasu and R.S. Anandamurhty, Pearson/Sanguine Pub. 2006.

EMBEDED SYSTEM DESIGN

Subject Code	: 10EC74	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT 1:

Introduction to Embedded System: Introducing Embedded Systems, Philosophy, Embedded Systems, Embedded Design and Development Process. 5 Hours

UNIT 2:

The Hardware Side: An Introduction, The Core Level, Representing Information, Understanding Numbers, Addresses, Instructions, Registers-A

DC CHOPPERS: Introduction, Principles of step down and step up choppers, Step down chopper with RL loads, Chopper classification, Switch mode regulators – buck, boost and buck – boost regulators. **6 Hours**

UNIT - 8

INVERTORS: Introduction, Principles of operation, Performance parameters, 1ϕ bridge inverter, voltage control of 1ϕ invertors, current source invertors, Variable DC link inverter.

7 Hours

TEXT BOOKS:

- 1. **"Power Electronics" -** M. H. Rashid 3rd edition, PHI / Pearson publisher 2004.
- 2. **"Power Electronics" -** M. D. Singh and Kanchandani K.B. TMH publisher, 2nd Ed. 2007.

REFERENCE BOOKS:

- 1. **"Power Electronics, Essentials and Applications", L Umanand, John** Wiley India Pvt. Ltd, 2009.
- 2. "Power Electronics", Daniel W. Hart, McGraw Hill, 2010.
- 3. "Power Electronics", V Nattarasu and R.S. Anandamurhty, Pearson/Sanguine Pub. 2006.

EMBEDED SYSTEM DESIGN

Subject Code	: 10EC74	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT 1:

Introduction to Embedded System: Introducing Embedded Systems, Philosophy, Embedded Systems, Embedded Design and Development Process. 5 Hours

UNIT 2:

The Hardware Side: An Introduction, The Core Level, Representing Information, Understanding Numbers, Addresses, Instructions, Registers-A

First Look, Embedded Systems-An Instruction Set View, Embedded Systems-A Register View, Register View of a Microprocessor The Hardware Side: Storage Elements and Finite-State Machines (2 hour) The concepts of State and Time, The State Diagram, Finite State Machines-A Theoretical Model.

8 Hours

UNIT 3:

Memories and the Memory Subsystem: Classifying Memory, A General Memory Interface, ROM Overview, Static RAM Overview, Dynamic RAM Overview, Chip Organization, Terminology, A Memory Interface in Detail, SRAM Design, DRAM Design, DRAM Memory Interface, The Memory Map, Memory Subsystem Architecture, Basic Concepts of Caching, Designing a Cache System, Dynamic Memory Allocation.

7 Hours

UNIT 4:

Embedded Systems Design and Development : System Design and Development, Life-cycle Models, Problem Solving-Five Steps to Design, The Design Process, Identifying the Requirements, Formulating the Requirements Specification, The System Design Specification, System Specifications versus System Requirements, Partitioning and Decomposing a System, Functional Design, Architectural Design, Functional Model versus Architectural Model, Prototyping, Other Considerations, Archiving the Project. **6 Hours**

PART – B

UNIT 5 & 6:

Real-Time Kernels and Operating Systems: Tasks and Things, Programs and Processes, The CPU is a resource, Threads – Lightweight and heavyweight, Sharing Resources, Foreground/Background Systems, The operating System, The real time operating system (RTOS), OS architecture, Tasks and Task control blocks, memory management revisited.

UNIT 7 & 8:

Performance Analysis and Optimization: Performance or Efficiency Measures, Complexity Analysis, The methodology, Analyzing code, Instructions in Detail, Time, etc. – A more detailed look, Response Time, Time Loading, Memory Loading, Evaluating Performance, Thoughts on Performance Optimization, Performance Optimization, Tricks of the Trade, Hardware Accelerators, Caches and Performance.

12 Hours

12 Hours

TEXT BOOK:

1. Embedded Systems – A contemporary Design Tool, James K. Peckol, John Weily India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **Embedded Systems: Architecture and Programming,** Raj Kamal, TMH. 2008.
- Embedded Systems Architecture A Comprehensive Guide for Engineers and Programmers, Tammy Noergaard, Elsevier Publication, 2005.
- 3. **Programming for Embedded Systems**, Dreamtech Software Team, John Wiley India Pvt. Ltd, 2008.

VLSI LAB

Subject Code	: 10ECL77	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

(Wherever necessary Cadence/Synopsis/Menta Graphics tools <u>must be</u> used)

PART - A DIGITAL DESIGN

ASIC-DIGITAL DESIGN FLOW

1. Write Verilog Code for the following circuits and their Test Bench for **verification**, observe the waveform and **synthesize** the code with technological library with given Constraints*. Do the initial timing verification with gate level simulation.

- 1. An inverter
- 2. A Buffer
- 3. Transmission Gate
- 4. Basic/universal gates
- 5. Flip flop -RS, D, JK, MS, T
- 6. Serial & Parallel adder
- 7. 4-bit counter [Synchronous and Asynchronous counter]
- 8. Successive approximation register [SAR]

* An appropriate constraint should be given

VIII SEMESTER WIRELESS COMMUNICATION

Subject Code	: 10EC81	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Introduction to wireless telecommunication systems and Networks, History and Evolution Different generations of wireless cellular networks 1G, 2g,3G and 4G networks. **6 Hours**

UNIT - 2

Common Cellular System components, Common cellular network components, Hardware and software, views of cellular networks, 3G cellular systems components, Cellular component identification Call establishment.

7 Hours

UNIT - 3

Wireless network architecture and operation, Cellular concept Cell fundamentals, Capacity expansion techniques, Cellular backbone networks, Mobility management, Radio resources and power management Wireless network security. **7 Hours**

UNIT - 4

GSM and TDMA techniques, GSM system overview, GSM Network and system Architecture, GSM channel concepts, GSM identifiers

6 Hours

PART – B

UNIT - 5

GSM system operation, Traffic cases, Cal handoff, Roaming, GSM protocol architecture. TDMA systems. **6 Hours**

UNIT - 6

CDMA technology, CDMA overview, CDMA channel concept CDMA operations. **6 Hours**

UNIT - 7

Wireless Modulation techniques and Hardware, Characteristics of air interface, Path loss models, wireless coding techniques, Digital modulation

techniques, OFDM, UWB radio techniques, Diversity techniques, Typical GSM Hardware. **7 Hours**

UNIT - 8

Introduction to wireless LAN 802.11X technologies, Evolution of Wireless LAN Introduction to 802.15X technologies in PAN Application and architecture Bluetooth Introduction to Broadband wireless MAN, 802.16X technologies. **7 Hours**

TEXT BOOK:

1. Wireless Telecom Systems and networks, Mullet: Thomson Learning 2006.

REFERENCE BOOKS:

- 1. **Mobile Cellular Telecommunication**, Lee W.C.Y, MGH, 2nd, 2009.
- 2. Wireless communication D P Agrawal: 2nd Edition Thomson learning 2007.
- 3. **Fundamentals of Wireless Communication**, David Tse, Pramod Viswanath, Cambridge 2005.
- S. S. Manvi, M. S. Kakkasageri, "Wireles and Mobile Network concepts and protocols", John Wiley India Pvt. Ltd, 1st edition, 2010.
- 5. "Wireless Communication Principles & Practice", T.S. Rappaport, PHI 2001.

DIGITAL SWITCHING SYSTEMS

Subject Code	: 10EC82	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Developments of telecommunications, Network structure, Network services, terminology, Regulation, Standards. Introduction to telecommunications transmission, Power levels, Four wire circuits, Digital transmission, FDM, TDM, PDH and SDH, Transmission performance.

7 Hours

DESIGN OF RTSS – GENERAL INTRODUCTION: Introduction, Specification documentation, Preliminary design, Single-program approach, Foreground/background, Multi-tasking approach, Mutual exclusion, Monitors. 6 Hours

UNIT - 8

RTS DEVELOPMENT METHODOLOGIES: Introduction, Yourdon Methodology, Requirement definition for Drying Oven, Ward and Mellor Method, Hately and Pirbhai Method. **6 Hours**

TEXT BOOKS:

 Real - Time Computer Control- An Introduction, Stuart Bennet, 2nd Edn. Pearson Education. 2005.

REFERENCE BOOKS:

- 1. **Real-Time Systems Design and Analysis**, Phillip. A. Laplante, second edition, PHI, 2005.
- 2. Real-Time Systems Development, Rob Williams, Elsevier. 2006.
- 3. Embedded Systems, Raj Kamal, Tata Mc Graw Hill, India, 2005.

IMAGE PROCESSING

Subject Code	: 10EC763	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	:100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

DIGITAL IMAGE FUNDAMENTALS: What is Digital Image Processing. fundamental Steps in Digital Image Processing, Components of an Image processing system, elements of Visual Perception. **6 Hours**

UNIT - 2

Image Sensing and Acquisition, Image Sampling and Quantization, Some Basic Relationships between Pixels, Linear and Nonlinear Operations.

6 Hours

IMAGE TRANSFORMS: Two-dimensional orthogonal & unitary transforms, properties of unitary transforms, two dimensional discrete Fourier transform. 7 Hours

UNIT - 4

Discrete cosine transform, sine transform, Hadamard transform, Haar transform, Slant transform, KL transform. **7 Hours**

PART - B

UNIT - 5

IMAGE ENHANCEMENT: Image Enhancement in Spatial domain, SomeBasic Gray Level Trans -formations, Histogram Processing, EnhancementUsing Arithmetic/Logic Operations.7 Hours

UNIT - 6

Basics of Spatial Filtering Image enhancement in the Frequency Domain filters, Smoothing Frequency Domain filters, Sharpening Frequency Domain filters, homomorphic filtering. **6 Hours**

UNIT - 7

Model of image degradation/restoration process, noise models, Restoration in the Presence of Noise, Only-Spatial Filtering Periodic Noise Reduction by Frequency Domain Filtering, Linear Position-Invariant Degradations, inverse filtering, minimum mean square error (Weiner) Filtering,

7 Hours

UNIT - 8

Color Fundamentals. Color Models, Pseudo color Image Processing., processing basics of full color image processing

6 Hours

TEXT BOOK:

1. **"Digital Image Processing"**, Rafael C.Gonzalez, Richard E. Woods, etl, TMH, 2nd Edition 2010.

REFERENCE BOOKS:

- 1. **"Fundamentals of Digital Image Processing"**, Anil K. Jain, Pearson Education, 2001.
- 2. **"Digital Image Processing and Analysis"**, B. Chanda and D. Dutta Majumdar, PHI, 2003.

PROTOCOL PERFORMANCE TESTING: SDL based performance testing of TCP, OSPF, Interoperability testing, SDL based interoperability testing of CSMA/CD and CSMA/CA protocol using bridge, Scalability testing.

7 Hours

UNIT - 8

PROTOCOL SYNTHESIS:Synthesis methods, interactive synthesisalgorithms, automatic synthesis algorithm, automatic synthesis of SDL fromMSC protocol re synthesis.6 Hours

TEXT BOOK:

1. **Communication Protocol Engineering**, P. Venkatarm and S. S. Manvi, PHI, 2004.

REFERENCES BOOKS:

- 1. The Internet and its Protocols, Adrian Farrel, Elsevier, 2006.
- 2. **TCP/IP Protocol Stack**, B A Forouzan, TMH, 2006.

ELECTIVE –V (GROUP E) MULTIMEDIA COMMUNICATIONS

Subject Code	: 10EC841	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

MULTIMEDIA COMMUNICATIONS: Introduction, multimedia information representation, multimedia networks, multimedia applications, media types, communication modes, network types, multipoint conferencing, network QoS application QoS. 6 Hours

UNIT - 2

MULTIMEDIA INFORMATION REPRESENTATION:Introduction,digital principles, text, images, audio, video.7 Hours

UNIT - 3

TEXT AND IMAGE COMPRESSION: Introduction, compression principles, text compression, image compression.

6 Hours

AUDIO AND VIDEO COMPRESSION: Introduction, audio compression, DPCM, ADPCM, APC, LPC, video compression, video compression principles, H.261, H.263, MPEG, MPEG-1, MPEG-2, and MPEG-4.

7 Hours

PART – B

UNIT - 5

MULTIMEDIA INFORMATION NETWORKS: Introduction, LANs, Ethernet, Token ring, Bridges, FDDI High-speed LANs, LAN protocol.

6 Hours

UNIT - 6

THE INTERNET: Introduction, IP Datagrams, Fragmentation, IP Address,ARP and RARP, QoS Support, IPv8.7 Hours

UNIT - 7

BROADBAND ATM NETWORKS: Introduction, Cell format, Swith and Protocol Architecture ATM LANs. 6 Hours

UNIT - 8

TRANSPORT PROTOCOL: Introduction, TCP/IP, TCP, UDP, RTP and
RTCP.**7 Hours**

TEXT BOOK:

1. Multimedia Communications: Applications, Networks, Protocols and Standards, Fred Halsall, Pearson Education, Asia, Second Indian reprint 2002.

REFERENCE BOOKS:

- 1. **Multimedia Information Networking**, Nalin K. Sharda, PHI, 2003.
- 2. "Multimedia Fundamentals: Vol 1 Media Coding and Content Processing", Ralf Steinmetz, Klara Narstedt, Pearson Education, 2004.
- 3. **"Multimedia Systems Design"**, Prabhat K. Andleigh, Kiran Thakrar, PHI, 2004.

UNIT 6

Embedded System Components:

Firmware components, RTOS system software mechanisms, Software application components.

Debugging Components:

Execptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self test and diagnostics, External test equipment, Application-level debugging.

7 Hours

UNIT 7

Performance Tuning:

Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. **6 Hours**

UNIT 8

High availability and Reliability Design:

Reliability and Availability, Similarities and differences, Reliability, Reliable software, Available software, Design trade offs, Hierarchical applications for Fail-safe design.

Design of RTOS – PIC microcontroller. (Chap 13 of book Myke Predko) 7 Hours

REFERENCE BOOKS:

- 1. "**Real-Time Embedded Systems and Components**" Sam Siewert, Cengage Learning India Edition, 2007.
- 2. "**Programming and Customizing the PIC microcontroller**", Myke Predko, 3rd Ed, TMH, 2008

GSM

Subject Code	: 10EC843	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

GSM ARCHITECTURE AND INTERFACES: Introduction, GSM frequency bands, GSM PLMN, Objectives of a GSM PLMN, GSM PLMN Services, GSM Subsystems, GSM Subsystems entities, GSM interfaces, The radio interface (MS to BSC), A_{bits} interface (BTS to BSC), A interface (BSC

to MSC), Interfaces between other GSM entities, Mapping of GSM layers onto OSI layers. **6 Hours**

UNIT - 2

RADIO LINK FEATURES IN GSM SYSTEMS: Introduction, Radio link measurements, Radio link features of GSM, Dynamic power control, Discontinuous transmission (DTX), SFH, Future techniques to reduce interface in GSM, Channel borrowing, Smart antenna. **7 Hours**

UNIT - 3

GSM LOGICAL CHANNELS AND FRAME STRUCTURE: Introduction, GSM logical channels, Allowed logical channel combinations, TCH multi frame for TCH/H, CCH multi frame, GSM frame structure, GSM bursts, Normal burst, Synchronization burst, Frequency correction channel burst, Access burst, Data encryption in GSM, Mobility management, Location registration, Mobile identification. **7 Hours**

UNIT - 4

SPEECH CODING IN GSM: Introduction, Speech coding methods, Speech code attributes, Transmission bit rate, Delay, Complexity, Quality, LPAS, ITU-T standards, Bit rate, Waveform coding, Time domain waveform coding, Frequency domain waveform coding, Vocoders, Full-rate vocoder, Half-rate vocoder. MESSAGES, SERVICES, AND CALL FLOWS IN GSM: Introduction, GSM PLMN services.

7 Hours

PART – B

UNIT - 5

GSM messages, MS-BS interface, BS to MSC messages on the A interface, MSC to VLR and HLR, GSM call setup by an MS, Mobile-Terminated call, Call release, Handover. Data services, Introduction, Data interworking, GSM data services, Interconnection for switched data, Group 3 fax, Packet data on the signaling channel, User-to-user signaling, SMS, GSM GPRS.

6 Hours

UNIT - 6

PRIVACY AND SECURITY IN GSM: Introduction, Wireless security requirements, Privacy of communications, Authentication requirements, System lifetime requirements, Physical requirements, SIM cards, Security algorithms for GSM, Token-based authentication, Token-based registration, Token-based challenge.

UNIT - 7

6 Hours

PLANNING AND DESIGN OF A GSM WIRELESS NETWORK: Introduction, Tele traffic models, Call model, Topology model, Mobility in

cellular / PCS networks, Application of a fluid flow model, Planning of a wireless network, Radio design for a cellular / PCS network, Radio link design, Coverage planning, Design of a wireless system, Service requirements, Constraints for hardware implementation, Propagation path loss, System requirements, Spectral efficiency of a wireless system, Receiver sensitivity and link budget, Selection of modulation scheme, Design of TDMA frame, Relationship between delay spread and symbol rate, Design example for a GSM system.

7 Hours

UNIT - 8

MANAGEMENT OF GSM NETWORKS: Introduction, Traditional approaches to NM, TMN, TMN layers, TMN nodes, TMN interface, TMN management services, Management requirements for wireless networks, Management of radio resources, Personal mobility management, Terminal mobility, Service mobility management, Platform-centered management, SNMP, OSI systems management, NM interface and functionality, NMS functionality, OMC functionality, Management of GSM network, TMN applications, GSM information model, GSM containment tree, Future work items.

TEXT BOOK:

7 Hours

1. **"Principles of Applications of GSM"**, Vijay K. Garg & Joseph E. Wilkes, Pearson education/ PHI, 1999.

REFERENCE BOOKS:

- 1. **GSM: Evolution towards 3rd Generation Systems**, (Editor), Z. Zvonar Peter Jung, Karl Kammerlander Springer; 1st edition 1998
- 2. **GSM & UMTS: The Creation of Global Mobile Communication,** Friedhelm Hillebrand, John Wiley & Sons; 2001.

ADHOC WIRELESS NETWORKS

Subject Code	: 10EC844	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

AD HOC NETWORKS: Introduction, Issues in Ad hoc wireless networks, Ad hoc wireless internet. 6 Hours

10EE35 ELECTRICAL and ELECTRONIC MEASUREMENTS and INSTRUMENTATION

Subject Code	:	10EE35	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

1-(a) Units and Dimensions: Review of fundamental and derived units. S.I. units. Dimensional equations, problems. **3 Hours**

1-(b) Measurement of Resistance: Wheatstone's bridge, sensitivity, limitations. Kelvin's double bridge. Earth resistance, measurement by fall of potential method and by using Megger. 3 Hours

UNIT 2:

Measurement of Inductance and Capacitance: Sources and detectors, Maxwell's inductance bridge, Maxwell's inductance &capacitance bridge, Hay's bridge, Anderson's bridge, Desauty's bridge, Schering bridge. Shielding of bridges. Problems. 07 Hours

UNIT 3:

Extension of Instrument Ranges: Shunts and multipliers. Construction and theory of instrument transformers, Equations for ratio and phase angle errors of C.T. and P.T (derivations excluded). Turns compensation, illustrative examples (excluding problems on turns compensation), Silsbees's method of testing CT. 07 Hours **UNIT 4:**

Measurement of Power and Energy: Dynamometer wattmeter. UPF and LPF wattmeters, Measurement of real and reactive power in three-phase circuits. Induction type energy meter — construction, theory, errors, adjustments and calibration. Principle of working of electronic energy meter. 06 Hours

PART – B

UNIT 5:

(a) Construction and operation of electro-dynamometer single-phase power factor meter. Weston frequency meter and phase sequence indicator. 04 Hours

(b) Electronic Instruments: Introduction. True RMS responding voltmeter. Electronic multimeters. Digital voltmeters. Q meter. 04 Hours

UNIT 6:

Dual trace oscilloscope — front panel details of a typical dual trace oscilloscope. Method of measuring voltage, current, phase, frequency and period. Use of Lissajous patterns. Working of a digital storage oscilloscope. Brief note on current probes. 06 Hours

UNIT 7:

Transducers: Classification and selection of transducers. Strain gauges, LVDT. Measurement of temperature and pressure. Photo-conductive and photo-voltaic cells.

UNIT 8:

(a) Interfacing resistive transducers to electronic circuits. Introduction to data acquisition systems. 2 Hours

(b) Display Devices and Signal Generators: X-Y recorders. Nixie tubes. LCD and LED display. Signal generators and function generators. 04 Hours

Text Books

- 1. Electrical and Electronic Measurements and Instrumentation, A. K. Sawhney, Dhanpatrai and Sons. New Delhi.
- 2. Modern Electronic Instrumentation and Measuring Techniques, Cooper D. and A.D. Heifrick, PHI, 2009 Edition.

References

- 1. Electronic Instrumentation and Measurement, David A. Bell, oxford Publication ,2nd Edition, 2009.
- 2. Electrical Measurements and Measuring Instruments, Golding and Widdies, Pitman

06 Hours

10EE36 ELECTRIC POWER GENERATION

Subject Code	:	10EE36	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Sources of Electrical Power: Wind, solar, fuel cell, tidal, geo-thermal, hydro-electric, thermal-steam, diesel, gas, nuclear power plants (block diagram approach only). Concept of co-generation. Combined heat and power distributed generation. 06 **Hours**

UNIT 2:

Diesel electric plants. Gas turbine plants. Mini, micro, and bio generation. Concept of distributed generation. 06 Hours

UNIT 3:

(a) Hydro Power Generation: Selection of site. Classification of hydro-electric plants. General arrangement and operation. Hydroelectric plant power station structure and control. 5 Hours

(b) Thermal Power Generation: Introduction. Main parts of a thermal power plant. Working. Plant layout.
3 Hours

UNIT 4:

Nuclear Power Station: Introduction. Pros and cons of nuclear power generation. Selection of site, cost, components of reactors. Description of fuel sources. Safety of nuclear power reactor. 6 Hours

PART – B

UNIT 5 and 6:

(a) **Economics Aspects:** Introduction. Terms commonly used in system operation. Diversity factor, load factor, plant capacity factor, plant use factor, plant utilization factor and loss factor, load duration curve. Cost of generating station, factors influencing the rate of tariff designing, tariff, types of tariff. Power factor improvement.

(b) Substations: Introduction, types, Bus bar arrangement schemes, Location of substation equipment. Reactors and capacitors. Interconnection of power stations. 14 Hours

UNIT 7 and 8 :

Grounding Systems: Introduction, grounding systems. Neutral grounding. Ungrounded system. Resonant grounding. Solid grounding, reactance grounding, resistance grounding. Earthing transformer. Neutral grounding transformer. 12 Hours

Text Books

1. **Power System Engineering,** A. Chakrabarti, M. L. Soni, and P.V. Gupta, Dhanpat Rai and Co.,NewDelhi.

2. Electric Power Generation, Transmission and Distribution, S. N. Singh, PHI, 2nd Edition, 2009.

References

1. Elements of Electrical Power System Design, M. V. Deshpande, PHI,2010

10ES42 MICROCONTROLLERS

(Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES42	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Microprocessors and microcontroller. Introduction, Microprocessors and Microcontrollers, RISC & CISC CPU Architectures, Harvard & Von-Neumann CPU architecture, Computer software. The 8051 Architecture: Introduction, Architecture of 8051, Pin diagram of 8051, Memory organization, External Memory interfacing, Stacks.

UNIT 2:

Addressing Modes: Introduction, Instruction syntax, Data types, Subroutines, Addressing modes: Immediate addressing, Register addressing, Direct addressing, Indirect addressing, relative addressing, Absolute addressing, Long addressing, Indexed addressing, Bit inherent addressing, bit direct addressing.

Instruction set: Instruction timings, 8051 instructions: Data transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction.

6Hours

6 Hours

6 Hours

UNIT 4:

8051 Interfacing and Applications: Basics of I/O concepts, I/O Port Operation, Interfacing 8051 to LCD, Keyboard, parallel and serial ADC, DAC, Stepper motor interfacing and DC motor interfacing and programming

UNIT 5:

8051 Interrupts and Timers/counters: Basics of interrupts, 8051 interrupt structure, Timers and Counters, 8051 timers/counters, programming 8051 timers in assembly and C.

UNIT 6:

8051 Serial Communication: Data communication, Basics of Serial Data Communication, 8051 Serial Communication, connections to RS-232, Serial communication Programming in assembly and C.8255A Programmable Peripheral Interface:, Architecture of 8255A, I/O addressing,, I/O devices interfacing with 8051 using 8255A.

Course Aim – The MSP430 microcontroller is ideally suited for development of low-power embedded systems that must run on batteries for many years. There are also applications where MSP430 microcontroller must operate on energy harvested from the environment. This is possible due to the ultra- low power operation of MSP430 and the fact that it provides a complete system solution including a RISC CPU, flash memory, on-chip data converters and on-chip peripherals.

UNIT 7:

Motivation for MSP430microcontrollers – Low Power embedded systems, On-chip peripherals (analog and digital), low-power RF capabilities. Target applications (Single-chip, low cost, low power, high performance system design).

2 Hours

MSP430 RISC CPU architecture, Compiler-friendly features, Instruction set, Clock system, Memory subsystem. Key differentiating factors between different MSP430 families.

2 Hours

Introduction to Code Composer Studio (CCS v4). Understanding how to use CCS for Assembly, C, Assembly+C projects for MSP430 microcontrollers. Interrupt programming.

UNIT 3: 8051 programming: Assembler directives, Assembly language programs and Time delay calculations.

6 Hours

6 Hours

2 Digital I/O – I/O ports programming using C and assembly, Understanding the muxing scheme of the MSP430 pins. 2 Hours

UNIT 8:

On-chip peripherals. Watchdog Timer, Comparator, Op-Amp, Basic Timer, Real Time Clock (RTC), ADC, DAC, SD16, LCD, DMA.

Using the Low-power features of MSP430. Clock system, low-power modes, Clock request feature, Low-power programming and Interrupt.

Interfacing LED, LCD, External memory. Seven segment LED modules interfacing. Example – Real-time clock.

Case Studies of applications of MSP430 - Data acquisition system, Wired Sensor network, Wireless sensor network with Chipcon RF interfaces.

3 Hours

2 Hours

2 Hours

2 Hours

TEXT BOOKS:

- 1. "The 8051 Microcontroller and Embedded Systems using assembly and C "-, Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; PHI, 2006 / Pearson, 2006
- 2. "MSP430 Microcontroller Basics", John Davies, Elsevier, 2010

REFERENCE BOOKS:

- 1. "The 8051 Microcontroller Architecture, Programming & Applications", 2e Kenneth J. Ayala ;, Penram International, 1996 / Thomson Learning 2005.
- 2. "The 8051 Microcontroller", V.Udayashankar and MalikarjunaSwamy, TMH, 2009
- 3. MSP430 Teaching CD-ROM, Texas Instruments, 2008 (can be requested http://www.uniti.in)
- 4. Microcontrollers: Architecture, Programming, Interfacing and System Design", Raj Kamal, "Pearson Education, 2005

10EE45 POWER ELECTRONICS

Subject Code	:	10EE45	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Power Semiconductor Devices:

Introduction to semiconductors, Power Electronics, Power semiconductor devices, Control Characteristics. Types of power electronic converters and industrial applications-Drives, Electrolysis, Heating, Welding, Static Compensators, SMPS, HVDC power transmission, Thyristorized tap changers and Circuit breakers.

UNIT 2:

Power Transistors: Power BJT's – switching characteristics, switching limits, base drive control. Power MOSFET's and IGBT's –characteristics, gate drive , di/dt and dv/dt limitations. Isolation of gate and base drives. **6 Hours**

UNIT 3:

Thyristors

Introduction, Two Transistor Model, characteristics-static and dynamic. di/dt and dv/dt protection. Ratings of thyristors. Thyristor types. Series and parallel operation of Thyristors. Thyristor firing circuits. Design of firing circuits using UJT, R, R-C circuits. Analysis of firing circuits using operational amplifiers and digital IC's. **7 Hours**

UNIT 4:

UNIT 5:

Commutation Techniques: Introduction. Natural Commutation. Forced commutation- self-commutation, impulse commutation and complementary commutation. 6 Hours

PART – B

Controlled Rectifiers: Introduction. Principle of phase controlled converter operation. Single- phase semiconverters. Full converters. Three-phase half-wave converters. Three-phase full-wave converters. **7 Hours**

UNIT 6:

Choppers: Introduction. Principle of step-down and step-up chopper with R-L load. Performance parameters. Chopper classification. Analysis of impulse commutated thyristor chopper (only qualitative analysis) **6 Hours**

UNIT 7:

Inverters: Introduction. Principle of operation. Performance parameters. Single-phase bridge inverters. Threephase inverters. Voltage control of single-phase inverters – single pulse width, multiple pulse width, and sinusoidal pulse width modulation. Current source inverters. **7 Hours**

UNIT 8:

(a) AC Voltage Controllers: Introduction. Principle of ON-OFF and phase control. Single-phase, bidirectional controllers with resistive and R-L loads.

(b) Electromagnetic Compatibility: Introduction, effect of power electronic converters and remedial measures.

6 Hours

Text Book:

1. Power Electronics, M.H.Rashid, , Pearson, 3rd Edition, 2006.

2. Power Electronics, M.D. Singh and Khanchandani K.B., T.M.H., 2nd Edition,2001

References

- 1. Power Electronics Essentials and Applications, L. Umanand, Wiley India Pvt Ltd, Reprint, 2010
- 2. Thyristorised Power Controllers, G.K. Dubey, S.R. Doradla, A. Joshi and R.M.K. Sinha, New Age International Publishers.
- 3. **Power Electronics Converters, Applications and Design,** Ned Mohan, Tore M. Undeland, and William P. Robins, Third Edition, John Wiley and Sons,2008.
- 4. **Power Electronics: A Simplified Approach,** R.S. Ananda Murthy and V. Nattarasu, pearson/Sanguine Technical Publishers.

7 hours

MICROCONTROLLERS LAB

(Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ESL47	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

I. PROGRAMMING

1. Data Transfer - Block move, Exchange, Sorting, Finding largest element in an array.

- 2. Arithmetic Instructions Addition/subtraction, multiplication and division, square, Cube (16 bits Arithmetic operations bit addressable).
- 3. Counters.
- 4. Boolean & Logical Instructions (Bit manipulations).
- 5. Conditional CALL & RETURN.
- 6. Code conversion: BCD ASCII; ASCII Decimal; Decimal ASCII; HEX Decimal and Decimal HEX .

7. Programs to generate delay, Programs using serial port and on-Chip timer / counter.

Note: Programming exercise is to be done on both 8051 & MSP430.

II. INTERFACING:

Write C programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

8. Simple Calculator using 6 digit seven segment displays and Hex Keyboard interface to 8051.

- 9. Alphanumeric LCD panel and Hex keypad input interface to 8051.
- 10. External ADC and Temperature control interface to 8051.
- 11. Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC interface to 8051; change the frequency and amplitude.
- 12. Stepper and DC motor control interface to 8051.
- 13. Elevator interface to 8051.

10EEL48 POWER ELECTRONICS LAB

Subject Code	:	10EEL48	IA Marks	:	25
No. of Practical Hrs./ Week	:	03	Exam Hours	:	03
Total No. of Practical Hrs.	:	42	Exam Marks	:	50

1. Static characteristics of SCR.

2. Static characteristics of MOSFET and IGBT.

- 3. SCR turn-on circuit using synchronized UJT relaxation oscillator.
- 4. SCR Digital triggering circuit for a single-phase controlled rectifier and A.C. voltage controller.
- 5. Single-phase controlled full-wave rectifier with *R* and *R*-*L* loads.
- 6. A.C. voltage controller using TRIAC and DIAC combination connected to *R* and *R*-*L* loads.
- 7. Speed control of a separately excited D.C. motor using an IGBT or MOSFET chopper.
- 8. Speed control of D.C. motor using single semi converter
- Speed control of a stepper motor.
 Speed control of universal motor using A.C. voltage controller.
- 11. MOSFET OR IGBT based single-phase full-bridge inverter connected to R load.
- 12. Study of commutation using LC circuits and auxiliary circuits.

10EEL57 MEASUREMENTS AND CIRCUIT SIMULATION LABORATORY

Subject Code	:	10EEL57	IA Marks	:	25
No. of Practical Hrs./ Week	:	03	Exam Hours	:	03
Total No. of Practical Hrs.	:	42	Exam Marks	:	50

- 1. Measurement of low resistance using Kelvin's double bridge.
- 2. Measurement of cable insulation and earth resistance using Meggar
- 3. Measurement of inductance using Maxwell Inductance-Capacitance bridge & determination of Qfactor
- 4. Measurement of capacitance using De-Sauty's bridge & determination of dissipation factor.
- 5. M easurement of active and reactive power in balanced 3-phase circuit using two-watt meter method.
- 6. Adjustment & calibration of 1-phase energy meter
- 7. Determination of ratio & phase angle error in CT.
- 8. a) Inverting, non-inverting & scale changing of signals using op -amps
- b) RC phase shift oscillator using op amps (Both using simulation package)
- 9. RC coupled amplifier-frequency response for variation of bias & coupling using simulation package
- 10. Rectifier circuits-Bridge rectifier, diode clipping & clamping circuits using simulation package.
- 11. Schmitt -trigger- inverting and non-inverting.
 12 Signal generator- triangular, saw tooth and rectangular wave generation
 Note: All experiments, except 5,6 and 7, are to be carried out by using components and verify the result by using a simulation package.

10EE61 POWER SYSTEM ANALYSIS AND STABILITY

Subject Code	:	10EE61	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

REPRESENTATION OF POWER SYSTEM COMPONENTS: Circuit models of Transmission line, Synchronous machines, Transformers and load. Single line diagram, impedance and reactance diagrams. Per unit system, per unit impedance diagram of power system. UNIT - 2

SYMMETRICAL 3 - PHASE FAULTS: Analysis of Synchronous machines and Power system. Transients on a transmission line, Short-Circuit currents and the reactance of synchronous machines with and without load . 6 Hours

UNIT - 3 & 4

SYMMETRICAL COMPONENTS: Introduction, analysis of unbalanced load against balanced Threephase supply, neutral shift. Resolution of unbalanced phasors into their symmetrical components, Phase shift of symmetrical components in star-delta transformer bank, Power in terms of symmetrical components, Analysis of balanced and unbalanced loads against unbalanced 3 phase supply, Sequence impedances and networks of power system elements (alternator, transformer and transmission line) Sequence networks of power systems. Measurement of sequence impedance of synchronous generator.

12 Hours

Part - B

UNIT - 5 & 6

UNSYMMETRICAL FAULTS: L-G, L-L, L-L-G faults on an unbalanced alternator with and without fault impedance. Unsymmetrical faults on a power system with and without fault impedance. Open conductor faults in power system. 14 Hours

UNIT - 7

STABILITY STUDIES: Introduction, Steady state and transient stability. Rotor dynamics and the swing equation. Equal area criterion for transient stability evaluation and its applications. **8 Hours**

UNIT – 8

UNBALANCED OPERATION OF THREE PHASE INDUCTION MOTRORS: Analysis of three phase induction motor with one line open., Analysis of three phase induction motor with unbalanced voltage. 4 Hours

TEXT BOOKS:

- 1. Elements of Power System Analysis, W.D.Stevenson, TMH,4th Edition
- 2. Modern Power System Analysis, I. J. Nagrath and D.P.Kothari-TMH, 3rd Edition, 2003.
- 3. Symmetrical Components and Short Circuit Studies, Dr.P.N.Reddy, Khanna Publishers

REFERENCE BOOKS:

- 1. **Power System Analysis**, Hadi Sadat, TMH,2nd Edition.
- 2. Power system Analysis, <u>R.</u>Bergen, and Vijay Vittal, Pearson publications, 2nd edition, 2006.
- 3. Computer Aided Power system analysis, G.L., Kusic, PHI.Indian Edition, 2010 .
- 4. Power System Analysis, W.D. Stevenson & Grainger, TMH, First Edition, 2003.

PART -	A
--------	---

SWITCHES AND FUSES: Introduction, energy management of power system, definition of switchgear, switches - isolating, load breaking and earthing. Introduction to fuse, fuse law, cut -off characteristics,: Time current characteristics, fuse material, HRC fuse, liquid fuse, Application of fuse

UNIT - 2

PRINCIPLES OF CIRCUIT BREAKERS: Introduction, requirement of a circuit breakers, difference between an isolator and circuit breaker, basic principle of operation of a circuit breaker, phenomena of arc, properties of arc, initiation and maintenance of arc, arc interruption theories - slepian's theory and energy balance theory, Restriking voltage, recovery voltage, Rate of rise of Restriking voltage, DC circuit breaking, AC circuit breaking, current chopping, capacitance switching, resistance switching, Rating of Circuit breakers.

UNIT - 3 & 4 CIRCUITS BREAKERS: Air Circuit breakers – Air break and Air blast Circuit breakers, oil Circuit breakers - Single break, double break, minimum OCB, SF₆ breaker - Preparation of SF₆ gas, Puffer and non Puffer type of SF₆ breakers. Vacuum circuit breakers - principle of operation and constructional details. Advantages and disadvantages of different types of Circuit breakers, Testing of Circuit breakers, Unit testing, synthetic testing, substitution test, compensation test and capacitance test.

LIGHTNING ARRESTERS: Causes of over voltages – internal and external, lightning, working principle of different types of lightning arresters. Shield wires.

PART - B

UNIT - 5

UNIT - 1

PROTECTIVE RELAYING: Requirement of Protective Relaying, Zones of protection, primary and backup protection, Essential qualities of Protective Relaying, Classification of Protective Relays

UNIT - 6

INDUCTION TYPE RELAY: Non-directional and directional over current relays, IDMT and Directional characteristics. Differential relay – Principle of operation, percentage differential relay, bias characteristics, distance relay – Three stepped distance protection, Impedance relay, Reactance relay, Mho relay, Buchholz relay, Negative Sequence relay, Microprocessor based over current relay – block diagram approach.

UNIT - 7 & 8

PROTECTION SCHEMES: Generator Protection - Merz price protection, prime mover faults, stator and rotor faults, protection against abnormal conditions – unbalanced loading, loss of excitation, over speeding. Transformer Protection - Differential protection, differential relay with harmonic restraint, Inter turn faults Induction motor protection - protection against electrical faults such as phase fault, ground fault, and abnormal operating conditions such as single phasing, phase reversal, over load. **12 Hours**

TEXT BOOKS:

- 1. Switchgear & Protection Sunil S.Rao,,Khanna Publishers,13th Edition,2008.
- 2. Power System Protection & Switchgear, Badriram & Viswa Kharma, TMH, 1st edition, 2001.
- 3. Fundamentals of Power System protection, Y G. Painthankar and S R Bhide, PHI, 2009.

REFERENCE BOOKS:

- 1. A Course in Electrical Power, Soni, Gupta & Bhatnagar, Dhanapatirai.
- 2. Power System Protection & Switchgear, Ravindarnath & Chandra -New age Publications.
- **3** Electrical Power, Dr S. L. Uppal, Khanna Publishers.
- 4. Handbook of Switchgears, BHEL, TMH, 5th reprint, 2008.

10EE62 SWITCHGEAR & PROTECTION

Subject Code	:	10EE62	IA Marks	:	25				
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03				
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100				

10 Hours

4 Hours

12 Hours

4 Hours

4 Hours

10 Hours

10EE664 OBJECT ORIENTED PROGRAMMING USING C ++

Subject Code	:	10EE664	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

PRINCIPLES OF OBJECT-ORIENTED PROGRAMMING: Review of Procedure OrientedProgramming, Basic concepts of Object Oriented Programming – Object, Class, Encapsulation,Inheritance, Polymorphism; Benefits of OOPs, Applications of OOP's.**4 Hours**

UNIT - 2

THE BASIC LANGUAGE C++: A comparison of C and C++, Structure of C++ program with Class, Preprocessor directives, C++ Statements – Input/Output, Comments, Tokens, Keywords, Identifiers, Constants, Data types – string, pointer, reference, boole, enumeration, array, complex number; typedef names, type compatibility, type conversion, qualifier – const, volatile; Operators in C++, Operator Precedence and Operator Overloading; C++ expressions – New and Delete. **6 Hours**

UNIT - 3

FUNCTIONS IN C++: Introduction, The main() function, Function prototype, Call by reference, Return by reference, Inline functions, Default arguments, const Arguments, Function Overloading, Friend and Virtual functions, pointer to functions. **8 hours**

UNIT - 4

CLASSES AND OBJECTS: Introduction – declaration and definition of a Class, defining member functions, C++ program with a Class, Making an outside function Inline, Nesting of member functions, Arrays within a class, Static data members, static member functions, Objects – global & local objects, scope & lifetime, memory allocation for objects, dynamically allocated objects, pointers to objects, arrays of objects, function arguments with objects, returning objects; const member functions. **8 Hours**

PART - B

UNIT - 5

CONSTRUCTORS AND DESTRUCTORS: Introduction, Constructors, Parameterized Constructors, Multiple constructors in a class, Constructors with default arguments, Dynamic initialization of objects, Copy constructor, Constructing two-dimensional arrays, const Objects, Destructors. **4 Hours**

UNIT - 6

OPERATOR OVERLOADING AND TYPE CONVERSION: Introduction, Defining operator overloading, Overloading unary operators, Overloading binary operators, Overloading binary operators using Friends, Rules for overloading operators, overloading a comma operator, overloading the output operator, Type conversion. **7 Hours**

UNIT - 7

INHERITANCE: Introduction, Defining derived classes, Single inheritance, Making a private member Inheritable, Multilevel inheritance, Multiple inheritance, Hierarchical inheritance, Hybrid inheritance, Virtual base classes, Abstract classes, Constructors & Destructors in base & derived classes. **6 Hours**

UNIT - 8

POINTER, VIRTUAL FUNCTIONS AND POLYMORPHISM: Introduction, Pointers, Pointers to Objects, this pointer, Pointers to derived classes, type-checking pointers, pointers to members, Virtual functions, Pure virtual functions.

MANAGING CONSOLE I/O AND FILE I/O: C++ streams, C++ stream classes, examples of formatted and unformatted I/O operations, Classes for file stream operations, Methods of Opening and Closing a File, Examples of Opening file using constructor open(), file modes (simple programming exercises). **9 Hours**

TEXT BOOKS:

1. **Object Oriented Programming with C++-** Balagurusamy, E, TMH,4th edition, 2008.

2. C++, The Complete Reference -Herbert Schildt, , TMH, 4th edition

3. Object Oriented Programming with C++, Farrell, Cengage Learning, First Edition, 2008. **REFERENCE BOOKS:**

1. The C++ programming language,Bjarne Stroustrup, Pearson Education, 3rd edition,2006.

2. Objected oriented programming with C++, Bhave, Pearson Education, First Edition, 2006.

10EE72 ELECTRICAL POWER UTILIZATION

Subject Code	:	10EE72	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

HEATING AND WELDING: Advantages and methods of electric of heating, resistance ovens, induction heating, dielectric heating, the arc furnace, heating of building. Electric welding, resistance and arc welding, control devices and welding equipment. **10 Hours**

UNIT - 2

ELECTROLYTIC PROCESS: Fundamental principles, extraction, refining of metals and electroplating. Factors affecting electro deposition process, power supply for electrolytic process. **6 Hours**

UNIT - 3 & 4

ILLUMINATION: Laws of illumination, lighting calculation, factory lighting, flood lighting, street lighting, different types of lamps-incandescent, fluorescent, vapor, CFL and LED lamps and their working, comparision, Glare and its remedy. **10 Hours**

PART - B

UNIT - 5, 6 & 7

ELECTRIC TRACTION: Introduction, requirements of an ideal traction, systems of traction, speed time curve, tractive effort, co-efficient of adhesion, selection of traction motors, method of speed control, energy saving by series parallel control, ac traction equipment. AC series motor, characteristics, regenerative braking, linear induction motor and their use. AC traction, diesel electric equipment, trains lighting system, specific energy, factors affecting specific energy consumption. **20 Hours**

UNIT - 8

INTRODUCTION TO ELECTRIC AND HYBRID VEHICLES: Configuration and performance of electrical vehicles, traction motor characteristics, tractive effort, transmission requirement, vehicle performance and energy consumption. **6 Hours**

TEXT BOOKS:

- 1. Utilization Of Electric Energy, E Openshaw Taylor, 12th Impression, 2009, Universities Press.
- 2. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad, Ehsani, Yimin Gao, Sabastien. E. Gay, Ali Emadi- CRC Press.

REFERENCE BOOKS:

- 1. A Course in Electrical Power, Soni Gupta and Bhatnager-Dhanapat Rai & sons.
- 3. Electrical Power, Dr. S.L.Uppal, Khanna Publications

10EE73 HIGH VOLTAGE ENGINEERING

Subject Code	:	10EE73	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

INTRODUCTION: Introduction to HV technology, need for generating high voltages in laboratory. Industrial applications of high voltage, Electrostatic precipitation, separation, painting and printing.

6Hours

UNIT - 2 & 3

BREAKDOWN PHENOMENA: Classification of HV insulating media. Properties of important HV insulating media under each category. Gaseous dielectrics, Ionization: primary and secondary ionization processes. Criteria for gaseous insulation breakdown based on Townsend's theory. Limitations of Townsend's theory. Streamer's theory breakdown in non uniform fields. Corona discharges. Breakdown in electro negative gases. Paschen's law and its significance. Time lags of Breakdown. Breakdown in solid dielectrics: Intrinsic Breakdown, avalanche breakdown, thermal breakdown, and electro mechanic breakdown. Breakdown of liquid dielectrics: Suspended particle theory, electronic Breakdown, cavity breakdown (bubble's theory), electro convection breakdown. **12 Hours**

UNIT - 4

GENERATION OF HV AC AND DC VOLTAGE: HV AC-HV transformer; Need for cascade connection and working of transformers units connected in cascade. Series resonant circuit- principle of operation and advantages. Tesla coil. HV DC- voltage doubler circuit, cock croft- Walton type high voltage DC set. Calculation of high voltage regulation, ripple and optimum number of stages for minimum voltage drop. **8 Hours**

Part - B

UNIT - 5

GENERATION OF IMPULSE VOLTAGE AND CURRENT: Introduction to standard lightning and switching impulse voltages. Analysis of single stage impulse generator-expression for Output impulse voltage. Multistage impulse generator working of Marx impulse. Rating of impulse generator. Components of multistage impulse generator. Triggering of impulse generator by three electrode gap arrangement. Trigatron gap and oscillograph time sweep circuits. Generation of switching impulse voltage. Generation of high impulse current.

UNIT - 6

MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation. Chubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV DC measurements. Standard sphere gap measurements of HV AC, HV DC, and impulse voltages; Factors affecting the measurements. Potential dividers-resistance dividers capacitance dividers mixed RC potential dividers. Measurement of high impulse currents-Rogogowsky coil and Magnetic Links. **10 Hours**

NON-DESTRUCTIVE INSULATION TESTING TECHNIQUES: Dielectric loss and loss angle measurements using Schering Bridge, Transformer ratio Arms Bridge. Need for discharge detection and PD measurements aspects. Factor affecting the discharge detection. Discharge detection methods-straight and balanced methods. 6 Hours

UNIT - 8

HIGH VOLTAGE TESTS ON ELECTRICAL APPARATUS: Definitions of terminologies, tests on
isolators, circuit breakers, cables insulators and transformers.4 Hours

TEXT BOOKS:

- 1. High Voltage Engineering, M.S.Naidu and Kamaraju- 4th Edition, THM, 2008.
- 2. High Voltage Engineering Fundamentals, E.Kuffel and W.S. Zaengl, 2nd Edition, Elsevier Press, 2005.
- 3. High Voltage Engineering ,C.L.Wadhwa, New Age International Private limited, 1995.

REFERENCE BOOKS:

1.High Voltage Engineering Theory and Practice, Mazen Abdel-Salam, Hussein Anis, Ahdab El-Morshedy, Roshdy Radwan, 2nd Edn(Revised & Expanded) Marcel-Dekker Publishers(Special Indian Edn.).

10EE752 PROGRAMMABLE LOGIC CONTROLLERS

Subject Code	:	10EE752	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

INTRODUTION: Introduction to Programmable logic controller (PLC), role in automation (SCADA), advantages and disadvantages, hardware, internal architecture, sourcing and sinking, characteristics of I/O devices, list of input and output devices, examples of applications. I/O processing, input/output units, signal conditioning, remote connections, networks, processing inputs I/O addresses. **7 Hours**

UNIT - 2

ROGRAMMING: Ladder programming- ladder diagrams, logic functions, latching, multiple outputs, entering programs, functional blocks, programme examples like location of stop and emergency switches

8 Hours

UNIT - 3 & 4

PROGRAMMING LANGUAGES: Instruction list, sequential functions charts & structured text, jump and call subroutines. 10 Hours

PART - B

UNIT - 5

INTERNAL RELAYS: ladder programmes, battery- backed relays, one - shot operation, set and reset, master control relay. 5 Hours

UNIT - 6 & 7

Timers and counters: Types of timers, programming timers, ON and OFF- delay timers, pulse timers, forms of counter, programming, up and down counters, timers with counters, sequencer. 12 Hours UNIT - 8

Shift register and data handling: shift registers, ladder programs, registers and bits, data handling, arithmetic functions, temperature control and bottle packing applications. 10 Hours Note: Programming is to be with reference to only Mitsubhish PLC

TEXT BOOKS:

- 1. Programmable Logic controllers-W Bolton, 5th edition, Elsevier- newness, 2009.
- 2. **Programmable logic controllers principles and applications**"-John W Webb, Ronald A Reis, Pearson education, 5th edition, 2nd impression, 2007.

REFERENCE BOOKS:

- 1. **Programmable Controller Theory and Applications**, L. A Bryan, E. A Bryan, An industrial text company publication, 2nd edition, 1997.
- 2. Programmable Controllers, An Engineers Guide-E. A Paar, newness, 3rd edition, 2003.

Subject Code	:	10EE836	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

10EE836 RENEWABLE ENERGY SOURCES

UNIT - 1

ENERGY SOURCES: Introduction, Importance of Energy Consumption as Measure of Prosperity, Per Capita Energy Consumption, Classification of Energy Resources; Conventional Energy Resources -Availability and their limitations; Non-Conventional Energy Resources – Classification, Advantages, Limitations; Comparison of Conventional and Non-Conventional Energy Resources; World Energy Scenario; Indian Energy Scenario. 4 Hours

UNIT - 2

SOLAR ENERGY BASICS: Introduction, Solar Constant, Basic Sun-Earth Angles – definitions and their representation, Solar Radiation Geometry (numerical problems), Estimation of Solar Radiation of Horizontal and Tilted Surfaces (numerical problems); Measurement of Solar Radiation Data – Pyranometer and Pyrheliometer. **6 Hours**

UNIT - 3

SOLAR THERMAL SYSTEMS: Principle of Conversion of Solar Radiation into Heat, Solar WaterHeaters (Flat Plate Collectors), Solar Cookers – Box type, concentrating dish type, Solar driers, Solar Still,Solar Furnaces, Solar Green Houses.6 Hours

UNIT - 4

SOLAR ELECTRIC SYSTEMS: Solar Thermal Electric Power Generation – Solar Pond and Concentrating Solar Collector (parabolic trough, parabolic dish, Central Tower Collector). Advantages and Disadvantages; Solar Photovoltaic – Solar Cell fundamentals, characteristics, classification, construction of module, panel and array. Solar PV Systems – stand-alone and grid connected; Applications – Street lighting, Domestic lighting and Solar Water pumping systems. **7 Hours**

ENERGY STORAGE: Introduction, Necessity of Energy Storage, and Methods of Energy Storage (classification and brief description using block diagram representation only). **3 Hours**

PART - B

UNIT - 5

WIND ENERGY: Introduction, Wind and its Properties, History of Wind Energy, Wind Energy Scenario – World and India. Basic principles of Wind Energy Conversion Systems (WECS), Classification of WECS, Parts of WECS, Derivation for Power in the wind, Electrical Power Output and Capacity Factor of WECS, Wind site selection consideration, Advantages and Disadvantages of WECS. **8 Hours**

UNIT - 6

BIOMASS ENERGY: Introduction, Photosynthesis process, Biomass fuels, Biomass conversion technologies, Urban waste to Energy Conversion, Biomass Gasification, Biomass to Ethanol Production, Biogas production from waste biomass, factors affecting biogas generation, types of biogas plants – KVIC and Janata model; Biomass program in India. **6 Hours**

UNIT - 7

ENERGY FROM OCEAN: Tidal Energy – Principle of Tidal Power, Components of Tidal Power Plant (TPP), Classification of Tidal Power Plants, Estimation of Energy – Single basin and Double basin type TPP (no derivations. Simple numerical problems), Advantages and Limitations of TPP. Ocean Thermal Energy Conversion (OTEC): Principle of OTEC system, Methods of OTEC power generation – Open Cycle (Claude cycle), Closed Cycle (Anderson cycle) and Hybrid cycle (block diagram description of OTEC); Siteselection criteria, Biofouling, Advantages & Limitations of OTEC. **6 Hours**

UNIT - 8

EMERGING TECHNOLOGIES: Fuel Cell, Small Hydro Resources, Hydrogen Energy, and Wave Energy. (Principle of Energy generation using block diagrams, advantages and limitations). **6 Hours**

TEXT BOOKS:

- 1. Non-Conventional Sources of Energy, Rai, G. D, Khanna Publishers, 4th Edition, 2007
- 2. Non-Conventional Energy Resources, Khan, B. H., TMH, 2nd Edition.

REFERENCE BOOK:

1. **Fundamentals of Renewable Energy Systems,** Mukherjee, D and Chakrabarti, S., New Age International Publishers, 2005.

MATERIAL SCIENCE AND METALLURGY

Subject Code	: 10ME32A /42A	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Crystal Structure: BCC, FCC and HCP Structures, coordination number and atomic packing factors, crystal imperfections -point line and surface imperfections. Atomic Diffusion: Phenomenon, Ficks laws of diffusion, factors affecting diffusion.

06 Hours

UNIT - 2

Mechanical Behaviour: Stress-strain diagram showing ductile and brittle behaviour of materials, linear and non linear elastic behaviour and properties, mechanical properties in plastic range, yield strength offset yield strength, ductility, ultimate tensile strength, toughness. Plastic deformation of single crystal by slip and twinning.

06 Hours

Fracture: Type I, Type II and Type III.

Creep: Description of the phenomenon with examples. three stages of creep, creep properties, stress relaxation.

Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, fatigue properties, fatigue testing and S-N diagram.

07 Hours

UNIT - 4

Solidification: Mechanism of solidification, Homogenous and Heterogeneous nucleation, crystal growth, cast metal structures. Phase Diagram I: Solid solutions Hume Rothary rule substitutional, and interstitial solid solutions, intermediate phases, Gibbs phase rule.

07 Hours

PART - B

UNIT - 5

Phase Diagram II: Construction of equilibrium diagrams involving complete and partial solubility, lever rule. Iron carbon equilibrium diagram description of phases, solidification of steels and cast irons, invariant reactions.

06 Hours

UNIT - 6

Heat treating of metals: TTT curves, continuous cooling curves, annealing and its types. normalizing, hardening, tempering, martempering, austempering, hardenability, surface hardening methods like carburizing, cyaniding, nitriding, flame hardening and induction hardening, age hardening of aluminium-copper alloys.

07 Hours

UNIT - 7

Ferrous and non ferrous materials: Properties, Composition and uses of

- Grey cast iron, malleable iron, SG iron and steel
- Copper alloys-brasses and bronzes. Aluminium alloys-Al-Cu,Al-Si,Al-Zn alloys.

06 Hours
Composite Materials: Definition, classification, types of matrix materials & reinforcements, fundamentals of production of FRP's and MMC's advantages and application of composites.

07 Hours

TEXT BOOKS:

- 1. Foundations of Materials Science and Engineering, Smith, 4th Edition McGraw Hill, 2009
- 2. Materials Science, Shackleford., & M. K. Muralidhara, Pearson Publication 2007.

REFERENCE BOOKS:

- 1. An Introduction to Metallurgy; Alan Cottrell, Universities Press India Oriental Longman Pvt. Ltd., 1974.
- 2 Engineering Materials Science, W.C.Richards, PHI, 1965
- 3. Physical Metallurgy; Lakhtin, Mir Publications
- 4. Materials Science and Engineering, V.Raghavan, PHI, 2002
- 5. Elements of Materials Science and Engineering, H. VanVlack, Addison-Wesley Edn., 1998
- Materials Science and Engineering, William D. Callister Jr., John Wiley & Sons. Inc, 5th Edition, 2001.
- 7. **The Science and Engineering of Materials,** Donald R. Askland and Pradeep.P. Phule, Cengage Learning, 4^{lh} Ed., 2003.

MECHANICAL MEASUREMENTS AND METROLOGY

Subject Code	: 10ME32B /42B	IA Marks	: 25
Hours/Week	:04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT-1

Standards of measurement: Definition and Objectives of metrology, Standards of length-International prototype meter, Imperial standard yard, Wave length standard, subdivision of standards, line and

end standard, calibration of end bars (Numerical), Slip gauges, Wringing phenomena, Indian Standards (M-81, M-12), Numerical problems on building of slip gauges.

06 Hours

UNIT-2

System of Limits, Fits, Tolerance and Gauging: Definition of tolerance, Specification in assembly, Principle of interchangeability and selective assembly limits of size, Indian standards, concept of limits of size and tolerances, compound tolerances, accumulation of tolerances, definition of fits, types of fits and their designation (IS 919-1963), geometrical tolerance, positional-tolerances, hole basis system, shaft basis system, classification of gauges, brief concept of design of gauges (Taylor's principles), Wear allowance on gauges, Types of gauges-plain plug gauge, ring gauge, snap gauge, limit gauge and gauge materials.

07 Hours

UNIT-3

Comparators and Angular measurement: Introduction to comparators, characteristics, classification of comparators, mechanical comparators-Johnson Mikrokator, sigma comparators, dial indicator, optical comparators-principles, Zeiss ultra optimeter, electric and electronic comparators-principles, LVDT, pneumatic comparators, back pressure gauges, solex comparators. Angular measurements, bevel protractor, sine principle and use of sine bars, sine centre, use of angle gauges (numericals on building of angles), clinometers.

07 Hours

UNIT-4:

Interferometer and screw thread, gear measurement: Interferometer, interferometry, autocollimator. Optical flats. Terminology of screw threads, measurement of major diameter, minor diameter, pitch, angle and effective diameter of screw threads by 2 - wire and 3 -wire methods, best size wire. Tool maker's microscope, gear tooth terminology, use of gear tooth vernier caliper and micrometer.

06 Hours

UNIT-5:

Measurements and measurement systems: Definition, significance of measurement, generalized measurement system, definitions and concept of accuracy, precision, calibration, threshold, sensitivity, hysterisis, repeatability, linearity, loading effect, system response-times delay. Errors in measurement, classification of errors. Transducers, transfer efficiency, primary and secondary transducers, electrical, mechanical, electronic transducers, advantages of each type transducers.

07 Hours

UNIT-6

Intermediate modifying and terminating devices: Mechanical systems, inherent problems, electrical intermediate modifying devices, input circuitry, ballast circuit, electronic amplifiers and telemetry. Terminating devices, mechanical, cathode ray oscilloscope, oscillographs, X-Y plotters.

06 Hours

UNIT-7

Measurement of force, torque and pressure: Principle, analytical balance, platform balance, proving ring. Torque measurement, Prony brake, hydraulic dynamometer. Pressure measurements, principle, use of elastic members, Bridgeman gauge, McLeod gauge, Pirani gauge. 06 Hours

UNIT-8

Temperature and strain measurement: Resistance thermometers, thermocouple, law of thermo couple, materials used for construction, pyrometer, optical pyrometer. Strain measurements, strain gauge, preparation and mounting of strain gauges, gauge factor, methods of strain measurement.

07 Hours

TEXT BOOKS:

- Mechanical Measurements, Beckwith Marangoni and Lienhard, Pearson Education, 6th Ed., 2006.
- 2. Engineering Metrology, R.K. Jain, Khanna Publishers, 1994.

REFERENCE BOOKS:

- 1. **Engineering Metrology,** I.C. Gupta, Dhanpat Rai Publications, Delhi.
- 2. Mechanical Measurements, R.K. Jain Khanna Publishers, 1994
- 3. **Industrial Instrumentation,** Alsutko, Jerry. D. Faulk, Cengage Asia Pvt. Ltd. 2002.
- Measurement Systems Applications and Design, Ernest O. Doebelin, 5th Ed., McGraw Hill Book Co.
- 5. **Metrology & Measurement,** Anand K. Bewoor & Vinay A. Kulkarni, Tata McGraw Hill Pvt. Ltd., New-Delhi

MANUFACTURING PROCESS – I (FUNDAMENTALS OF FOUNDRY & WELDING)

Subject Code	: 10ME35	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART – A

CASTING PROCESS

UNIT - 1

Introduction: Concept of Manufacturing process, its importance. Classification of Manufacturing processes. Introduction to Casting process & steps involved. Varieties of components produced by casting process. Advantages & Limitations of casting process.

Patterns: Definition, functions, Materials used for pattern, various pattern allowances and their importance. Classification of patterns, BIS color coding of Patterns.

Binder: Definition, Types of binder used in moulding sand.

Additives: Need, Types of additives used and their properties..

06 Hours

UNIT - 2

Sand Moulding : Types of base sand, requirement of base sand. Moulding sand mixture ingredients for different sand mixtures. Method used for sand moulding, such as Green sand, dry sand and skin dried moulds.

Cores: Definition, Need, Types. Method of making cores, Binders used, core sand moulding.

Concept of Gating & Risers. Principle and types.

Fettling and cleaning of castings. Basic steps, Casting defects, Causes, features and remedies.

Moulding Machines : Jolt type, Squeeze type, Jolt & Squeeze type and Sand slinger.

07 Hours

Special moulding Process: Study of important moulding processes, No bake moulds, Flaskless moulds, Sweep mould, CO_2 mould, Shell mould, Investment mould.

Metal moulds: Gravity die-casting, Pressure die casting, Centrifugal casting, Squeeze Casting, Slush casting, Thixo-casting and Continuous Casting Processes.

07 Hours

UNIT - 4

Melting Furnaces: Classification of furnaces. Constructional features & working principle of coke fired, oil fired and Gas fired pit furnace, Resistance furnace, Coreless Induction furnace, Electric Arc Furnace, Cupola furnace.

06 Hours

PART – B

WELDING

UNIT - 5

Welding process: Definition, Principles, Classification, Application, Advantages & limitations of welding.

Arc Welding: Principle, Metal Arc welding (**MAW**), Flux Shielded Metal Arc Welding (**FSMAW**), Inert Gas Welding (**TIG & MIG**) Submerged Arc Welding (**SAW**) and Atomic Hydrogen Welding processes. (**AHW**)

Gas Welding: Principle, Oxy – Acetylene welding, Chemical Reaction in Gas welding, Flame characteristics. Gas torch construction & working. Forward and backward welding.

07 Hours

UNIT - 6

Special types of welding: Resistance welding - principles, Seam welding, Butt welding, Spot welding and projection welding.

Friction welding, Explosive welding, Thermit welding, Laser welding and Electron beam welding.

07 Hours

Metallurgical aspect, in welding : Structure of welds, Formation of different zones during welding. Heat affected zone (HAZ). Parameters affecting HAZ. Effect of carbon content on structure and properties of steel. Shrinkage in welds & Residual stresses.

Concept of electrodes, Filler rod and fluxes. Welding defects – Detection causes & remedy.

06 Hours

UNIT - 8

Principles of soldering & brazing: Parameters involved & Mechanism. Different Types of Soldering & Brazing Methods.

Inspection Methods – Methods used for Inspection of casting and welding. Visual, Magnetic particle, Fluorescent particle, Ultrasonic, Radiography, Eddy current, Holography methods of Inspection.

06 Hours

TEXT BOOKS:

- "Manufacturing Process-I", Dr.K.Radhakrishna, Sapna Book House, 5th Revised Edition 2009.
- "Manufacturing & Technology: Foundry Forming and Welding", P.N.Rao, 3rd Ed., Tata McGraw Hill, 2003.

REFERENCE BOOKS:

- 1. **"Process and Materials of Manufacturing**", Roy A Lindberg, 4th Ed. Pearson Edu. 2006.
- "Manufacturing Technology", Serope Kalpakjian, Steuen. R. Sechmid, Pearson Education Asia, 5th Ed. 2006.

COMPUTER AIDED MACHINE DRAWING

Subject Code	:10ME36A/10ME46A	IA Marks	25
Hours/Week	: 04(1 Hrs. Theory &	Exam Hours	03
	3 Hrs Practical)		
Total Hours	: 52	Exam Marks	100

Introduction:

Review of graphic interface of the software. Review of basic sketching commands and navigational commands. Starting a new drawing sheet. Sheet sizes. Naming a drawing, Drawing units, grid and snap.

02 Hours

PART-A

UNIT - 1

Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones and Cylinders resting only on their bases (No problems on axis inclinations, spheres and hollow solids). True shape of sections.

Orthographic Views: Conversion of pictorial views into orthographic projections. of <u>simple machine parts</u> with or without section. (Bureau of Indian Standards conventions are to be followed for the drawings) Hidden line conventions. Precedence of lines.

08 Hours

UNIT - 2

Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External) BSW (Internal & External) square and Acme. Sellers thread, American Standard thread.

Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper and split pin for locking, counter sunk head screw, grub screw, Allen screw.

08 Hours

PART-B

UNIT - 3
Keys & Joints :
Parallel key, Taper key, Feather key, Gibhead key and Woodruff key
Riveted Joints: Single and double riveted lap joints, butt joints with single/double cover straps (Chain and Zigzag, using snap head rivets). cotter joint (socket and spigot), knuckle joint (pin joint) for two rods.

08 Hours

UNIT - 4 Couplings:

Split Muff coupling, Protected type flanged coupling, pin (bush) type flexible coupling, Oldham's coupling and universal coupling (Hooks' Joint)

08 Hours

PART - C

Assembly Drawings (Part drawings should be given)

- 1. Plummer block (Pedestal Bearing)
- 2. Rams Bottom Safety Valve
- 3. I.C. Engine connecting rod
- 4. Screw jack (Bottle type)
- 5. Tailstock of lathe
- 6. Machine vice
- 7. Tool Head of a shaper

18 Hours

TEXT BOOKS:

- 1. 'A Primer on Computer Aided Machine Drawing-2007', Published by VTU, Belgaum.
- 2. 'Machine Drawing', N.D.Bhat & V.M.Panchal

REFERENCE BOOKS:

- 1. **'A Text Book of Computer Aided Machine Drawing'**, S. Trymbaka Murthy, CBS Publishers, New Delhi, 2007
- 2. 'Machine Drawing', K.R. Gopala Krishna, Subhash Publication.

- 3. **'Machine Drawing with Auto CAD**', Goutam Pohit & Goutham Ghosh, 1st Indian print Pearson Education, 2005
- 4. 'Auto CAD 2006, for engineers and designers', Sham Tickoo. Dream tech 2005
- 5. **'Machine Drawing'**, N. Siddeshwar, P. Kanniah, V.V.S. Sastri, published by Tata McGraw Hill,2006

NOTE:

Internal assessment: 25 Marks

All the sheets should be drawn in the class using software. Sheet sizes should be A3/A4. All sheets must be submitted at the end of the class by taking printouts.

Scheme of Examination:

Two questions to be set from each Part-A, Part-B and Part-C Student has to answer one question each from Part-A and Part-B for 20 marks each. And one question from Part-C for 60 marks.

> i.e. PART-A 1 x 20 = 20 Marks PART-B 1 x 20 = 20 Marks PART-C 1 x 60 = 60 Marks

> > Total = 100 Marks

FLUID MECHANICS

Subject Code	: 10ME36B / 46B	IA Marks	25
Hours/Week	: 04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT-1

Properties of Fluids: Introduction, Types of fluid, Properties of fluids, viscosity, thermodynamic properties, surface tension, capillarity, vapour pressure and cavitation

06 Hours

Fluid Statistics: Fluid pressure at a point, Pascal's law, pressure variation in a static fluid, absolute, gauge, atmospheric and vacuum pressures, simple manometers and differential manometers. Total pressure and center of pressure on submerged plane surfaces; horizontal, vertical and inclined plane surfaces, curved surface submerged in liquid.

UNIT-3

Buoyancy and Fluid Kinematics:

Buoyancy, center of buoyancy, metacentre and metacentric height, conditions of equilibrium of floating and submerged bodies, determination of Metacentric height experimentally and theoretically.

<u>Kinematics</u>: Types of fluid flow, continuity equation in 2D and 3D (Cartesian Co-ordinates only), velocity and acceleration, velocity potential function and stream function.

07 Hours

UNIT-4

Fluid Dynamics: Introduction equation of motion, Euler's equation of motion, Bernoulli's equation from first principles and also from Euler's equation, limitations of Bernoulli's equation.

06 Hours

PART-B

UNIT-5

Fluid Flow Measurements : Venturimeter, orificemeter, pitot-tube, vertical orifice, V-Notch and rectangular notches.

<u>Dimensional Analysis</u> : Introduction, derived quantities, dimensions of physical quantities, dimensional homogeneity, Rayleigh's method, Buckingham π theorem, dimensionless numbers, similitude, types of similitudes.

07 Hours

UNIT-6

Flow through pipes : Minor losses through pipes. Darey's and Chezy's equation for loss of head due to friction in pipes. HGL and TEL.

06 Hours

Laminar flow and viscous effects : Reyonold's number, critical Reynold's number, laminar flow through circular pipe-Hagen Poiseille's equation, laminar flow between parallel and stationary plates.

06 Hours

UNIT-8

Flow past immersed bodies : Drag, Lift, expression for lift and drag, boundary layer concept, displacement, momentum and energy thickness. <u>Introduction to compressible flow</u> : Velocity of sound in a fluid, Mach number, Mach cone, propagation of pressure waves in a compressible fluid. 07 Hours

TEXT BOOKS:

- Fluid Mechanics, Oijush.K.Kundu, IRAM COCHEN, ELSEVIER, 3rd Ed. 2005.
- 2. Fluid Mechanics, Dr. Bansal, R.K.Lakshmi Publications, 2004.

REFERENCE BOOKS:

- 1. Fluid Mechanics and hydraulics, Dr.Jagadishlal: Metropolitan Book Co-Ltd., 1997.
- Fluid Mechanics (SI Units), Yunus A. Cengel John M.Oimbala, 2nd Ed., Tata McGraw Hill, 2006.
- 3. **Fluid Mechanics,** John F.Douglas, Janul and M.Gasiosek and john A.Swaffield, Pearson Education Asia, 5th ed., 2006
- 4. Fluid Mechanics and Fluid Power Engineering, Kumar.D.S, Kataria and Sons., 2004
- 5. Fluid Mechanics -. Merle C. Potter, Elaine P.Scott. Cengage learning

Subject Code	: 10MEL37A / 47A	IA Marks	: 25
Hours/Week	: 03	Exam Hours	: 03
Total Hours	: 48	Exam Marks	: 50

PART – A

- 1. Preparation of specimen for Metallograpic examination of different engineering materials. Identification of microstructures of plain carbon steel, tool steel, gray C.I, SG iron, Brass, Bronze & composites.
- 2. Heat treatment: Annealing, normalizing, hardening and tempering of steel. Hardness studies of heat-treated samples.
- 3. To study the wear characteristics of ferrous, non-ferrous and composite materials for different parameters.
- 4. Non-destructive test experiments like,
 - (a). Ultrasonic flaw detection
 - (b). Magnetic crack detection

(c). Dye penetration testing. To study the defects of Cast and Welded specimens

PART - B

- 1. Tensile, shear and compression tests of metallic and non metallic specimens using Universal Testing Machine
- 2. Torsion Test
- 3. Bending Test on metallic and nonmetallic specimens.
- 4. Izod and Charpy Tests on M.S, C.I Specimen.
- 5. Brinell, Rockwell and Vickers's Hardness test.
- 6. Fatigue Test.

Scheme of Examination:

ONE	question	from	part	-A:	20	Marks
ONE	question	from	part	-B:	20	Marks
Viva -	Voice:				10	Marks

Total: 50 Marks

MECHANICAL MEASUREMENTS AND METROLOGY LABORATORY

Subject Code	: 10MEL37B / 47B	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 48	Exam Marks	: 50

PART-A: MECHANICAL MEASUREMENTS

- 1. Calibration of Pressure Gauge
- 2. Calibration of Thermocouple
- 3. Calibration of LVDT
- 4. Calibration of Load cell
- 5. Determination of modulus of elasticity of a mild steel specimen using strain gauges.

PART-B: METROLOGY

- 1. Measurements using Optical Projector / Toolmaker Microscope.
- 2. Measurement of angle using Sine Center / Sine bar / bevel protractor
- 3. Measurement of alignment using Autocollimator / Roller set
- 4. Measurement of cutting tool forces using
 - a) Lathe tool Dynamometer
 - b) Drill tool Dynamometer.
- 5. Measurement of Screw thread Parameters using Two wire or Three-wire method.
- 6. Measurements of Surface roughness, Using Tally Surf/Mechanical Comparator
- 7. Measurement of gear tooth profile using gear tooth vernier /Geartooth micrometer
- 8. Calibration of Micrometer using slip gauges
- 9. Measurement using Optical Flats

Scheme of Examination:

ONE	question	from	part	-A:	20	Marks
ONE	question	from	part	-B:	20	Marks
Viva -	Voice:				10	Marks

Total: 50 Marks

FOUNDRY AND FORGING LABORATORY

Subject Code	: 10MEL38A / 48A	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 48	Exam Marks	: 50

PART – A

1. Testing of Moulding sand and Core sand

Preparation of sand specimens and conduction of the following tests:

- 1 Compression, Shear and Tensile tests on Universal Sand Testing Machine.
- 2 Permeability test

3 Core hardness & Mould hardness tests.

- 4 Sieve Analysis to find Grain Fineness number of Base Sand
- 5 Clay content determination in Base Sand

PART – B

2. Foundry Practice

Use of foundry tools and other equipments.

Preparation of moulds using two moulding boxes using patterns or without patterns. (Split pattern, Match plate pattern and Core boxes). Preparation of one casting (Aluminum or cast iron-Demonstration only)

PART - C

3. Forging Operations :

- Calculation of length of the raw material required to do the model.
- Preparing minimum three forged models involving upsetting, drawing and bending operations.
- Out of these three models, at least one model is to be prepared by using Power Hammer.

Scheme of Examination:

_

One question is to be set from Part-A:10 marksOne question is to be set from either70 marksPart-B or Part-C:30 marksCalculation part in case of forging is made compulsory

(Forging) Viva-Voce	Model .	10 marks	
Calculation	+ Forging =	= 05 + 25 = 30 Marks	
(Forging)	Model		
Calculation	+ Foundry =	= 05 + 25 = 30 Marks	

MACHINE SHOP

Subject Code	: 10MEL38B / 48B	IA Marks	: 25
Hours/Week	: 03	Exam Hours	: 03
Total Hours	: 48	Exam Marks	: 50

PART – A

Preparation of three models on lathe involving Plain turning, Taper turning, Step turning, Thread cutting, Facing, Knurling, Drilling, Boring, Internal Thread cutting and Eccentric turning.

PART – B

Cutting of V Groove/ dovetail / Rectangular groove using a shaper. Cutting of Gear Teeth using Milling Machine.

Scheme of Examination:

ONE question from part -A:30 MarksONE question from part -B:10 MarksViva -Voice:10 Marks

Total: 50 Marks

APPLIED THERMODYNAMICS

Subject Code	: 10ME43	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT - 1

Combustion thermodynamics: Theoretical (Stoichiometric) air and excess air for combustion of fuels. Mass balance, actual combustion. Exhaust gas analysis. A./ F ratio, Energy balance for a chemical reaction, enthalpy of formation, enthalpy and internal energy of combustion, Combustion efficiency, adiabatic flow temperature.

07 Hours

UNIT-2

Gas power cycle: Air Standard cycles: Carnot, Otto, Diesel, Dual and Stirling cycles, P-V and T-S diagrams, description, efficiencies and mean effective pressures, Comparison of Otto, Diesel and dual cycles.

06 Hours

I.C. Engine: Testing of two stroke and four stroke SI and CI engines for performance Related numerical problems, heat balance, Motoring Method, Willian's line method, swinging field dynamometer, Morse test.

06 Hours

UNIT - 4

Vapour Power Cycles: Carnot vapour power cycles, drawbacks as a reference cycle, Simple Rankine cycle, description, T- S diagram, analysis for performance, comparison of Carnot and Rankine cycles. Effects of pressure and temperature on Rankine cycle performance. Actual vapour power cycles. Ideal and practical regenerative Rankine cycle, open and closed feed water heaters, Reheat Rankine cycle.

07 Hours

PART-B

UNIT - 5

Reciprocating Compressors: Operation of a single stage reciprocating compressors, work input through P-V diagram and steady state steady flow analysis. Effect of clearance and volumetric efficiency. Adiabatic, isothermal and mechanical efficiencies. Multistage compressor, saving in work, optimum intermediate pressure, inter- cooling, minimum work for compression.

06 Hours

UNIT - 6

Gas turbine and Jet propulsion: Classification of Gas turbines, Analysis of open cycle gas turbine cycle. Advantages and disadvantages of closed cycle. Methods to improve thermal efficiency, Jet propulsion and Rocket propulsion.

07 Hours

UNIT - 7

Refrigeration: Vapour compression refrigeration system ; description, analysis, refrigerating effect, capacity, power required, units of refrigeration, COP, Refrigerants and their desirable properties. Air cycle refrigeration;

reversed Carnot cycle, reversed Brayton cycle, Vapour absorption refrigeration system, steam jet refrigeration.

06 Hours

UNIT - 8

Psychometry: Atmospheric air and psychometric properties; Dry bulb temperature, wet bulb temperature, dew point temperature; partial pressures, specific and relative humidities and the relation between the two enthalpy and adiabatic saturation temperature. Construction and use of psychometric chart . Analysis of various processes; heating, cooling , dehumidifying and humidifying. Adiabatic mixing of moist air. Summer and winter air conditioning.

07 Hours

Data Hand Book :

- 1. Thermodynamic data hand book, B.T. Nijaguna.
- 2. **Properties of Refrigerant & Psychometric** (tables & Charts in SI Units), Dr. S.S. Banwait, Dr. S.C. Laroiya, Birla Pub. Pvt. Ltd., Delhi, 2008

TEXT BOOKS:

- 1. **Basic and applied Thermodynamics**, P.K. Nag, 2nd Ed., Tata McGraw Hill Pub.Co,2002
- 2. Applied Thermodynamics, Rajput, Laxmi Publication
- 3. **Applied Thermodynamics**, B.K. Venkanna, Swati B. Wadavadagi, PHI, New Delhi, 2010

REFERENCE BOOKS:

- Thermodynamics, An engineering approach, Yunus, A. Cengel and Michael A.Boies, 6th Ed., Tata McGraw Hill pub. Co., 2002,
- 2. **Fundamental of Classical Thermodynamics,** G.J. Van Wylen and R.E. Sontang Wiley eastern.

KINEMATICS OF MACHINES

Subject Code	: 10ME44	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

$\boldsymbol{P}\boldsymbol{A}\boldsymbol{R}\boldsymbol{T}-\boldsymbol{A}$

UNIT - 1

Introduction: Definitions Link or element, kinematic pairs, Degrees of freedom, Grubler's criterion (without derivation), Kinematic chain, Mechanism, Structure, Mobility of Mechanism, Inversion, Machine.

Kinematic Chains and Inversions: Inversions of Four bar chain; Single slider crank chain and Double slider crank chain.

07 Hours

UNIT - 2

Mechanisms: Quick return motion mechanisms-Drag link mechanism, Whitworth mechanism and Crank and slotted lever Mechanism.

Straight line motion mechanisms Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisms -Geneva wheel mechanism and Ratchet and Pawl mechanism. Toggle mechanism, Pantograph, Ackerman steering gear mechanism.

06 Hours

UNIT - 3

Velocity and Acceleration Analysis of Mechanisms (Graphical Methods) Velocity and acceleration analysis of Four Bar mechanism, slider crank mechanism and Simple Mechanisms by vector polygons: Relative velocity and acceleration of particles in a common link, relative velocity and accelerations of coincident Particles on separate links- Coriolis component of acceleration. Angular velocity and angular acceleration of links, velocity of rubbing.

07 Hours

Velocity Analysis by Instantaneous Center Method: Definition, Kennedy's Theorem, Determination of linear and angular velocity using instantaneous center method

Klein's Construction: Analysis of velocity and acceleration of single slider crank mechanism.

06 Hours

PART – B

UNIT - 5

Velocity and Acceleration Analysis of Mechanisms (Analytical Methods): Analysis of four bar chain and slider crank chain using analytical expressions. (Use of complex algebra and vector algebra)

06 Hours

UNIT - 6

Spur Gears: Gear terminology, law of gearing, Characteristics of involute action, Path of contact. Arc of contact, Contact ratio of spur, helical, bevel and worm gears, Interference in involute gears. Methods of avoiding interference, Back lash. Comparison of involute and cycloidal teeth. Profile Modification.

07 Hours

UNIT - 7

Gear Trains: Simple gear trains, Compound gear trains for large speed. reduction, Epicyclic gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load and torque calculations in epicyclic gear trains.

07 Hours

UNIT - 8

Cams: Types of cams, Types of followers. Displacement, Velocity and, Acceleration time curves for cam profiles. Disc cam with reciprocating follower having knife-edge, roller and flat-face follower, Disc cam with oscillating roller follower. Follower motions including SHM, Uniform velocity, uniform acceleration and retardation and Cycloidal motion.

06 Hours

TEXT BOOKS:

- 1. **"Theory of Machines"**, Rattan S.S, Tata McGraw-Hill Publishing Company Ltd., New Delhi, and 3rd edition -2009.
- 2. **"Theory of Machines",** Sadhu Singh, Pearson Education (Singapore) Pvt. Ltd, Indian Branch New Delhi, 2nd Edi. 2006

REFERENCE BOOKS:

- 1. **"Theory of Machines & Mechanisms**", J.J. Uicker, , G.R. Pennock, J.E. Shigley. OXFORD 3rd Ed. 2009.
- 2. Mechanism and Machine theory, Ambekar, PHI, 2007

Graphical Solutions may be obtained either on the Graph Sheets or on the Answer Book itself.

MANUFACTURING PROCESS – II (Metal Removing Process)

Subject Code	: 10ME45	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Theory of Metal Cutting: Single point cutting tool nomenclature, geometry. Mechanics of Chip Formation, Types of Chips. Merchants circle diagram and analysis, Ernst Merchant's solution, shear angle relationship, problems of Merchant's analysis. Tool Wear and Tool failure, tool life. Effects of cutting parameters on tool life. Tool Failure Criteria, Taylor's Tool Life equation. Problems on tool life evaluation.

07 Hours

UNIT - 2

Cutting Tool Materials: Desired properties and types of cutting tool materials – HSS, carbides coated carbides, ceramics. Cutting fluids. Desired properties, types and selection. Heat generation in metal cutting, factors

affecting heat generation. Heat distribution in tool and work piece and chip. Measurement of tool tip temperature.

07 Hours

UNIT - 3

Turning (Lathe), Shaping and Planing Machines: Classification, constructional features of Turret and Capstan Lathe. Tool Layout, shaping Machine, Planing Machine, Driving mechanisms of lathe, shaping and planing machines, Different operations on lathe, shaping machine and planing machine. Simple problems on machining time calculations

07 Hours

UNIT - 4

Drilling machines: Classification, constructional features, drilling & related operations. Types of drill & drill bit nomenclature, drill materials. Introduction to CNC machines- Principles of operation. Axes of NC machine-Coordinate systems. Basics of Manual part programming methods.

06 Hours

PART - B

UNIT - 5

Milling machines: Classification, constructional features, milling cutters nomenclature, milling operations, up milling and down milling concepts. Various milling operations.

Indexing: Simple, compound, differential and angular indexing calculations. Simple problems on simple and compound indexing.

06 Hours

UNIT - 6

Grinding machines: Types of abrasives, Grain size, bonding process, grade and structure of grinding wheels, grinding wheel types. Classification, constructional features of grinding machines (Centerless, cylindrical and surface grinding). Selection of grinding wheel. Grinding process parameters. Dressing and truing of grinding wheels.

07 Hours

UNIT - 7:

Broaching process - Principle of broaching. Details of a broach. Types of broaching machines-constructional details. Applications. Advantages and Limitations.

Finishing and other Processes Lapping and Honing operations – Principles, arrangement of set up and application. Super finishing process, polishing, buffing operation and application.

06 Hours

UNIT - 8

Non-traditional machining processes: Need for non traditional machining, Principle, equipment & operation of Laser Beam, Plasma Arc Machining, Electro Chemical Machining, Ultrasonic Machining, Abrasive Jet Machining, Water Jet Machining, Electron Beam Machining, Electron Discharge Machining and Plasma Arc Machining.

06 Hours

TEXT BOOKS:

- 1. Workshop Technology, Hazara Choudhry, Vol-II, Media Promoters & Publishers Pvt. Ltd. 2004
- 2. Production Technology, R.K.Jain, Khanna Publications, 2003.
- 3. Production Technology, HMT, Tata Mc Graw Hill, 2001.

REFERENCE BOOKS:

- 1. **Manufacturing Science**, Amitabha Ghosh and Mallik, affiliated East West Press, 2003.
- 2. Fundamentals of Metal Machining and Machine Tools, G. Boothroyd, McGraw Hill, 2000.

DESIGN OF MACHINE ELEMENTS-I

Subject Code	: 10ME52	IA Marks	25
Hours/Week	:04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT-1

Introduction: Definitions: normal, shear, biaxial and tri axial stresses, Stress tensor, Principal Stresses. Engineering Materials and their mechanical properties, Stress-Strain diagrams, Stress Analysis, Design considerations: Codes and Standards.

05 Hours

06 Hours

08 Hours

07 Hours

PART – B

UNIT - 5

Design Of Shafts: Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for power transmission shafting, shafts under fluctuating loads and combined loads.

07 Hours

UNIT - 6

Cotter And Knuckle Joints, Keys And Couplings: Design of Cotter and Knuckle joints, Keys: Types of keys, Design of keys, Couplings: Rigid and flexible couplings, Flange coupling, Bush and Pin type coupling and Oldham's coupling.

07 Hours

48

Design For Static & Impact Strength:

Static Strength: Static loads and factor of safety, Theories of failure: Maximum normal stress theory, Maximum shear stress theory, Maximum strain theory, Strain energy theory, Distortion energy theory. Failure of brittle and ductile materials, Stress concentration, Determination of Stress concentration factor.

Impact Strength: Introduction, Impact stresses due to axial, bending and torsional loads, effect of inertia.

UNIT - 3

UNIT-2

Design For Fatigue Strength: Introduction- S-N Diagram, Low cycle fatigue, High cycle fatigue, Endurance limit, Modifying factors: size effect, surface effect, Stress concentration effects, Fluctuating stresses, Goodman and Soderberg relationship, stresses due to combined loading, cumulative fatigue damage.

UNIT - 4

Threaded Fasteners: Stresses in threaded fasteners, Effect of initial tension, Design of threaded fasteners under static, dynamic and impact loads, Design of eccentrically loaded bolted joints.

Riveted and Welded Joints – Types, rivet materials, failures of riveted joints, Joint Efficiency, Boiler Joints, Lozanze Joints, Riveted Brackets. Welded Joints – Types, Strength of butt and fillet welds, eccentrically loaded welded joints.

07 Hours

UNIT - 8

Power Screws: Mechanics of power screw, Stresses in power screws, efficiency and self-locking, Design of Power Screw, Design of Screw Jack: (Complete Design).

05 Hours

TEXT BOOKS:

- 1. Mechanical Engineering Design, Joseph E Shigley and Charles R. Mischke. McGraw Hill International edition, 6th Edition 2009.
- **2. Design of Machine Elements,** V.B. Bhandari, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2nd Edition 2007.

DESIGN DATA HANDBOOK:

- 1. **Design Data Hand Book,** K. Lingaiah, McGraw Hill, 2nd Ed.
- 2. **Data Hand Book,** K. Mahadevan and Balaveera Reddy, CBS Publication
- 3. **Design Data Hand Book,** H.G. Patil, I. K. International Publisher, 2010.

REFERENCE BOOKS:

- 1. Machine Design, Robert L. Norton, Pearson Education Asia, 2001.
- Design of Machine Elements, M. F. Spotts, T. E. Shoup, L. E. Hornberger, S. R. Jayram and C. V. Venkatesh, Pearson Education, 2006.
- Machine Design, Hall, Holowenko, Laughlin (Schaum's Outlines series) Adapted by S.K. Somani, Tata McGraw Hill Publishing Company Ltd., New Delhi, Special Indian Edition, 2008.
- Fundamentals of Machine Component Design, Robert C. Juvinall and Kurt M Marshek, Wiley India Pvt. Ltd., New Delhi, 3rd Edition, 2007.

Subject Code	: 10ME53	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Steam Power Plant: Different Types of Fuels used for steam generation, Equipment for burning coal in lump form, strokers, different types, Oil burners, Advantages and Disadvantages of using pulverized fuel, Equipment for preparation and burning of pulverized coal, unit system and bin system. Pulverized fuel furnaces, cyclone furnace, Coal and ash handling, Generation of steam using forced circulation, high and supercritical pressures.

07 Hours

UNIT - 2

A Brief Account Of Benson, Velox Schmidt Steam Generators. Chimneys: Natural, forced, induced and balanced draft, Calculations and numericals involving height of chimney to produce a given draft. Cooling towers and Ponds. Accessories for the Steam generators such as Superheaters, De-superheater, control of superheaters, Economizers, Air preheaters and re-heaters.

07 Hours

UNIT - 3

Diesel Engine Power Plant: Applications of Diesel Engines in Power field. Method of starting Diesel engines. Auxiliaries like cooling and lubrication system, filters, centrifuges, Oil heaters, intake and exhaust system, Layout of diesel power plant.

06 Hours

UNIT - 4

Hydro-Electric Plants: Hydrographs, flow duration and mass curves, unit hydrograph and numericals. Storage and pondage, pumped storage plants,

low, medium and high head plants, Penstock, water hammer, surge tanks, gates and valves. General layout of hydel power plants.

06 Hours

PART - B

UNIT - 5

Nuclear Power Plant: Principles of release of nuclear energy; Fusion and fission reactions. Nuclear fuels used in the reactors. Multiplication and thermal utilization factors. Elements of the nuclear reactor; moderator, control rod, fuel rods, coolants. Brief description of reactors of the following types-Pressurized water reactor, Boiling water reactor, Sodium graphite reactor, Fast Breeder reactor, Homogeneous graphite reactor and gas cooled reactor, Radiation hazards, Shieldings, Radio active waste disposal.

06 Hours

UNIT - 6

Solar Energy: Solar Extra terrestrial radiation and radiation at the earth surface, radiation-measuring instruments, working principles of solar flat plate collectors, solar pond and photovoltaic conversion (Numerical Examples).

Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, coefficient of performance of a wind mill rotor (Numerical Examples).

08 Hours

UNIT - 7

Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations.

Ocean Thermal Energy Conversion: Principle of working, Rankine cycle, problems associated with OTEC.

Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, problems associated with geothermal conversion, scope of geothermal energy.

06 Hours

Energy From Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation.

Bio Chemical Route: Biogas production from organic wastes by anaerobic fermentation, classification of bio gas plants, factors affecting bio gas generation.

Thermo Chemical Route: Thermo chemical conversion on bio mass, types of gasifiers.

06 Hours

TEXT BOOKS:

- 1. **Power Plant Engineering**, P. K. Nag Tata McGraw Hill 2nd edn 2001.
- 2. Power Plant Engineering, Domakundawar, Dhanpath Rai sons. 2003

REFERENCE BOOKS:

- 1. **Power Plant Engineering,** R. K. Rajput, Laxmi publication, New Delhi.
- 2. Principles of Energy conversion, A. W. Culp Jr., McGraw Hill. 1996
- 3. Non conventional Energy sources, G D Rai Khanna Publishers.
- 4. Non conventional resources, B H Khan TMH 2007

1.

MANUFACTURING PROCESS - III

(METAL FORMING PROCESS)

Subject Code	: 10ME55	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction And Concepts: Classification of metal working processes, characteristics of wrought products, advantages and limitations of metal working processes.Concepts of true stress, true strain, triaxial & biaxial

stresses. Determination of flow stress. Principal stresses, Tresca & Von-Mises yield criteria, concepts of plane stress & plane strain.

06 Hours

UNIT - 2

Effects Of Parameters: Temperature, strain rate, friction and lubrication, hydrostatic pressure in metalworking, Deformation zone geometry, workability of materials, Residual stresses in wrought products.

06 Hours

UNIT - 3

Forging: Classification of forging processes. Forging machines & equipment. Expressions for forging pressures & load in open die forging and closed die forging by slab analysis, concepts of friction hill and factors affecting it. Die-design parameters. Material flow lines in forging. Forging defects, Residual stresses in forging. Simple problems.

07 Hours

UNIT - 4

Rolling: Classification of Rolling processes. Types of rolling mills, expression for Rolling load. Roll separating force. Frictional losses in bearing, power required in rolling, Effects of front & back tensions, friction, friction hill. Maximum possible reduction. Defects in rolled products. Rolling variables, simple problems.

06 Hours

PART - B

UNIT - 5

Drawing: Drawing equipment & dies, expression for drawing load by slab analysis, power requirement. Redundant work and its estimation, optimal cone angle & dead zone formation, drawing variables, Tube drawing, classification of tube drawing, simple problems.

07 Hours

UNIT - 6

Extrusion: Types of extrusion processes, extrusion equipment & dies, deformation, lubrication & defects in extrusion. Extrusion dies, Extrusion of seamless tubes. Extrusion variables, simple problem

06 Hours

Sheet & Metal Forming: Forming methods, dies & punches, progressive die, compound die, combination die. Rubber forming. Open back inclinable press (OBI press), piercing, blanking, bending, deep drawing, LDR in drawing, Forming limit criterion, defects of drawn products, stretch forming. Roll bending & contouring, Simple problems

06 Hours

UNIT - 8

High Energy Rate Forming Methods: Principles, advantages and applications, explosive forming, electro hydraulic forming, Electromagnetic forming.

Powder Metallurgy: Basic steps in Powder metallurgy brief description of methods of production of metal powders, conditioning and blending powders, compaction and sintering application of powder metallurgy components, advantages and limitations.

07 Hours

TEXT BOOKS:

- 1. **Mechanical metallurgy (SI units),** G.E. Dieter, Mc Graw Hill pub.2001
- Manufacturing Process III, Dr. K.Radhakrishna, Sapna Book House, 2009.

REFERENCE BOOKS:

- 1. **Materials and Processes in Manufacturing,** E.paul, Degramo, J.T. Black, Ronald, A.K. Prentice -hall of India 2002
- 2. **Principles of Industrial metal working process,** G.W. Rowe, CBSpub. 2002
- Manufacturing Science, Amitabha Ghosh & A.K. Malik East -Westpress 2001
- 4. Technology of Metal Forming Process, Surendra kumar, PHI 2008

FLUID MECHANICS AND MACHINES LABORATORY

Subject Code	: 10MEL57	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

1. Determination of coefficient of friction of flow in a pipe.

2. Determination of minor losses in flow through pipes.

3. Determination of force developed by impact of jets on vanes.

4. Calibration of flow measuring devices

- a. Orifice Plate meter
- b. Nozzle
- c. Venturimeter
- d. V-notch

18 Hours

24 Hours

PART - B

5. Performance testing of Turbines

- a. Pelton wheel
- b. Francis Turbine
- c. Kaplan Turbines

6. Performance testing of Pumps

- a. Single stage / Multi stage centrifugal pumps
- b. Reciprocating pump
- 7. Performance test of a two stage Reciprocating Air Compressor
- 8. Performance test on an Air Blower

Scheme for Examination:

One Question from Part A	-	15 Marks (05 Writeup + 10)
One Question from Part B	-	25 Marks (05 Writeup + 20)
Viva-Voce	-	10 Marks

Total

50 Marks

ENERGY CONVERSION ENGINEERING LABORATORY

Subject Code	: 10MEL58	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

1. Determination of Flash point and Fire point of lubricating oil using Abel Pensky and Marten's (closed) / Cleavland's (Open Cup) Apparatus.

- 2. Determination of Calorific value of solid, liquid and gaseous fuels.
- 3. Determination of Viscosity of a lubricating oil using Redwoods, Saybolt and Torsion Viscometers.
- 4. Valve Timing/port opening diagram of an I.C. engine (4 stroke/2 stroke).
- 5. Use of planimeter

21 Hours

PART - B

- 1. Performance Tests on I.C. Engines, Calculations of IP, BP, Thermal efficiencies, Volumetric efficiency, Mechanical efficiency, SFC, FP, A:F Ratio heat balance sheet for
 - (a) Four stroke Diesel Engine
 - (b) Four stroke Petrol Engine
 - (c) Multi Cylinder Diesel/Petrol Engine, (Morse test)
 - (d) Two stroke Petrol Engine
 - (e) Variable Compression Ratio I.C. Engine.

21 Hours

Scheme for Examination:

Total		50 Marks
Viva-Voce	-	10 Marks
One Question from Part B	-	25 Marks (05 Writeup+20)
One Question from Part A	-	15 Marks (05 Writeup+10)

COMPUTER INTEGRATED MANUFACTURING

Subject Code	: 10ME61	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT - 1

Computer Integrated Manufacturing Systems: Introduction, Automation definition, Types of automation, CIM, processing in manufacturing, Production concepts, Mathematical Models-Manufacturing lead time, production rate, components of operation time, capacity, Utilization and availability, Work-in-process, WIP ratio, TIP ratio, Problems using mathematical model equations.

8 Hours

UNIT - 2

High Volume Production System: Introduction Automated flow linesymbols, objectives, Work part transport-continuous, Intermittent, synchronous, Pallet fixtures, Transfer Mechanism-Linear-Walking beam,. roller chain drive, Rotary-rack and pinion, Rachet & Pawl, Geneva wheel, Buffer storage, control functions-sequence, safety, Quality, Automation for machining operation.

6 Hours

UNIT - 3

Analysis Of Automated Flow Line & Line Balancing: General terminology and analysis, Analysis of Tranfer Line without storage upper bound approach, lower bound approach and problems, Analysis of Transfer lines with storage buffer, Effect of storage, buffer capacity with simple problem, Partial automation-with numerical problems, flow lines with more than two stages, Manual Assembly lines, line balancing problem.

6 Hours
Minimum Rational Work Element: Work station process time, Cycle time, precedence constraints. Precedence diagram, Balance delay methods of line balancing-largest Candidate rule, Kilbridge and Westers method, Ranked positional weight method, Numerical problems covering all above methods and computerized line balancing.

6 Hours

PART-B

UNIT - 5

Automated Assembly Systems: Design for automated assembly systems, types of automated assembly system, Parts feeding devices-elements of parts delivery system-hopper, part feeder, Selectors, feed back, escapement and placement analysis of Multistation Assembly Machine analysis of single station assembly. Automated Guided Vehicle System: Introduction, Vehicle guidance and routing, System management, Quantitative analysis of AGV's with numerical problems and application.

8 Hours

UNIT - 6

Computerized Manufacturing Planning System: Introduction, Computer Aided Process Planning, Retrieval types of process planning, Generative type of process planning, Material requirement planning, Fundamental concepts of MRP inputs to MRP, Capacity planning.

6 Hours

UNIT - 7

Cnc Machining Centers: Introduction to CNC, elements of CNC, CNC machining centers, part programming, fundamental steps involved in development of part programming for milling and turning.

6 Hours

UNIT - 8

Robotics: Introduction to Robot configuration, Robot motion, programming of Robots end effectors, Robot sensors and Robot applications.

6 Hours

TEXT BOOKS:

- 2. Automation, Production system & Computer Integrated manufacturing, M. P. Groover Person India, 2007 2nd edition.
- 3. **Principles of Computer Integrated Manufacturing**, S. Kant Vajpayee, Prentice Hall India.

REFERENCE BOOKS:

- 1. **Computer Integrated Manufacturing**, J. A. Rehg & Henry. W. Kraebber.
- 2. CADICAM by Zeid, Tata McGraw Hill.

S

DESIGN OF MACHINE ELEMENTS – II

Total Hours	: 52	Exam Marks	100
Hours/Week	:04	Exam Hours	03
Subject Code	: 10ME62	IA Marks	25

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Curved Beams: Stresses in curved beams of standard cross sections used in crane hook, punching presses & clamps, closed rings and links **Cylinders & Cylinder Heads**: Review of Lame's Equations; compound cylinders, stresses due to different types of fits, cylinder heads, flats.

08 Hours

UNIT - 2

Belts Ropes and Chains: Flat belts: Length & cross section, Selection of V-belts, ropes and chains for different applications.

05 Hours

UNIT - 3

Springs: Types of springs - stresses in Helical coil springs of circular and non-circular cross sections. Tension and compression springs, springs under fluctuating loads, Leaf Springs: Stresses in leaf springs.

Equalized stresses, Energy stored in springs, Torsion, Belleville and Rubber springs.

08 Hours

UNIT - 4

Spur & Helical Gears: Spur Gears: Definitions, stresses in gear tooth: Lewis equation and form factor, Design for strength, Dynamic load and wear load. Helical Gears: Definitions, formative number of teeth, Design based on strength, dynamic and wear loads.

07 Hours

PART – B

UNIT - 5

Bevel and Worm Gears: Bevel Gears: Definitions, formative number of teeth, Design based on strength, dynamic and wear loads. Worm Gears: Definitions, Design based on strength, dynamic, wear loads and efficiency of worm gear drives.

07 Hours

UNIT - 6

Clutches & Brakes: Design of Clutches: Single plate, multi plate and cone clutches. Design of Brakes: Block and Band brakes: Self locking of brakes: Heat generation in Brakes.

05 Hours

UNIT - 7

Lubrication and Bearings: Lubricants and their properties, Mechanisms of Lubrication bearing modulus, coefficient of friction, minimum oil film thickness, Heat Generated, Heat dissipated, Bearing Materials, Examples of journal bearing and thrust bearing design.

07 Hours

UNIT - 8

IC Engine Parts: Design of piston, connecting rod and crank shaft.

05 Hours

DESIGN DATA HANDBOOK:

- 1. **Design Data Hand Book**, K. Lingaiah, McGraw Hill, 2nd Ed.
- 2. **Data Hand Book,** K. Mahadevan and Balaveera Reddy, CBS Publication
- 3. **Design Data Hand Book,** H.G. Patil, I. K. International Publisher, 2010.

TEXT BOOKS:

- 1. Mechanical Engineering Design, Joseph E Shigley and Charles R. Mischke. McGraw Hill International edition, 6th Edition 2003.
- 2. Design of Machine Elements, V. B Bhandari, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2nd Edition 2007

REFERNCE BOOKS:

- 1. Machine Design, Robert L. Norton, Pearson Education Asia, 2001.
- Design of Machine Elements, M. F. Spotts, T. E. Shoup, L. E. Hornberger, S. R. Jayram and C. V. Venkatesh, Pearson Education, 2006.
- 3. Machine Design, Hall, Holowenko, Laughlin (Schaum's Outlines series) Adapted by S.K. Somani, Tata McGraw Hill Publishing Company Ltd., New Delhi, Special Indian Edition, 2008.
- 4. Machine Design, A CAD Approach: Andrew D DIMAROGONAS, John Wiley Sons, Inc, 2001.

HEAT AND MASS TRANSFER

Subject Code	: 10ME63	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Introductory Concepts And Definitions: Modes of heat transfer: Basic laws governing conduction, convection, and radiation heat transfer; Thermal conductivity; convective heat transfer coefficient; radiation heat transfer;

combined heat transfer mechanism. Boundary conditions of $1^{\,\rm st},\,2^{\rm nd}$ and $3^{\rm rd}$ kind

Conduction: Derivation of general three dimensional conduction equation in Cartesian coordinate, special cases, discussion on 3-D conduction in cylindrical and spherical coordinate systems (No derivation). One dimensional conduction equations in rectangular, cylindrical and spherical coordinates for plane and composite walls. Overall heat transfer coefficient. Thermal contact resistance.

07 Hours

UNIT - 2

Variable Thermal Conductivity: Derivation for heat flow and temperature distribution in plane wall. Critical thickness of insulation without heat generation, Thermal resistance concept & its importance. Heat transfer in extended surfaces of uniform cross-section without heat generation, Long fin, short fin with insulated tip and without insulated tip and fin connected between two heat sources. Fin efficiency and effectiveness. Numerical problems.

06 Hours

UNIT - 3

One-Dimensional Transient Conduction: Conduction in solids with negligible internal temperature gradient (Lumped system analysis), Use of Transient temperature charts (Heisler's charts) for transient conduction in slab, long cylinder and sphere; use of transient temperature charts for transient conduction in semi-infinite solids. Numerical Problems.

06 Hours

UNIT - 4

Concepts And Basic Relations In Boundary Layers: Flow over a body velocity boundary layer; critical Reynolds number; general expressions for drag coefficient and drag force; thermal boundary layer; general expression for local heat transfer coefficient; Average heat transfer coefficient; Nusselt number. Flow inside a duct- velocity boundary layer, hydrodynamic entrance length and hydro dynamically developed flow; flow through tubes (internal flow discussion only). Numericals based on empirical relation given in data handbook.

Free Or Natural Convection: Application of dimensional analysis for free convection- physical significance of Grashoff number; use of correlations of free convection in vertical, horizontal and inclined flat plates, vertical and horizontal cylinders and spheres, Numerical problems.

07 Hours

PART – B

UNIT - 5

Forced Convections: Applications of dimensional analysis for forced convection. Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. Use of various correlations for hydro dynamically and thermally developed flows inside a duct, use of correlations for flow over a flat plate, over a cylinder and sphere. Numerical problems.

06 Hours

UNIT - 6

Heat Exchangers: Classification of heat exchangers; overall heat transfer coefficient, fouling and fouling factor; LMTD, Effectiveness-NTU methods of analysis of heat exchangers. Numerical problems.

06 Hours

UNIT - 7

Condensation And Boiling: Types of condensation (discussion only) Nusselt's theory for laminar condensation on a vertical flat surface; use of correlations for condensation on vertical flat surfaces, horizontal tube and horizontal tube banks; Reynolds number for condensate flow; regimes of pool boiling, pool boiling correlations. Numerical problems. Mass transfer definition and terms used in mass transfer analysis, Ficks First law of diffusion (no numericals).

07 Hours

UNIT - 8

Radiation Heat Transfer: Thermal radiation; definitions of various terms used in radiation heat transfer; Stefan-Boltzman law, Kirchoff's law, Planck's law and Wein's displacement law. Radiation heat exchange between two parallel infinite black surfaces, between two parallel infinite gray surfaces; effect of radiation shield; intensity of radiation and solid angle;

Lambert's law; radiation heat exchange between two finite surfacesconfiguration factor or view factor. Numerical problems.

07 Hours

TEXT BOOKS:

- 1. Heat & Mass transfer, Tirumaleshwar, Pearson education 2006
- 2. Heat transfer-A basic approach, Ozisik, Tata McGraw Hill 2002

REFERENCE BOOKS:

- 1. **Heat transfer, a practical approach,** Yunus A- Cengel Tata Mc Graw Hill
- 2. Principles of heat transfer, Kreith Thomas Learning 2001
- 3. **Fundamentals of heat and mass transfer,** Frenk P. Incropera and David P. Dewitt, John Wiley and son's.
- 4. Heat transfer, P.K. Nag, Tata McGraw Hill 2002.

FINITE ELEMENT METHODS

Subject Code	: 10ME64	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT-1

Introduction: Equilibrium equations in elasticity subjected to body force, traction forces, and stress-strain relations for plane stress and plane strains. General description of Finite Element Method, Application and limitations. Types of elements based on geometry. Node numbering, Half band width.

07 Hours

UNIT-2

Basic Procedure: Euler - Lagrange equation for bar, beam (cantilever / simply supported fixed) Principle of virtual work, principle of minimum potential energy, Raleigh's Ritz method. Direct approach for stiffness matrix formulation of bar element. Galerkin's method.

07 Hours

Interpolation Models: Interpolation polynomials- Linear, quadratic and cubic. Simplex complex and multiplex elements. 2D PASCAL's triangle. CST elements-Shape functions and Nodal load vector, Strain displacement matrix and Jacobian for triangular and rectangular element.

07 Hours

UNIT-4

Solution of 1-D Bars: Solutions of bars and stepped bars for displacements, reactions and stresses by using penalty approach and elimination approach. Guass-elimination technique.

06 Hours

PART-B

UNIT-5

Higher Order Elements: Langrange's interpolation, Higher order one dimensional elements-Quadratic and cubic element and their shape functions. Shape function of 2-D quadrilateral element-linear, quadric element Isoparametric, Sub parametric and Super parametric elements. numerical integration : 1, 2 and 3 gauge point for 1D and 2D cases.

06 Hours

UNIT-6

Trusses: Stiffness matrix of Truss element. Numerical problems.

06 Hours

UNIT-7

Beams: Hermite shape functions for beam element, Derivation of stiffness matrix. Numerical problems of beams carrying concentrated, UDL and linearly varying loads.

06 Hours

UNIT-8

Heat Transfer: Steady state heat transfer, 1D heat conduction governing equations. Functional approach for heat conduction. Galerkin's approach for heat conduction. 1D heat transfer in thin fins.

07 Hours

TEXT BOOKS:

- 1. **Finite Elements in Engineering**, T.R.Chandrupatla, A.D Belegunde, 3rd Ed PHI.
- 2. **Finite Element Method in Engineering**, S.S. Rao, 4th Edition, Elsevier, 2006.

REFERENCE BOOKS:

- 1. **"Finite Element Methods for Engineers"** U.S. Dixit, Cengage Learning, 2009
- 2. Concepts and applications of Finite Element Analysis, R.D. Cook D.S Maltus, M.E Plesha, R.J.Witt, Wiley 4th Ed, 2009
- 3. **Finite Element Methods**, Daryl. L. Logon, Thomson Learning 3rd edition, 2001.
- 4. **Finite Element Method**, J.N.Reddy, McGraw -Hill International Edition.

MECHATRONICS & MICROPROCESSOR

Subject Code	: 10ME65	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Introduction to Mechatronic Systems: Measurement and control systems Their elements and functions, Microprocessor based controllers.

06 Hours

UNIT - 2

Review of Transducers and Sensors: Definition and classification of transducers. Definition and classification of sensors. Principle of working and applications of light sensors, proximity sensors and Hall effect sensors.

07 Hours

Electrical Actuation Systems: Electrical systems, Mechanical switches, solid-state switches, solenoids, DC & AC motors, Stepper motors and their merits and demerits.

06 Hours

UNIT - 4

Signal Conditioning: Introduction to signal conditioning. The operational amplifier, Protection, Filtering, Wheatstone bridge, Digital signals Multiplexers, Data acquisition, Introduction to Digital system. Processing Pulse-modulation.

07 Hours

PART – B

UNIT - 5

Introduction to Microprocessors: Evolution of Microprocessor, Organization of Microprocessors (Preliminary concepts), basic concepts of programming of microprocessors.

Review of concepts - Boolean algebra, Logic Gates and Gate Networks, Binary & Decimal number systems, memory representation of positive and negative integers, maximum and minimum integers. Conversion of real, numbers, floating point notation, representation of floating point numbers, accuracy and range in floating point representation, overflow and underflow, addition of floating point numbers, character representation.

07 Hours

UNIT - 6

Logic Function: Data word representation. Basic elements of control systems 8085A processor architecture terminology such as CPU, memory and address, ALU, assembler data registers, Fetch cycle, write cycle, state, bus, interrupts. Micro Controllers. Difference between microprocessor and micro controllers. Requirements for control and their implementation in microcontrollers. Classification of micro controllers.

UNIT - 7

07 Hours

Organization & Programming of Microprocessors: Introduction to organization of INTEL 8085-Data and Address buses, Instruction set of 8085, programming the 8085, assembly language programming.

06 Hours

Central Processing Unit of Microprocessors: Introduction, timing and control unit basic concepts, Instruction and data flow, system timing, examples of INTEL 8085 and INTEL 4004 register organization.

06 Hours

TEXT BOOKS:

- 1. **Mechatronics,** W.Bolton, Longman, 2Ed, Pearson Publications, 2007.
- 2. Microprocessor Architecture, Programming And Applications With 8085/8085A, R.S. Ganokar, Wiley Eastern.

REFERENCE BOOKS:

- 1. **Mechatronics and Microprocessors,** K.P.Ramchandran, G.K.Vijayraghavan, M.S.Balasundran, Wiley, 1st Ed, 2009
- 2. Mechatronics Principles, Concepts and applications Nitaigour and Premchand Mahilik Tata McGraw Hill- 2003.
- 3. Mechatronics Principles & applications, Godfrey C. Onwubolu, Elsevier..
- 4. **Introduction Mechatronics & Measurement systems**, David.G. Aliciatore & Michael. B. Bihistaned, Tata McGraw Hill, 2000.

HEAT & MASS TRANSFER LABORATORY

Subject Code	: 10MEL67	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

- 1. Determination of Thermal Conductivity of a Metal Rod.
- 2. Determination of Overall Heat Transfer Coefficient of a Composite wall.
- 3. Determination of Effectiveness on a Metallic fin.
- 4. Determination of Heat Transfer Coefficient in a free Convection on a vertical tube.

- 5. Determination of Heat Transfer Coefficient in a Forced Convention Flow through a Pipe.
- 6. Determination of Emissivity of a Surface.

21 Hours

PART - B

- 1. Determination of Steffan Boltzman Constant.
- 2. Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchangers
- 3. Experiments on Boiling of Liquid and Condensation of Vapour
- 4. Performance Test on a Vapour Compression Refrigeration.
- 5. Performance Test on a Vapour Compression Air Conditioner
- 6. Experiment on Transient Conduction Heat Transfer

21 Hours

Scheme for Examination:		
One Question from Part A	-	20 Marks (05 Write up +15)
One Question from Part B	-	20 Marks (05 Write up +15)
Viva-Voce	-	10 Marks
Total		50 Marks

COMPUTER AIDED MODELING AND ANALYSIS LABORATORY

Subject Code	: 10MEL68	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

Study of a FEA package and modeling stress analysis of

a. Bars of constant cross section area, tapered cross section area and stepped bar

6 Hours

b. Trusses – (Minimum 2 exercises)

3 Hours

c. Beams – Simply supported, cantilever, beams with UDL, beams with varying load etc (Minimum 6 exercises)

12 Hours

PART - B

a)	Stress an	nalysis of a rectangular plate with a circular hole
		3 Hours
b)	Therma	Analysis – 1D & 2D problem with conduction and
	convecti	on boundary conditions(Minimum 4 exercises)
		9 Hours
c)	Dynami	c Analysis
	1)	Fixed – fixed beam for natural frequency determination
	2)	Bar subjected to forcing function
	3)	Fixed - fixed beam subjected to forcing function

9 Hours

REFERENCE BOOKS:

- 1. **A first course in the Finite element method,** Daryl L Logan, Thomason, Third Edition
- 2. Fundaments of FEM, Hutton McGraw Hill, 2004
- 3. Finite Element Analysis, George R. Buchanan, Schaum Series

Scheme for Examination:

Total		50 Marks
Viva-Voce	-	10 Marks
One Question from Part B	-	20 Marks (05 Write up +15)
One Question from Part A	-	20 Marks (05 Write up +15)

HYDRAULICS AND PNEUMATICS

Subject Code	: 10ME73	IA Marks	25
Hours/Week	: 04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT -1

Introduction to Hydraulic Power: Definition of hydraulic system, advantages, limitations, applications, Pascal's law, structure of hydraulic control system, problems on Pascal's law.

The source of Hydraulic Power: Pumps Classification of pumps, Pumping theory of positive displacement pumps, construction and working of Gear pumps, Vane pumps, Piston pumps, fixed and variable displacement pumps, Pump performance characteristics, pump Selection factors, problems on pumps.

07 Hours

UNIT -2

Hydraulic Actuators and Motors: Classification cylinder and hydraulic motors, Linear Hydraulic Actuators [cylinders], single and double acting cylinder, Mechanics of Hydraulic Cylinder Loading, mounting arrangements, cushioning, special types of cylinders, problems on cylinders, construction and working of rotary actuators such as gear, vane, piston motors, Hydraulic Motor Theoretical Torque, Power and Flow Rate, Hydraulic Motor

Performance, problems, symbolic representation of hydraulic actuators (cylinders and motors).

06 Hours

UNIT - 3

Control Components in Hydraulic Systems: Classification of control valves, Directional Control Valves- Symbolic representation, constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, check valves, Pressure control valves - types, direct operated types and pilot operated types. Flow Control Valves - compensated and non-compensated FCV, needle valve, temperature compensated, pressure compensated, pressure and temperature compensated FCV, symbolic representation.

07 Hours

UNIT - 4

Hydraulic Circuit Design And Analysis: Control of Single and Double -Acting Hydraulic Cylinder, Regenerative circuit, Pump Unloading Circuit, Double Pump Hydraulic System, Counter balance Valve Application, Hydraulic Cylinder Sequencing Circuits, Automatic cylinder reciprocating system, Locked Cylinder using Pilot check Valve, Cylinder synchronizing circuit using different methods, factors affecting synchronization, Hydraulic circuit for force multiplication, Speed Control of Hydraulic Cylinder, Speed Control of Hydraulic Motors, Safety circuit, Accumulators, types, construction and applications with circuits.

06 Hours

PART - B

UNIT - 5

Maintenance of Hydraulic System: Hydraulic Oils - Desirable properties, general type of Fluids, Sealing Devices, Reservoir System, Filters and Strainers, wear of Moving Parts due to solid -particle Contamination, temperature control (heat exchangers), Pressure switches, trouble shooting.

06 Hours

Introduction to Pneumatic Control: Definition of pneumatic system, advantages, limitations, applications, Choice of working medium. Characteristic of compressed air. Structure of Pneumatic control System, fluid conditioners and FRL unit.

Pneumatic Actuators: Linear cylinder - Types, Conventional type of cylinder- working, End position cushioning, seals, mounting arrangements-Applications. Rod - Less cylinders types, working, advantages, Rotary cylinders- types construction and application, symbols.

07 Hours

UNIT-7

Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction, use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols. Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, speed control of cylinders - supply air throttling and Exhaust air throttling and Exhaust air throttling. **Signal Processing Elements:** Use of Logic gates - OR and AND gates in

pneumatic applications. Practical Examples involving the use of logic gates, Pressure dependant controls- types - construction - practical applications, Time dependent controls principle. Construction, practical applications.

07 Hours

UNIT-8

Multi- Cylinder Application: Coordinated and sequential motion control, Motion and control diagrams. Signal elimination methods, Cascading method- principle, Practical application examples (up to two cylinders) using cascading method (using reversing valves).

Electro- Pneumatic Control: Principles - signal input and out put, pilot assisted solenoid control of directional control valves, Use of relay and contactors. Control circuitry for simple signal cylinder application.

Compressed Air: Production of compressed air- Compressors Preparation of compressed air-Driers, Filters, Regulators, Lubricators, Distribution of compressed air Piping layout.

06 Hours

TEXT BOOKS:

- 1. **"Fluid Power with Applications"**, Anthony Esposito, Sixth edition, Pearson Education, Inc, 2000.
- 2. 'Pneumatics and Hydraulics', Andrew Parr, Jaico Publishing Co

REFERENCE BOOKS:

- 1. 'Oil Hydraulic systems', Principles and Maintenance S. R. Majurr, Tata McGraw Hill Publishing Company Ltd. - 2001
- 2. **'Industrial Hydraulics', Pippenger, Hicks''** McGraw Hill, New York
- 3. 'Hydraulic & Pneumatic Power for Production', Harry L. Stewart
- 4. **'Pneumatic Systems',** S. R. Majumdar, Tata McGraw Hill Publish 1995
- 5. Power Hydraulics' Michael J Pinches & John G Ashby, Prentice Hall

OPERATION RESEARCH

Subject Code	: 10ME74	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART- A

UNIT -1

Introduction: Evolution of OR, definition of OR, scope of OR, application areas of OR, steps (phases) in OR study, characteristics and limitations of OR, models used in OR, linear programming (LP) problem-formulation and solution by graphical method.

04 Hours

UNIT -2

Solution Of Linear Programming Problems: The simplex methodcanonical and standard form of an LP problem, slack, surplus and artificial variables, big M method and concept of duality, dual simplex method.

08 Hours

Transportation Problem: Formulation of transportation problem, types, initial basic feasible solution using different methods, optimal solution by MODI method, degeneracy in transportation problems, application of transportation problem concept for maximization cases. Assignment Problem-formulation, types, application to maximization cases and travelling salesman problem.

08 Hours

UNIT -4

Integer Programming: Pure and mixed integer programming problems, solution of Integer programming problems-Gomory's all integer cutting plane method and mixed integer method, branch and bound method, Zero-One programming.

06 Hours

PART-B

UNIT -5

Pert-CPM Techniques: Introduction, network construction - rules, Fulkerson's rule for numbering the events, AON and AOA diagrams; Critical path method to find the expected completion time of a project, floats; PERT for finding expected duration of an activity and project, determining the probability of completing a project, predicting the completion time of project; crashing of simple projects.

08 Hours

UNIT -6

Queuing Theory: Queuing systems and their characteristics, Pure-birth and Pure-death models (only equations), empirical queuing models - M/M/1 and M/M/C models and their steady state performance analysis.

06 Hours

UNIT -7

Game Theory: Formulation of games, types, solution of games with saddle point, graphical method of solving mixed strategy games, dominance rule for solving mixed strategy games.

06 Hours

Sequencing: Basic assumptions, sequencing 'n' jobs on single machine using priority rules, sequencing using Johnson's rule-'n' jobs on 2 machines, 'n' jobs on 3 machines, 'n' jobs on 'm' machines. Sequencing 2 jobs on 'm' machines using graphical method.

06 Hours

TEXT BOOKS:

- 1. **Operations Research**, P K Gupta and D S Hira, Chand Publications, New Delhi 2007
- 2. Operations Research, Taha H A, Pearson Education

REFERNCE BOOKS:

- 1. Operations Research, A P Verma, S K Kataria & Sons, 2008
- 2. Operations Research, Paneerselvan, PHI
- 3. **Operations Research,** A M Natarajan, P Balasubramani, Pearson Education, 2005
- 4. **Introduction to Operations Research,** Hillier and Liberman,8th Ed., McGraw Hill
- 5. **Operations Research** S.D. Sharma, Ledarnath Ramanath & Co, 2002

NON-CONVENTIONAL ENERGY SOURCES

Subject Code	: 10ME754	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART A

UNIT - 1

Introduction : Energy source, India's production and reserves of commercial energy sources, need for non-conventional energy sources, energy alternatives, solar, thermal, photovoltaic. Water power, wind biomass, ocean temperature difference, tidal and waves, geothermal, tarsands and oil shale, nuclear (Brief descriptions); advantages and disadvantages, comparison (Qualitative and Quantitative).

6 Hours

Solar Radiation : Extra-Terrestrial radiation, spectral distribution of extra terrestrial radiation, solar constant, solar radiation at the earth's surface, beam, diffuse and global radiation, solar radiation data.

Measurement of Solar Radiation : Pyrometer, shading ring pyrheliometer, sunshine recorder, schematic diagrams and principle of working.

Solar Radiation Geometry : Flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, zenith angle, solar altitude angle expression for the angle between the incident beam and the normal to a plane surface (No derivation) local apparent time. Apparent motion of sum, day length, numerical examples.

9 Hours

UNIT - 3

Radiation Flux on a Tilted Surface : Beam, diffuse and reflected radiation, expression for flux on a tilted surface (no derivations) numerical examples.

Solar Thermal Conversion : Collection and storage, thermal collection devices, liquid flat plate collectors, solar air heaters concentrating collectors (cylindrical, parabolic, paraboloid) (Quantitative analysis); sensible heat storage, latent heat storage, application of solar energy water heating. Space heating and cooling, active and passive systems, power generation, refrigeration. Distillation (Qualitative analysis) solar pond, principle of working, operational problems.

9 Hours

UNIT - 4

Performance Analysis of Liquid Flat Plate Collectors : General description, collector geometry, selective surface (qualitative discussion) basic energy-balance equation, stagnation temperature, transmissivity of the cover system, transmissivity – absorptivity product, numerical examples. The overall loss coefficient, correlation for the top loss coefficient, bottom and side loss coefficient, problems (all correlations to be provided). Temperature distribution between the collector tubes, collector heat removal factor, collector efficiency factor and collector flow factor, mean plate temperature, instantaneous efficiency (all expressions to be provided). Effect of various parameters on the collector performance; collector orientation, selective surface, fluid inlet temperature, number covers, dust.

4 Hours

UNIT – 5

Photovoltaic Conversion : Description, principle of working and characteristics, applications.

Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, elementary design principles; coefficient of performance of a wind mill rotor, aerodynamic considerations of wind mill design, numerical examples.

8 Hours

UNIT – 6

Tidal Power : Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations.

Ocean Thermal Energy Conversion : Principle of working, Rankine cycle, OTEC power stations in the world, problems associated with OTEC.

Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, geothermal plants in the world, problems associated with geothermal conversion, scope of geothermal energy.

7 Hours

UNIT - 7

Energy from Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation, bio gas production from organic wastes by anaerobic fermentation, description of bio-gas plants, transportation of bio-gas, problems involved with bio-gas production, application of bio-gas, application of bio-gas in engines, advantages.

4 Hours

UNIT – 8

Hydrogen Energy : Properties of Hydrogen with respected to its utilization as a renewable form of energy, sources of hydrogen, production of hydrogen, electrolysis of water, thermal decomposition of water, thermo chemical production bio-chemical production.

Storage & Transportation Methods : Gaseous, cryogenic and metal hydrides, application of hydrogen, domestic and industrial safe burning of hydrogen.

5 Hours

TEXT BOOKS:

- 1. Non-Conventional Energy Sources by *G.D. Rai K*, Khanna Publishers, 2003.
- 2. Solar energy, by *Subhas P Sukhatme* Tata McGraw Hill, 2nd Edition, 1996.

REFERENCE BOOKS:

- 1. Renewable Energy Sources and Conversion Technology by *N.K.Bansal, Manfred Kleeman & Mechael Meliss*, Tata McGraw Hill, 2001.
- 2. Renewable Energy Resources, *John W.Twidell Anthony D. Weir El*, BG 2001.
- 3. Solar Power Engineering, P.K.Nag, Tata McGraw Hill, 2003.

CONTROL ENGINEERING

Subject Code	: 10ME82	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction: Concept of automatic controls, Open loop and closed loop systems, Concepts of feedback, requirements of an ideal control system, Types of controllers- Proportional, Integral Proportional Integral, Proportional Integral Differential controllers.

06 Hours

UNIT-2

Mathematical Models: Transfer function models, models of mechanical systems, models of electrical circuits, DC and AC motors in control systems, models of thermal systems, models of hydraulic systems, pneumatic system, Analogous systems: Force voltage, Force current.

06 Hours

UNIT - 3

Block Diagrams and Signal Flow Graphs: Transfer Functions definition, function, block representation of systems elements, reduction of block diagrams, Signal flow graphs: Mason's gain formula.

Hours

Transient and Steady State Response Analysis: Introduction, first order and second order system response to step, ramp and impulse inputs, concepts of time constant and its importance in speed of response. System stability: Routh's-Hurwitz Criterion.

06 Hours

PART - B

UNIT - 5

Frequency Response Analysis: Polar plots, Nyquist stability criterion, Stability analysis, Relative stability concepts, Gain margin and phase margin, M&N circles.

06 Hours

UNIT - 6

Frequency Response Analysis Using Bode Plots: Bode attenuation diagrams, Stability analysis using Bode plots, Simplified Bode Diagrams.

07 Hours

UNIT - 7

Root Locus Plots: Definition of root loci, General rules for constructing root loci, Analysis using root locus plots.

06 Hours

UNIT 8

System Compensation and State Variable Characteristics of Linear Systems: Series and feedback compensation, Introduction to state concepts, state equation of linear continuous data system. Matrix representation of state equations, controllability and observability, Kalman and Gilberts test.

07 Hours

TEXT BOOKS :

- 1. **Modern Control Engineering,** Katsuhiko Ogatta, Pearson Education, 2004.
- 2. **Control Systems Principles and Design,** M.Gopal, 3rd Ed., TMH,2000.

REFERENCE BOOKS :

- 1. **Modern Control Systems**, Richard.C.Dorf and Robert.H.Bishop, Addison Wesley,1999
- 2. **System dynamics & control**, Eronini-Umez, Thomson Asia pte Ltd. singapore, 2002.
- 3. Feedback Control System, Schaum's series. 2001.

ELECTIVE-IV (GROUP - D)

TRIBOLOGY

Subject Code	: 10ME831	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction To Tribology: Properties of oils and equation of flow: Viscosity, Newton's Law of viscosity, Hagen-Poiseuille Law, Flow between parallel stationary planes, viscosity measuring apparatus. Lubrication principles, classification of lubricants.

06 Hours

UNIT - 2

Hydrodynamic Lubrication: Friction forces and power loss in lightly loaded bearing, Petroff's law, Tower's experiments, mechanism of pressure development in an oil film, Reynold's investigation and Reynold's equation in 2D.

06 Hours

UNIT - 3

Idealized Journal Bearing: Introduction to idealized journal bearing, load carrying capacity, condition for equilibrium, Sommerfeld's numbers and significance of it; Partial bearings, end leakages in journal bearing, numerical problems.

07 Hours

Slider / Pad Bearing With A Fixed And Pivoted Shoe: Pressure distribution, Load carrying capacity, coefficient of friction, frictional resistance in a pivoted shoe bearing, numerical examples.

07 Hours

PART – B

UNIT - 5

Oil Flow And Thermal Equilibrium Of Journal Bearing: Oil flow through bearings, self-contained journal bearings, bearings lubricated under pressure, thermal equilibrium of journal bearings.

06 Hours

UNIT - 6

Hydrostatic Lubrication: Introduction to hydrostatic lubrication, hydrostatic step bearings, load carrying capacity and oil flow through the hydrostatic step bearing.

06 Hours

UNIT - 7

Bearing Materials: Commonly used bearings materials, properties of typical bearing materials. Advantages and disadvantages of bearing materials.

07 Hours

UNIT - 8

Behavior Of Tribological Components: Selection, friction, Wear of ceramic materials, wear measurements, effects of speed, temperature and pressure. Tribological measures, Material selection, improved design, surface engineering

07 Hours

TEXT BOOKS:

- 1. **Fundamentals of Tribology**, Basu S K., Sengupta A N., Ahuja B. B., , PHI 2006
- 2. Introduction to Tribology Bearings, Mujumdar B. C., S. Chand company pvt. Ltd 2008.

REFERENEC BOOKS:

- 1. **Theory and Practice of Lubrication for Engineers,** Fuller, D., New York company 1998
- 2. **Principles and Applications of Tribology,** Moore, Pergamaon press 1998
- 3. **Tribology in Industries,** Srivastava S., S Chand and Company limited, Delhi 2002
- 4. Lubrication of bearings Theoretical Principles and Design, Redzimovskay E I., Oxford press company 2000

AUTOMOTIVE ENGINEERING

Subject Code	: 10ME844	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Engine Components And Cooling & Lubrication Systems: Spark Ignition (SI) & Compression Ignition (CI) engines, cylinder – arrangements and their relatives merits, Liners, Piston, connecting rod, crankshaft, valves, valve actuating mechanisms, valve and port timing diagrams, Types of combustion chambers for S.I.Engine and C.I.Engines, Compression ratio, methods of a Swirl generation, choice of materials for different engine components, engine positioning, cooling requirements, methods of cooling, thermostat valves, different lubrication arrangements.

07 Hours

UNIT - 2

Fuels, Fuel Supply Systems For Si And Ci Engines: Conventional fuels, alternative fuels, normal and abnormal combustion, cetane and octane numbers, Fuel mixture requirements for SI engines, types of carburetors, C.D.& C.C. carburetors, multi point and single point fuel injection systems, fuel transfer pumps, Fuel filters, fuel injection pumps and injectors.

07 Hours

UNIT - 3

Superchargers And Turbochargers: Naturally aspirated engines, Forced Induction, Types pf superchargers, Turbocharger construction and operation, Intercooler, Turbocharger lag.

06 Hours

UNIT - 4

Ignition Systems: Battery Ignition systems, magneto Ignition system, Transistor assist contacts. Electronic Ignition, Automatic Ignition advance systems.

06 Hours

Power Trains: General arrangement of clutch, Principle of friction clutches, Torque transmitted, Constructional details, Fluid flywheel, Single plate, multi-plate and centrifugal clutches.

Gear box: Necessity for gear ratios in transmission, synchromesh gear boxes, 3, 4 and 5 speed gear boxes. Free wheeling mechanism, planetary gears systems, over drives, fluid coupling and torque converters, Epicyclic gear box, principle of automatic transmission, calculation of gear ratios, Numerical calculations for torque transmission by clutches.

08 Hours

UNIT - 6

Drive To Wheels: Propeller shaft and universal joints, Hotchkiss and torque tube drives, differential, rear axle, different arrangements of fixing the wheels to rear axle, steering geometry, camber, king pin inclination, included angle, castor, toe in & toe out, condition for exact steering, steering gears, power steering, general arrangements of links and stub axle, over steer, under steer and neutral steer, numerical problems, types of chassis frames.

06 Hours

UNIT - 7

Suspension, Springs And Brakes: Requirements, Torsion bar suspension systems, leaf spring, coil spring, independent suspension for front wheel and rear wheel. Air suspension system.

Types of brakes, mechanical compressed air, vacuum and hydraulic braking systems, construction and working of master and wheel cylinder, brake shoe arrangements, Disk brakes, drum brakes, Antilock –Braking systems, purpose and operation of antilock-braking system, ABS Hydraulic Unit, Rear-wheel antilock & Numerical Problems

06 Hours

UNIT - 8

Automotive Emission Control Systems: Automotive emission controls, Controlling crankcase emissions, Controlling evaporative emissions, Cleaning the exhaust gas, Controlling the air-fuel mixture, Controlling the combustion process, Exhaust gas recirculation, Treating the exhaust gas, Airinjection system, Air-aspirator system, Catalytic converter, Emission standards- Euro I, II, III and IV norms, Bharat Stage II, III norms.

6 Hours

TEXT BOOKS:

- Automotive mechanics, William H Crouse & Donald L Anglin, 10th Edition Tata McGraw Hill Publishing Company Ltd., 2007
 Automotive Mechanics, S. Srinivasan, 2nd Ed., Tata McGraw Hill
- Automotive Mechanics, S. Srinivasan, 2nd Ed., Tata McGraw Hill 2003.

REFERENCE BOOKS:

- 1. **Automotive mechanics: Principles and Practices**, Joseph Heitner, D Van Nostrand Company, Inc
- 2. **Fundamentals of Automobile Engineering,** K.K.Ramalingam, Scitech Publications (India) Pvt. Ltd.
- Automobile Engineering, R. B. Gupta, Satya Prakashan, 4th edn. 1984.
- 4. Automobile engineering, Kirpal Singh. Vol I and II 2002.

MANAGEMENT & ORGANIZATIONAL BEHAVIOR

Subject Code	: 14MBA11	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To make students understand fundamental concepts and principles of management, including the basic roles, skills, and functions of management
- 2. To make students knowledgeable of historical development, theoretical aspects and practice application of managerialprocess
- 3. To understand the basic concepts and theories underlying individual behavior besides developing better insights into one's ownself
- 4. To make students aware of Individual behavior in groups, dynamics of groups and team building besides developing a better awareness of how they can be better facilitators for building effective teams as leadersthemselves

Part A- Principles of Management

Module1:

Introduction: Management: Introduction, definition of management, nature, purpose and functions, levels and types of managers, managerial roles, skills for managers, evolution of management thought, Fayol's fourteen principles of management and recent trends in management.

Module2:

Planning and Organizing:

Planning: Nature of planning, planning process, objectives, MBO, strategies, level of strategies, policies, methods and programs, planning premises, decision making, process of decision making, types of decisions, techniques in decision making.

Organizing: Organization structure, formal and informal organizations, principles of organizations-chain of command, span of control, delegation, decentralization, and empowerment. Functional, divisional, geographical, customer based and matrix organizations, tram based structures, virtual organizations, boundary lessorganizations.

Module3:

Controlling: Controlling, importance of controlling, controlling process, types of control, factors influencing control effectiveness.

RECOMMENDED BOOKS

- 1. Essentials of Management-Koontz, 8/e, McGraw Hill
- 2. Management: Text and Cases-VSP Rao, ExcelBOOKS
- 3. MGMT, An Innovative approach to teaching and learning Principles of Management, Chuck Williams, Cengage Publications, 2010
- 4. Principles and practices of Management, Kiran Nerkar, Vilas Chopde, Dreamtech Press,2011

(4 Hours)

(6 Hours)

(12 Hours)

5. Management Theory & practice – Chandan J. S, Vikas PublishingHouse.

6. Management Theory & Practice Text & Cases - Subba Rao P & HimaBindu, Himalaya Publication.

Part B- Organizational Behaviour

Module4:

Introduction: Organizational Behaviour: Introduction, definition, historical development, fundamental principles of OB, contributing disciplines, challenges and opportunities.

Module5:

Foundations of Individual Behaviour: Individual behaviour: Foundations of individual behaviour. Ability: Intellectual abilities, Physical ability, the role of disabilities.

Personality: Meaning, formation, determinants, traits of personality, big five and MBTI, personality attributes influencing OB.

Attitude: Formation, components of attitudes, relation between attitude and behaviour. Perception: Process of perception, factors influencing perception, link between perception and individual decision making.

Emotions: Affect, mood and emotion and their significance, basic emotions, emotional intelligence, self-awareness, self-management, social awareness, relationship management.

Module6:

Motivation and Leadership:

Motivation: Meaning, theories of motivation-needs theory, two factor theory, Theory X and Y, application of motivational theories.

Leadership: Meaning, styles of leadership, leadership theories, trait theory, behavioural theories, managerial grid, situational theories-Fiedler's model, SLT, transactional and transformation leadership.

Module7:

Group Behaviour: Definition, types, formation of groups, building effective teams. Conflict: Meaning, nature, types, process of conflict, conflict resolution.

Power and politics: Basis of power, effectiveness of power tactics. The ethics of behaving politically.

Practical Component

- 1. Studying organizational structures of any 10 companies and classifying them into different types of organizations which are studied in Module 2 and justifying why such structures are chosen by thoseorganizations.
- 2. Preparing the leadership profiles of any 5 business leaders and studying their leadership qualities and behaviours with respects to the trait, behavioural and contingency theoriesstudied.
- 3. Identifying any five job profiles and listing the various types abilities required for those jobs and also the personality traits/attributes required for the jobsidentified.

Note: Faculty can either identify the organizations/ leaders/jobs or students can be allowed to choose the same.

RECOMMENDED BOOKS:

(4 Hours)

(10 Hours)

(4 hours)

(16 Hours)

- 1. Organizational behaviour, Stephen P Robbins, Timothy A. Judge, Neharika Vohra, Pearson, 14th Edition,2012.
- 2. Introduction to OrganisationalBehaviour Michael Butler, Jaico PublishingHouse,
- 3. Organization Behaviour Ashwathappa, Himalaya PublicationHouse
- 4. ORGB Nelson, Quick, Khanelwal, 2/e, Cengage Learning, 2012.
- 5. Organizational Behaviour Anada Das Gupta, Biztantra, 2011.
- 6. Organizational Behaviour: A modern approach Arun Kumar and Meenakshi, Vikas Publishing House, 2011.
- 7. Organizational Behaviour Rao V. S. P, Excel BOOKS, 2009.

REFERENCE BOOKS:

- 1. Organizational Behaviour Fred Luthans, 12/e, McGraw Hill International, 2011.
- 2. Management and Organizational Behaviour Laurie J Mullins, Pearsoneducation
- 3. Fundamentals of Organizational Behaviour Slocum/Hillriegel.CengeneLearning
- 4. Organizational Behaviour Aquinas P. G, ExcelBOOKS.

ACCOUNTING FOR MANAGERS

Objectives:

- 1. Explain fundamental accounting concepts, the elements of financial statements, and basic accountingvocabulary
- 2. Explain and use the accounting equation in basic financial analysis and explain how the equation is related to the financial statements.
- 3. Prepare basic entries for business transactions and present the data in an accurate and meaningfulmanner
- 4. Prepare basic financial statements and explain the articulation between the basic statements.
- 5. To analyze a company's financial statements and come to a reasoned conclusion about the financial situation of the company.

Module1:

Introduction to Accounting: Need and Types of Accounting, Users of Accounting, concepts and conventions of Accounting, Accounting Equation (problems on accounting equation).

Module2:

Preparation of books of Accounts: Journals, Subsidiary books, three column cash book, ledgers and trial balance. Depreciation- Straight line and Written down Value Methods.

Module3:

Preparation of Financial Statements: Preparation of final accounts of sole traders. Preparation of final accounts / statement of companies-both horizontal & vertical form of financial statements. (Basic problems on Final accounts of companies)

Module4:

Analysis of Financial Statements: Comparative, common size and trend analysis, Ratio Analysis, Preparation of financial statements using ratios, Preparation of Cash flow Statement (only indirect method).

Module5:

Accounting Standards and IFRS: Need for accounting standards. IFRS and proposed changes in Indian Accounting Standards.

Module6:

Emerging issues in Accounting: Corporate Governance and clause 49 of the listing agreement, Human Resource Accounting, Forensic Accounting, Window Dressing-Sustainability Reporting

(12 Hours)

(14 Hours)

(10 Hours)

(6 Hours)

(4 Hours)

(4 Hours)

Module7:

Fundamentals of Taxation: Overview of Heads of Income, deductions u/s 80C, Income Tax Rates and Returns – For Individuals only (Only Theory)

Practical Components:

- 1. Collecting Annual reports of the companies and analyzing the financial statements using different techniques and presenting the same in the lass.
- 2. Analyzing the companies' cash flow statements and presenting the same in the class.
- 3. Exposing the students to usage of accounting software's (PreferablyTally)
- 4. Filling up of ITRforms
- 5. Identify the sustainability report of a company and study thecontents.

RECOMMENDED BOOKS:

- 1. Narayanaswamy R Financial Accounting: A Managerial Perspective –, 5/e , PHI, 2014
- 2. Maheswari S. N, Maheswari Sharad K. Maheswari , A Text book of Accounting For Management , , 2/e, Vikas Publishing house (P)Ltd.
- 3. Tulsian P. C, Financial Accounting, 1/e, PearsonEducation.
- 4. Madegowda J, Accounting for managers, Himalaya PublishingHouse.
- 5. Gupta R. L & Radhaswamy M, Advanced Accountancy, Sultan ChandPublications
- 6. Jain S. P and Narang K L. Financial Accounting -, KalyaniPublishers
- 7. Business Taxation, Akhileshwar Pathak and SavanGodiawala, 2/e, McGraw Hill Education(India) Pvt. Ltd.2013

REFERENCE BOOKS:

- 1. Ambrish Gupta, Financial Accounting for Management: An Analytical Perspective, 4/e, PearsonEducation.
- 2. Ashish K Bhattacharya, Introduction to Financial Statement Analysis, ElsevierIndia
- 3. Raman B. S, Financial Accounting –, Vol I & Vol II, United Publishers, 1/e, 2009.
- 4. Gary A. Porter & Curtis L. Norton, Financial Accounting (IFRS update)–, 6/e, Cengage Learning.
- 5. Arora M. N., Accounting For Management, Himalaya PublishingHouse.
- 6. Bhattacharya Essentials of Financial Accounting (Based on IFRS), 2/e, Prentice Hall India,
- 7. Comdex (Computer and Financial Accounting with Tally 9.0 Course Kit). Dream Tech.
- 8. Namrata Agrawal Comdex Tally 9, -DreamTech.
- 9. Jasmine Kaur, IFRS: A Practical approach, McGrawHill.

BUSINESS, GOVERNMENT AND SOCIETY

Subject Code	: 14MBA14	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To enable students to understand the challenges and complexities faced by businesses and their leaders as they endeavor maximize returns while responsibly managing their duties to stakeholders and society.
- 2. To help students to understand the rationale for government interventions in market systems.
- 3. To help students develop an understanding of Social Responsibility and make their own judgments as to the proper balance of attention to multiple bottomlines.
- 4. To help students develop the skills needed to work through ethicaldilemmas

Module1:

The Study of Business, Government and Society (BGS): Importance of BGS to Managers –Models of BGS relationships – Market Capitalism Model, Dominance Model, Countervailing Forces Model and Stakeholder Model – Global perspective – Historical Perspective.

Module2:

Corporate Governance: Introduction, Definition, Market model and control model, OECD on corporate governance, A historical perspective of corporate governance, Issues in corporate governance, relevance of corporate governance, need and importance of corporate governance, benefits of good corporate governance, the concept of corporate, the concept of governance, theoretical basis for corporate governance, obligation to society, obligation to investors, obligation to employees, obligation to customers, managerial obligation, Indian cases

Module3:

Public Policies: The role of public policies in governing business, Government and public policy, classification of public policy, areas of public policy, need for public policy in business and levels of public policy.

Module4:

Environmental concerns and corporations: History of environmentalism, environmental preservation-role of stakeholders, international issues, sustainable development, costs and benefits of environmental regulation, industrial pollution, role of corporate in environmental management, waste management and pollution control, key strategies for prevention of pollution, environmental audit, Laws governing environment.

Module5:

Business Ethics: Meaning of ethics, business ethics, relation between ethics and business ethics, evolution of business ethics, nature of business ethics, scope, need and purpose, importance, approaches to business ethics, sources of ethical knowledge for business roots of

(8 Hours)

(8 Hours)

(8 Hours)

(4 Hours)

(8 Hours)

unethicalbehaviour, ethical decision making, some unethical issues, benefits from managing ethics at workplace, ethical organizations

Module6:

Corporate Social Responsibility: Types and nature of social responsibilities, CSR principles and strategies, models of CSR, Best practices of CSR, Need of CSR, Arguments for and against CSR, CSR in Indian perspective, Indian examples.

Module7:

(14 Hours) Business Law: Law of contract - meaning of contract, agreement, essential elements of a valid contract. Law of agency- meaning, creation and termination of agency.Bailment and Pledge - meaning, rights and duties of bailor and bailee.

Negotiable Instruments Act 1881: Nature and Characteristics of Negotiable instruments, Kinds of Negotiable Instruments - Promissory Notes, Bills of Exchange and Cheques. Discharge and Dishonour of Negotiable Instruments.

Sale of Goods Act 1930: Definition of Sale, Sale v/s Agreement to Sell, Goods, Condition and Warranties, Express and Implied Condition, "Doctrine of Caveat Emptor", Right and duties of Unpaid Seller.

Meaning, scope and objectives of - Intellectual property law, law relating to patents, law relating to copyrights, law relating to trade mark.

Practical Components:

- 1. Students are expected to study any five CSR initiatives by Indian organizations and submit a report for thesame.
- 2. A group assignment on "The relationship between Business, Government and Society in Indian Context and relating the same with respect the models studied in Module1.
- 3. Case studies/Role plays related ethical issues in business with respect to Indian context.

RECOMMENDED BOOKS:

- 1. Business, Government, and Society: A Managerial Perspective, Text and Cases -John F. Steiner, 12/e, McGraw-Hill,2011.
- 2. Business and Government Francis Cherunilam, HPH.
- 3. Corporate Governance: principles, policies and practices Fernando A. C, 2/e, Pearson.2011.
- 4. Business Ethics and Corporate Governance Ghosh B. N, Tata McGraw-Hill, 2012.
- 5. Business Law for Managers, Goel P. K, Biztantra, 2012.
- 6. CorporateSocialResponsibility:AStudyofCSRPracticesinIndianIndustry,Baxi C. V & Rupamanjari Sinha Ray, Vikas Publishing House, 2012.

REFERENCE BOOKS:

- 1. Business and Society Lawrence and Weber, 12/e, Tata McGraw-Hill, 2010.
- 2. Business Ethics Bajaj P. S & Raj Agarwal, Biztantra, 2012.
- 3. Corporate Governance Keshoo Prasad, 2/e,PHI.
- 4. Corporate Governance, Ethics and social responsibility Balachandran V, &Chandrashekharan V, 2/e, PHI,2011.
- 5. Corporate Governance Machiraju H. R, HPH.
- 6. Business Ethics and Corporate Governance Prabakaran S, ExcelBOOKS.
- 7. Corporate Goverance Badi N. V, Vrinda Publications, 2012.
- 8. Civic Sense Prakash Pillappa, Excel BOOKS, 2012.

(6 Hours)

MARKETING MANAGEMENT

Subject Code	: 14MBA15	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To provide students an insight to basic concepts of marketingmanagement.
- 2. To help students understand various marketing tools/models for solving marketing problems in the changing businessenvironment.
- 3. To understand fundamental premise underlying market drivenstrategies.

Module1:

Introduction to Marketing: Introduction, Definitions of market and marketing, The Exchange Process, Elements of Marketing Concept, Functions of Marketing, Old Concept or Product- oriented Concept, New or Modern or Customer- oriented Concept, Marketing Environment, Techniques used in environment analysis, Characteristics (Micro and Macro), Marketing to the 21st century customer

Module2:

Consumer Behaviour Analysis: Meaning and Characteristics, Importance, Factors Influencing Consumer Behaviour, Consumer Purchase Decision Process, Buying Roles, Buying Motives, Buyer Behaviour Models

Module3:

Market Segmentation, Targeting & Positioning: Concept of Market Segmentation, Benefits, Requisites of Effective Segmentation, Bases for Segmenting Consumer Markets, Market Segmentation Strategies.

Targeting - Bases for identifying target Customer target Marketing strategies.

Positioning - Meaning, Product Differentiation Strategies, Tasks involved in Positioning.

Branding - Concept of Branding, Types, Brand Equity, Brandingstrategies.

Module4:

Managing the Product: Concept, product hierarchy, product line, product mix, product mix strategies, Product life cycle and its strategies, New Product Development, packing as a marketing tool, Role of labelling in packing.

Module-5

Pricing decisions: Significance of pricing, factor influencing pricing (Internal factor and External factor), objectives, Pricing Strategies-Value based, Cost based, Market based, Competitor based, Pricing Procedure.

Marketing Channels: Meaning, Purpose, Factors Affecting Channel Choice, Channel Design, Channel Management Decision, Channel Conflict, Designing a physical Distribution System, Network Marketing,

(8 hours)

(8hours)

(8 hours)

(8 hours)

(8 hours)
Module 6:

(10 hours)

Integrated Marketing communication: Meaning and Importance of Marketing Communication, Communication Objectives, Steps in Developing Effective Communication Advertising - Objectives, Ad Budget, AIDA Model, Advertising Copy Deciding Media, Evaluating Advertising Effectiveness,

Sales Promotion - Kinds of Promotion, Tools and Techniques of Sales Promotion, Push and Pull Strategies

Personnel Selling - Concept, Features, Functions, and Steps involved in personal Selling. Publicity - Meaning, Objectives, Types, Functions of Public relations,

Direct Marketing - Meaning, Features, Functions, Basic Concepts of E-Commerce, E-Business

Module7:

(6 hours)

Marketing Planning: Meaning, Concepts, Steps involved in Marketing planning, Marketing Audit- Meaning, Feature, Various components of Marketing Audit Marketing Strategy-Analysis of Industry and Competition, Strategic Planning Process,

Case Studies of Indian Context

Practical Components

- 1. Analyze Product Life Cycle of few Products like-Electronic goods, Computers.
- 2. Analyze Packaging strategies used by FMCGcompanies
- 3. Analyze Marketing strategies/planning used by automobile cosmetic and FMCG companies

RECOMMENDED BOOKS

- 1. MarketingManagement: A South Asian Perspective Kotler, Keller, Koshy &Jha, 13/e, Pearson Education,2012
- 2. Marketing Management, Ramaswamy V. S. & Namakumari S. 4/e, TMH, 2014
- 3. Fundamentals of Marketing Management, Etzel M.J BJ Walker & William J. Stanton, 14/e, MH,2012
- 4. Marketing Management Concepts & Cases-S.A.Sherlekar
- 5. Marketing Management, Tapan Panda, 2/e, ExcelPublication

REFERENCE BOOKS

- 1. Marketing Management, Arun Kumar & Meenakshi N, 2/e, Vikas, 2012
- 2. Applied Case Studies in Marketing Shajahan S, Primus BOOKS, 2011.
- 3. Marketing Management Karunakaran, HPH.
- 4. Marketing in India: Text and Cases- Neelamegham S, 4/e, Vikas.
- 5. Marketing- Lamb, Hair, Mc Danniel, 7/e, Cengage Learning2012.
- 6. Marketing: Marketing in the 21st Century Evans & Berman, 2/e, Cengage Learning, 2005.

Marketing: Planning, Implementation, and Control -William M. Pride, Ferrell O. C, Cengage Learning, 2010.

HUMAN RESOURCE MANAGEMENT

Subject Code: 14MBA21IA Marks: 50No. of Lecture Hours / Week: 04Exam Hours: 03Total Number of Lecture Hours: 56Exam Marks: 100Practical Component: 01 Hour / Week: 01: 01

OBJECTIVES:

- 1. To develop a meaningful understanding of HRM theory, functions and practices.
- 2. To apply HRM concepts and skills across various types of organizations.

Module1:

Human Resource Management:

Introduction, meaning, nature, scope of HRM.Importance and Evolution of the concept of HRM.Major functions of HRM, Principles of HRM, Organization of Personnel department, Role of HR Manager. HRM's evolving role in the 21st century.

Module2:

Job Analysis: Meaning, process of Job Analysis, methods of collecting job analysis data, Job Description and Job Specification, Role Analysis.

Human Resource Planning: Objectives, Importance and process of Human Resource Planning, Effective HRP.

Module3:

Recruitment: Definition, Constraints and Challenges, Sources and Methods of Recruitment, New Approaches to recruitment.

Selection: Definition and Process of Selection.

Placement: Meaning, Induction/Orientation, Internal Mobility, Transfer, Promotion, Demotion and Employee Separation.

Module4:

Training and development: Training v/s development, Training v/s Education, Systematic Approach to Training, Training Methods, Executive Development, Methods and Development of Management Development, Career and SuccessionPlanning.

Module5:

Performance Appraisal: Concept of Performance Appraisal, the Performance Appraisal Process, Methods of Performance Appraisal, Essential Characteristic of an Effective Appraisal System.

Compensation: Objectives of Compensation Planning, Job Evaluation, Compensation Pay Structure in India, Wage and Salary Administration, Factors Influencing Compensation Levels, Executive Compensation.

(8 hours)

(8 hours)

(8 hours)

(8 hours)

(8 hours)

Module6:

Employee Welfare: Introduction, Types of Welfare Facilities and Statutory Provisions. **Employee Grievances**: Employee Grievance procedure, Grievances Management in Indian Industry.

Discipline: Meaning, approaches to discipline, essential of a good disciplinary system, managing difficult employees.

Module7:

(8 hours)

Industrial Relations: Overview of industrial relations and industrial conflict. **Industrial disputes**: preventive and settlement machinery, collective bargaining, industrial relations scenario: current issues and future challenges.

Practical Component:

- 1. Give a case and ask the students to prepare the recruitment advertisement for a newspaper.
- 2. Expose students to standard selection tests followed in varioussectors.
- 3. Exploring training and developmentpractices.
- 4. Exploring performance appraisal practices in varioussectors.
- 5. Exploring employee separation practices.
- 6. Give a job analysis case and ask the students to prepare job description and job specification.
- 7. Ask the students to prepare an appointment letter for the post of office manager of a company known toyou.

RECOMMENDED BOOKS:

- 1. Human Resource Management Rao V. S. P, Excel BOOKS, 2010
- 2. Human Resource Management Cynthia D. Fisher, 3/e, AIPD, Chennai.
- 3. Human Resources Management: A South Asian Perspective, Snell, Bohlander, & Vohra, Cengage Learning, 16th Rep., 2012.
- 4. Human Resource Management Lawrence S. Kleeman, Biztantra ,2012.
- 5. Human Resource Management Aswathappa KHPH

REFERENCE BOOKS:

- 1. Human Resource Management John M. Ivancevich, 10/e, McGrawHill.
- 2. Human Resource Management in practice Srinivas R. Kandula, PHI,2009
- 3. Managing Human Resources Luis R Gomez-Mejia, David B. Balkin, Robert L. Cardy,6/e, PHI,2010.
- 4. P.Subba Rao, Human Resource Management & Industrial relations, Himalaya Publishing House, Mumbai.

(8 hours)

FINANCIAL MANAGEMENT

Subject Code	: 14MBA22	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To explain the basic functions and responsibilities of a financial department in a business/firm:
- 2. To elaborate the key decision areas in financial management-investment, financing, dividend and working capitalmanagement
- 3. To explain the various techniques of evaluation of investmentproposals
- 4. To discuss the various factors to be considered in designing the target capital structure.

Module1:

Financial management – Introduction to financial management, objectives of financial management - profit maximization and wealth maximization. Changing role of finance managers. Interface of Financial Management with other functional areas.

Indian financial system - Primary market, Secondary market - stocks & commodities market, Money market, Forex markets. (Theory Only)

Sources of Financing: Shares, Debentures, Term loans, Lease financing, Hybrid financing, Venture Capital, Angel investing and private equity, Warrants and convertibles (Theory Only)

Module2:

Time value of money –Future value of single cash flow & annuity, present value of single cash flow, annuity & perpetuity.Simple interest & Compound interest, Capital recovery & loan amortization.

Module3:

Cost of Capital Cost of capital - basic concepts. Cost of debenture capital, cost of preferential capital, cost of term loans, cost of equity capital (Dividend discounting and CAPM model). Cost of retained earnings. Determination of Weighted average cost of capital (WACC) and Marginal cost of capital.

Module4:

Investment decisions -- Investment evaluation techniques -- Net present value, Internal rate of return, Modified internal rate of return, Profitability index, Payback period, discounted payback period, accounting rate of return. Estimation of cash flow for new project, replacement projects.

Module5:

Working capital management – factors influencing working capital requirements. Current asset policy and current asset finance policy. Determination of operating cycle and cash cycle. Estimation of working capital requirements of a firm (Does not include Cash, Inventory & ReceivablesManagement)

(10 Hours)

(8 Hours)

(10 Hours)

(10 Hours)

(6 Hours)

20

Module6:

Capital structure and dividend decisions – Planning the capital structure. (No capital structure theories to be covered) Leverages – Determination of operating leverage, financial leverage and total leverage. Dividend policy – Factors affecting the dividend policy - dividend policies- stable dividend, stable payout. (No dividend theories to becovered).

Module7:

Emerging Issues in Financial management: Derivatives, Mergers and Acquisitions, Behavioural Finance, Financial Modelling, Financial engineering, risk management. (Theory Only).

RECOMMENDED BOOKS:

- 1. PrasannaChandra , Financial Management -, 8/e, TMH, 2011.
- 2. R K Sharma and Shashi K Gupta, Financial Management, Kalyani Publications-2012
- 3. Khan M. Y.& Jain P. K Financial Management, 6/e, TMH,2011.
- 4. Rajiv Srivastava and Anil Misra, Financial Management, Second edition,Oxford UniversityPress,2011
- 5. Vanhorne, James C, Financial Management & Policy-., 12/e, Pearson, 2002

REFERENCE BOOKS:

- 1. I M Pandey, Financial Management, Vikas Publications-2013
- 2. Brigham & Houston, Fundamentals of Financial Management, 10/e, Cengage Learning.
- 3. Damodaran, Corporate Finance, , 2/e, Wiley India (P) Ltd., 2004
- 4. Paresh P., Shah Financial Management, 2/e, Biztantra.
- 5. Sheeba Kapil, Fundamentals of FinancialManagement, Pearson, 2013

(8 Hours)

(4 Hours)

RESEARCH METHODS

SubjectCode	:14MBA23	IAMarks	50
No. of Lecture Hours/Week	: 04	Exam Hours	03
Total Number of Lecture Hours	: 56	Exam Marks	100
PracticalComponent	: 01 Hour /Week		

Objectives:

1. To provide an understanding on the basic concepts of researchmethods

2. To expose the students to the role that statistics plays in business decisions

Module1:

Business Research – Meaning, types, process of research- management problem, defining the research problem, formulating the research Hypothesis, developing the research proposals, research design formulation, sampling design, planning and collecting the data for research, data analysis and interpretation. Research Application in business decisions, Features of good research study.

Module2:

Types of Business Research Design: Exploratory and Conclusive Research Design

Exploratory Research: Meaning, purpose, methods –secondary resource analysis, comprehensive case methods, expert opinion survey, focus groupdiscussions.

Conclusive research Design - **Descriptive Research** - Meaning, Types – cross sectional studies and longitudinal studies. –

Experimental research design – Meaning and classification of experimental designs- Pre experimental design, Quasi-experimental design, True experimental design, statistical experimental design.

Observation Research – Meaning – Uses – Participation and Non-participation – Evaluation – Conducting an Observation study – Datacollection

Module3:

Sampling: Concepts- Types of Sampling - Probability Sampling – simple random sampling, systematic sampling, stratified random sampling, cluster sampling -Non Probability Sampling – convenience sampling- judgemental sampling, snowball sampling- quota sampling - Errors insampling.

Module4:

Data Collection: Primary and Secondary data

Primary data collection methods - Observations, survey, Interview and Questionnaire, Qualitative Techniques of data collection.

Questionnaire design – Meaning - process of designing questionnaire.

Secondary data -Sources – advantages and disadvantages

Measurement and Scaling Techniques: Basic measurement scales-Nominal scale, Ordinal scale, Interval scale, Ratio scale. Attitude measurement scale - Likert's Scale, Semantic Differential Scale, Thurstone scale, Multi-Dimensional Scaling.

(8 hours)

(6 hours)

(6 hours)

(6 hours)

Module5:

(8 hours)

Preparing the Data for Analysis: Editing, Coding, Classification, Tabulation, Validation Analysis and Interpretation

Module6:

(16 hours)

Hypothesis: Meaning, Types, characteristics, source, Formulation of Hypothesis, Errors in Hypothesis

Parametric and Non Parametric Test: T-Test, Z-Test, F-Test, U-Test, K-W Test (Theory Only)

Statistical Analysis: Bivarate Analysis (Chi-Square only), Multivariate Analysis (Theory Only)

ANOVA: One- Way and Two Way Classification. (Theory Only)

Module7:

(6 hours)

Report writing and presentation of results: Importance of report writing, types of research report, report structure, guidelines for effective documentation.

Practical Components:

- 1. Students are expected to write the research design on Exploratory and Descriptive Research.
- 2. Students are asked to prepare the questionnaire on brand awareness, effectiveness of training in public sector organization, Investors attitude towards Mutual funds in any financialinstitutions.
- 3. Students are asked to conduct Market survey to know the consumer perception towards anyFMCG.
- 4. Identify the problem and collect relevant literatures and data foranalysis
- 5. Data Interpretation and report writing: Short and Longreports.
- 6. Report presentation methods, ex: Power Point Presentation, etc

RECOMMENDED BOOKS

- 1. Research Methodology- C R Kothari, Vishwa Prakashan, 2002
- 2. Business Research Methods. Donald R. Cooper & Pamela s Schindler, TMH/9e/2007
- 3. Business Research Methods-SL Guptah and HeteshGuptha, McGraw hill -2012
- 4. Marketing Research- Naresh K Malhotrs- Pearson Education/PHI/5e/2007
- 5. Business Research Methodology J K Sachdeva –HPH-2e-2011

REFERENCE BOOKS

- 1. Research Methods- William M C Trochi,- Biztantra, 2/e,2007
- 2. Methodology of Research in social Sciences- O R Krishnaswami, M Ranganatham, HPH,2007
- 3. Research Methodology concepts and cases Deepak Chawla and NeenaSondhi Vikas Publication -2011
- 4. Research Methodology C Murthy- Vrinda Publication -2011

STRATEGIC MANAGEMENT

Subject Code	: 14MBA25	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To explain core concepts in strategic management and provide examples of their relevance and use by actual companies
- 2. To focus on what every student needs to know about formulating, implementing and executing business strategies in today's marketenvironments
- 3. To teach the subject using value-adding cases that features interesting products and companies, illustrate the important kinds of strategic challenges managers face, embrace valuable teaching points and spark student'sinterest.

ModuleI

Meaning and Nature of Strategic Management, its importance and relevance. Characteristics of Strategic Management. The Strategic Management Process. Relationship between a Company's Strategy and its Business Model.

ModuleII

(8 Hours)

(8 Hours)

Strategy Formulation – Developing Strategic Vision and Mission for a Company – Setting Objectives – Strategic Objectives and Financial Objectives – Balanced Scorecard.Company Goals and Company Philosophy.The hierarchy of Strategic Intent – Merging the Strategic Vision, Objectives and Strategy into a Strategic Plan.

ModuleIII

Analyzing a Company's External Environment – The Strategically relevant components of a Company's External Environment – Industry Analysis – Industry Analysis – Porter's dominant economic features – Competitive Environment Analysis – Porter's Five Forces model – Industry diving forces – Key Success Factors – concept and implementation.

ModuleIV

Analyzing a company's resources and competitive position – Analysis of a Company's present strategies – SWOT analysis – Value Chain Analysis – Benchmarking

Generic Competitive Strategies – Low cost provider Strategy – Differentiation Strategy – Best cost provider Strategy – Focused Strategy – Strategic Alliances and Collaborative Partnerships – Mergers and Acquisition Strategies – Outsourcing Strategies –International Business levelStrategies.

ModuleV

Business Planning in different environments – Entrepreneurial Level Business planning – Multi stage wealth creation model for entrepreneurs– Planning for large and diversified companies – brief overview of Innovation, integration, Diversification, Turnaround Strategies - GE nine cell planning grid and BCG matrix.

(7Hours)

(8Hours)

23

(7 Hours)

\ModuleVI

(10 Hours)

Strategy Implementation – Operationalizing strategy, Annual Objectives, Developing Functional Strategies, Developing and communicating concise policies. Institutionalizing the strategy.Strategy, Leadership and Culture.Ethical Process and Corporate SocialResponsibility.

ModuleVII

(8 Hours)

Strategic Control, guiding and evaluating strategies.Establishing Strategic Controls.Operational Control Systems. Monitoring performance and evaluating deviations, challenges of Strategy Implementation. Role of Corporate Governance

Practical Components:

- Business Plan: Students should be asked to prepare a Business Plan and present it at the end of the semester. This should include the following:
 - ExecutiveSummary
 - Overview of Business and industryanalysis
 - Description of recommended strategy and justification
 - Broad functional objectives and Key ResultAreas.
 - Spreadsheet with 5-year P&L, Balance Sheet, CashFlow projections, with detailed worksheets for the revenue and expensesforecasts.
- Analysing Mission and Vision statements of a few companies and comparingthem
- ApplyingMichaelPorter'smodeltoanindustry(Retail,Telecom, Infrastructure, FMCG, Insurance, Banking etc
 - Pick a successful growing company. Do a web-search of all news related to that company over a one-year period. Analyse the news items to understand and write down the company's strategy and executionefficiency.
- Pick a company that has performed very badly compared to its competitors. Collect information on why the company failed. What were the issues in strategy and execution that were responsible for the company's failure in the market.Analyse the internal and external factors
- oMap out GE 9-cell matrix and BCG matrix for some companies and comparethem
- · Conduct SWOT analysis of your institution and validate it by discussing withfaculty
- · Conduct SWOT analysis of companies around your campus by talking to them

RECOMMENDED BOOKS:

- 1. Crafting and Executing Strategy, Arthur A. Thompson Jr., AJ Strickland III, John E Gamble, 18/e, Tata McGraw Hill,2012.
- 2. Strategic Management, Alex Miller, Irwin McGrawHill
- 3. Strategic Management Analysis, Implementation, Control, Nag A, 1/e, Vikas, 2011.
- 4. Strategic Management An Integrated Approach, Charles W. L. Hill, Gareth R. Jones, CengageLearning.
- 5. Business Policy and Strategic Management, Subba Rao P,HPH.
- 6. Strategic Management, Kachru U, Excel BOOKS,2009.

REFERENCE BOOKS:

- 1. Strategic Management: Concepts and Cases, David R, 13/e, PHI.
- 2. Strategic Management: Building and Sustaining Competitive Advantage, Robert A. Pitts & David Lei, 4/e, CengageLearning.
- 3. Competitive Advantage, Michael E Porter, Free PressNY
- 4. Essentials of Strategic Management, Hunger, J. David, 5/e, Pearson.
- 5. Strategic Management, SarojDatta, jaico Publishing House, 2011.
- 6. Business Environment for Strategic Management, Ashwathappa, HPH.
- 7. Contemporary Strategic Management, Grant, 6/e, 2012, WileyIndia.
- 8. Strategic Management-The Indian Context, R. Srinivasan, PHI

and

CONSUMER BEHAVIOUR

Subject Code	: 14MBA MM301	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To understand the concept of consumer behavior, decision making by consumers, behavior variables and influences on consumerbehavior.
- 2. To comprehend the social and cultural dimensions of consumer behavior, factors impacting attitudes and behavior.
- 3. To arm the budding marketers with an insight of the psychological and behavioral concepts of consumers thus enabling them to achieve their objectives and excel.

Module1:

Introduction to the study of Consumer Behaviour: Meaning & Definition of CB, Difference between consumer & Customer, Nature & characteristics of Indian Consumers, Consumer Movement in India, Rights & Responsibilities of consumers in India, Benefits of consumerism.

Module2:

Role of Research in understanding consumer behaviour: Consumer Research: Consumer Research Paradigms (Qualitative & Quantitative Research Methods) Developing research objectives, collecting secondary data, designing primary research, data analysis and reporting research findings.

Models of Consumer Behaviour: Input-Process-Output Model, *Nicosia Model, Howard Sheth Model*, Engel-Kollat-Blackwell *Models* of Consumer Behaviour, Internal Influences: Motivation, Personality, Perception, Learning, Attitude, Communications, External Influences: Social Class, Culture, REFERENCE Groups, Family members.

Levels of Consumer Decision Making – Consumer Buying Decision Process, Complex Decision Making or Extensive Problem Solving Model, Low Involvement Decision Making or Limited Problem Solving Model, Routinised Response Behaviour, Four views of consumer decision making. On-line Decision Making: Meaning &Process/Stages

Situational Influences- Nature of Situational Influence (The communication Situation, The Purchase Situation, The usage situation, The disposition situation) Situational Characteristics and consumption behaviour (Physical features, Social Surroundings, Temporal Perspectives, Task Definition, Antecedent States.)

Module3:

Individual Influences on Consumer Behaviour and CRM: Part 1

A) Motivation: Basics of Motivation, Needs, Goals, Positive & Negative Motivation, Rational Vs Emotional motives, Motivation Process, Arousal of motives, Selection of goals.

Motivation Theories and Marketing Strategy - Maslow's Hierarchy of Needs, McGuire's Psychological Motives (Cognitive Preservation Motives, Cognitive Growth Motives, Affective Preservation Motives, Affective Growth Motives).

B) Personality: Basics of Personality, Theories of Personality and Marketing Strategy(Freudian Theory, Neo-Freudian Theory, Trait Theory), Applications of Personality concepts in Marketing, Personality and understanding consumer diversity(Consumer Innovativeness and related personality traits, Cognitive personality factors, Consumer Materialism, Consumer Ethnocentrisms), Brand Personality (Brand Personification, Gender,

(8 Hours)

(4 Hours)

(10 Hours)

Geography, Colour), Self and Self-Image (One or Multiple selves, The extended self, Altering theself).

C) Perception: Basics of Perception & Marketing implications, Elements of Perception(Sensation, Absolute Threshold, Differential Threshold, Subliminal Perception), Dynamics of Perception (Perceptual Selection, Perceptual Interpretation, Perceptual Organization ,perceived price, perceived quality, price/quality relationship, Perceived Risk, Types of risk, How consumers' handle risk.

Customer RelationshipManagement

Meaning & Significance of CRM, Types of CRM (Operational, Collaborative, Analytical), Strategies for building relationship marketing, e-CRM, Meaning, Importance of e-CRM, Difference Between CRM &e-CRM

Module4:

Individual Influences on Consumer Behaviour: Part 2

A) Learning: Elements of Consumer Learning, Motivation, Cues, Response, Reinforcement, Marketing Applications of Behavioural Learning Theories, Classical Conditioning Pavlovian Model, Neo-Pavlovian Model), Instrumental Conditioning, Elaboration LikelihoodModel.

B) Attitude: Basics of attitude, the nature of attitude, Models of Attitude and Marketing Implication, (Tri-component Model of attitude, Multi attribute attitudemodels.

C) Persuasive Communication: Communications strategy, Target Audience, Media Strategy, Message strategies, Message structure and presentation.

Module5:

External Influences on Consumer Behaviour: Part 1

A) Social Class: Social Class Basics, What is Social Class? (Social class & Social status, the dynamics of status consumption, Features of Social Class, Five Social-Class Categories in India

B) Culture and Subculture - Major Focus on IndianPerspective

Culture: Basics, Meaning, Characteristics, Factors affecting culture, Role of customs, values and beliefs in Consumer Behaviour.

Subculture: Meaning, Subculture division and consumption pattern in India,

Types of subcultures (Nationality subcultures, Religious subcultures, Geographic and regional subcultures, racial subcultures, age subcultures, sex as asubculture)

Cross-cultural consumer analysis: Similarities and differences among people, the growing global middle class; Acculturation is a needed marketing viewpoint, applying research techniques Cross-cultural marketing strategy: Cross-cultural marketing problems in India, Strategies to overcome cross-cultural problems.

Module6:

External Influences on Consumer Behaviour: Part 2

Groups: Meaning and Nature of Groups, Types

(07 Hours)

(08 Hours)

(07 Hours)

Family: The changing structure of family, Family decision making and consumption related roles, Key family consumption roles, Dynamics of husband-wife decision making, The expanding role of children in family decision making, The family life cycle & marketing strategy, Traditional family life cycle & marketing implications, Reference Groups: Understanding the power & benefits of reference groups, A broadened perspective on reference groups, Factors that affect reference group influence, Types of reference groups, Friendship groups, Shopping groups, Work groups, Virtual groups, Consumer-action groups, reference group appeals, Celebrities.

Module7:

Consumer Influence and Diffusion of Innovations

Opinion Leadership: Dynamics of opinion leadership process, Measurement of opinion leadership, Market Mavens, Opinion Leadership & Marketing Strategy, Creation of Opinion Leaders

Diffusion of Innovations: Diffusion Process (Innovation, Communication channels, Social System, Time) Adoption Process: Stages, categories of adopters

Post Purchase Processes: Post Purchase Processes, Customer Satisfaction, and customer commitment: Post purchase dissonance, Product use and non use, Disposition, Product disposition.

Case studies in Indiancontextonly

(04 Hours)

(08 Hours)

PracticalComponent:

- 1. Students can go to malls and unorganized retail outlets and observe the behavior of consumers of different demographic segments while buying different category of goods. Come back to class and present the findings / observations followed with a groupdiscussion.
- 2. Students can prepare a questionnaire and do a survey on consumer buying behavior and present the findings in the lass.
- 3. Find three advertisements that appeal to the need for power, affiliation and achievement and discuss their effectiveness. Rewrite these for persons in different levels of Maslow'sHierarchy?
- 4. Meet your friends and conduct a survey to find what are the important factors in their purchase of mobiles, shoes, bags etc. There are now plenty of advertisements regarding most products how do they deal with this information verload?

RECOMMENDED BOOKS:

- 1. Consumer Behavior Leon Schiff man, LesslieKanuk, 10/e, Pearson, 2010.
- 2. Consumer Behavior: Building Marketing Strategy Del I. Hawkins, & Others, 11/e TMH.
- 3. Consumer behavior Jay D. Lindquist, Joseph Sirgy, 1/e, CengageLearning.
- 4. Consumer behavior David L. Louden, Della Bitta, 4/e, McGrawHill.
- 5. Consumer Behavior Raju M. S & Dominique Xardel, Vikas PublishingHouse.

REFERENCE BOOKS:

- 1. Consumer Behavior Henry Asseal, CenageLearning.
- 2. Consumer Behavior in Indian Perspective Suja Nair, HimalayaPublications
- 3. Customer Behavior: A Managerial Perspective Sheth, Mittal, CengageLearning.
- 4. Consumer Behavior- Satish K. Batra& S H HKazmi, ExcelBOOKS.
- 5. CRM Alok Kumar, Chhabi Sinha, 7/e,Biztantra.
- 6. Customer Relationship Management Peru Ahamed&Sagadevan, VikasPublishing.
- 7. Consumer Behavior Kumar Rajeev, HimalayaPublisher.

MARKETING RESEARCH

Subject Code	: 14MBA MM303	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives of the course:

- 1. To provide an understanding of the basics of marketing research and to build a research vocabulary, key terms and ideas.
- 2. To provide a balance of the theoretical and practical aspects of marketing research and encourage the students to take up analytical and critical thinking through research.
- 3. To highlight importance of research inmanagement

Module1:

Introduction: Meaning, scope and importance of marketing research; own vs. agency marketing research; marketing information system; meaning, need and components, marketing information system and marketing research; marketing research process-I an overview; problem definition, formulation and preparation of research proposal.

Module2:

Primary Data Collection: Primary data collection methods; mail survey, telephone survey and interviews and their evaluation; observations; experimental methods, questionnaire preparation and administering, organizing fieldwork for collecting data.

Module3:

Research Design and Information Sources: Meaning and scope of research design; types of research designs, exploratory, descriptive and conclusive; sources and uses of secondary data, collection of secondary data.

Module4:

Sample Design and Sampling: Determining universe, sampling frame and sampling unit; determining sampling method; non probability and probability methods; sample size determination; sampling errors vs. non-sampling errors.

Sampling: Steps & Types: Probability / non probability (simple, systematize; stratified proportionate, disproportionate), Sample size determination

Module5:

Questionnaire design:-Steps in Q.D. with examples for each step. Rating Scales, Juster, Likert, Semantic Differential, Thurston, Attitude Scales, Scales for illiterate respondents

Module6:

Measurement Techniques: Nominal Scale, Ordinal Scale, Interval Scale, Ratio Scale; Scale Types: Comparative Scaling, Non-comparative Scaling; Attitude Measurement, Self-Reporting Methods, Methods for Rating Attributes, Data Analysis, Customer Research, Advertising Research, Product Research, Distribution Research, Sales Research, Marketing Environment Research, Internet Marketing Research, and International Marketing Research

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

Module7:

Research trends, Behavioural Science Based Approach, Economic and Competitive Pressures, Consumer Insight Groups, Quantifying Emotions, Impact of the Social Media, Doit-Yourself (DIY) Research; Research ethics, typical research errors, Research andculture;

Practical Components:

- 1. Choose 5 successful products or services and identify the insight behind them through a fieldsurvey.
- 2. Do a comprehensive essay on the difference between consumer vs. trade vs. competition insights & how best to exploit hem.
- 3. Take 5 recent digital innovations e.g. twitter or face book and identify the insights. Locate 5 non-users of search or mail and Interview their reasons.
- 4. Choose 5 recent successful campaigns and identify their insights through consumer interviews. Present your findings to the class
- 5. Choose 3 successful movies e.g. Dabang&Zindaginamilegi& My name is Khan--- and interview consumers about the reasons for their success. Similarly repeat this with 3 recent expensive flop movies and Present your findings to theclass

RECOMMENDED BOOKS:

- 1. Marketing Research contemporary approach- Naraynreddy and GVRK Acharyalu Excelpublications
- 2. Marketing Research and consumer Behavior Saravanavel et.al Vikas publishinghouse
- 3. Essentials of Marketing Research 4/e, Tony Proctor, PHI,2005
- 4. Essentials of Marketing Research William G. Zikmund et.al. 4/e, Cengage Learning, 2010.
- 5. Research Skills for Students: Transferable and Learning Skills Allison, et.al.1996.
- 6. Market Research Robin Birn, Patrick Forsyth, John Wiley and Sons Inc.2002.

REFERENCE BOOKS:

- 1. Market Research: a guide to planning, methodology & evaluation Paul Hague, Kogan Page,1996.
- 2. Market Research Best Practice. 30 Visions of the Future Peter Mouncey, et.al, 2007.

INDUSTRIAL RELATIONS AND LEGISLATIONS

Subject Code	: 14MBA HR301	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To enable students to grasp and apply the principles of IR and develop an awareness of the significance of industrial peace.
- 2. To provide a conceptual basis of IndustrialRelations.
- 3. To give an understanding of the components and meaning of sustaining Industrial peace anchored on harmonious Employee-Managementrelations.

PART A: INDUSTRIAL RELATIONS MODULE1: Introduction:

Background of Industrial Relations – Definition, scope, objectives, factors affecting IR, participants of IR, importance of IR. Approaches to Industrial relations, system of IR in India – Historical perspective &post independence period, Code of Discipline and historical initiatives for harmonious IR, Government policies relating to labor, ILO and its influence on Legal enactments inIndia.

MODULE2:

Collective Bargaining & Negotiation:

Collective Bargaining: Definition, Meaning, Nature, essential conditions for the success of collective bargaining, functions of collective bargaining, importance of Collective Bargaining, collective bargaining process, prerequisites for collective bargaining, implementation and administration of agreements.

Negotiations-Types of Negotiations-Problem solving attitude, Techniques of negotiation, negotiation process, essential skills for negotiation, Workers Participation in Management

Module3:

Trade Union

Trade Unions: Meaning, trade union movement in India, The role of the Trade Unions in Modern Industrial Society of India, functions of trade unions, objectives of important trade unions, The Trade Union Act, 1926, procedure for registration of Trade Union, Grounds for the withdrawal and cancellation of registration, union structure, Rights and responsibilities, Penalties for offences of trade unions, Difference between a registered and a recognised Trade Union, problems of trade unions, future trends of trade union movement inIndia.

Module4:

Grievance procedure and Discipline management:

Grievance - Meaning and forms, sources of grievance, approaches to grievance machinery, Grievance procedures, model grievance procedure.

(8 Hours)

(8 hours)

(8 Hours)

(8 Hours)

Discipline - Causes of Indiscipline - Maintenance of discipline. Principles of Natural Justice, Judicial approach to discipline, Domestic enquiries, Disciplinary procedures, approaches to manage discipline in Industry, Principles of Hot stove rule.

Module5:

Industrial Conflicts:

Industrial conflict – perspectives, Nature of conflicts and its manifestations causes and types of Industrial conflicts, prevention of Industrial conflicts, industrial disputes act of 1947, settlement Machinery of Industrial disputes.

Paradigm shift from industrial relations to employee relations – shift in focus, difference, employee relations management at work, culture and employee relations, future of employee relations.

RECOMMENDED BOOKS:

- 1. Employee Relations Management P N Singh, Singh P. N., PearsonPublications
- 2. Dynamics of Industrial Relations Mamoria&Mamoria,
- 3. Human Resource Management, Principles & Practice Aquinas, VikasPublication
- 4. Personnel Management & Industrial Relations Nair
- 5. Essentials of Human Resource Management and Industrial Relations Subba Rao 3rd Revisededition
- 6. Malhotra, O.P. : The Law of IndustrialDisputes
- 7. Arya, V.P. : A Guide to Settlement of IndustrialDisputes
- 8. Aggarwal, Dr. Arjun P. and Larki, H. : Gherao and Industrial Relations, Trade Unionism in the NewSociety
- 9. Aggarwal, S.L. : Labour Relations Law inIndia

PART B: INDUSTRIAL LEGISLATIONS (16 hours)

- Factories Act1948,
- Industrial Employment (Standing orders) Act,1946
- Employees' State Insurance (ESI) Act,1948,
- Maternity benefit Act, 1961
- Workmen's compensation Act,1923
- Payment of Gratuity Act1972,
- Employees' Provident Fund and Miscellaneous Provisions Act1952;
- Payment of Bonus Act, 1965.
- Payment of Wages Act,1936,
- Child Labour (Prohibition & Regulation) Act,1986

RECOMMENDED BOOKS:

- 1. Labor Laws for Managers, BD Singh, ExcelBOOKS
- 2. Industrial Relations and Labor laws, 5th Edition, SC Srivastava, VikasPublications
- 3. Elements of Mercantile Law N. DKapoor
- 4. Labor Industrial Laws Dr. V. G. Goswami , EighthEdition
- 5. P R N Sinha et al Industrial Relations, Trade Unions &Labour Legislation, Pearson Education
- 6. Bareacts

(8 Hours)

RECRUITMENT & SELECTION

SubjectCode	:14MBAHR302	IAMarks	50
No. of Lecture Hours/Week	: 04	Exam Hours	03
Total Number ofLectureHours	: 56	Exam Marks	100
PracticalComponent	: 01 Hour /Week		

Module1:

Job Analysis: Meaning, definition and purpose. Methods of job analysis: job analysis interviews, job analysis questionnaire, task analysis inventory, position analysis questionnaire, subject expert workshops, critical incident technique, Fleisclunann job analysis survey, functional job analysis, job element method, repertory grid, critical incident technique

Module2:

Hiring Process & Hiring decision: Nature of hiring: regular, temporary, full time, part time, apprentice, contractual, and outsourcing, Existing post or new post to be created, Need analysis, cost analysis and job analysis.

Module3:

Hiring internally: Meaning and definition of internal recruitment, Advantages and disadvantages in terms of cost, time, quality and suitability.

Sources of internal recruitment: - circulars, intranet advertisements, employee referrals, Appointment or promotion, Policy guidelines and union settlements.

Module4:

External Hiring: Meaning and definition of external recruitment.

Sources of recruitment:- advertisement, in newspaper, TV/Radio, Internet, search on the internet, wanted signboards, consultants, employment exchange, campus recruitment, employee referrals and unsolicited applications. Advantages and disadvantages of the above sources in terms of cost, time, convenience, reach of the targeted population, and quality of applicant pool.

Job advertisement: drafting, size and contents. Contents of public sector recruitment: single or multiple sources and choosing the best source

Module5:

(8 Hours) Screening the candidates: Application Forms: bio-data / resume / curriculum vitae and weighted application blanks: meaning definition, purpose, advantages and disadvantages taking a Behavioural approach to recruitment: spotting personality patterns, making basic assumptions, predicting the future, strategy Vs. Technique, Pinning down what is needed: targeted interviewing, focusing on behaviour, assessing how person performs, assuming they have been hired. - Identifying the ingredients of success: the winning candidate"s profile, challenges in the interview, the starting point, day to day execution, dealing with people, the inner person, additional characteristics. Studying the CV.

Module6:

Testing: Meaning, definition, purpose, advantages and disadvantages, Ability tests clerical ability test, mechanical ability test, mental ability test, physical ability test, personality assessment test, typing test, shorthand test, computer proficiency test

(10 Hours)

(8 Hours)

(6 Hours)

(7 Hours)

(9 Hours)

Interviewing: Planning the interview, Interview process - getting started, examining the 5 interview areas, examining the strengths & weaknesses, listening to what are being said, digging for Behavioural gold, probing for specifics, spotting patterns, using an interview checklist, Allowing candidates to ask questions at the end, explaining the procedure of selection and concluding with a happy note, making the decision. Interview in public sector undertaking, statutory requirements.

Module7:

(8 Hours)

Reference checking & Appointment orders: meaning, definition and purpose. Verification of character, criminal antecedents, previous work behavior and education qualifications. Verification of community certificates in public sector companies

Meaning, definition, and purpose.Statutory requirements (under the Shops and commercial establishments Act).Contents of appointment letter, hard copy (or soft copy), method of delivery and retrieving the acknowledgement copy.Medical Examination & acceptance of offer for joining.

Practical Component:

1. Students need to identify two jobs in the college and need to do job analysis for those positions using any of the job analysismethods.

2. In teams students can be asked to give presentations about various types of jobs (regular, temporary, full time, part time, apprentice, contractual, and outsourcing) in different industries along with its advantages and disadvantages

3. In Teams, select and analyze any two of the Job postings advertisements in Newspapers to know more about job description and job specification mentioned in each advertisement for everypost.

4.Obtain online access to the resume data base of Naukri.com or Monsterindia.com for a week give at least four Job Descriptions and specification to each student, to search and download from the data base at least five resumes for eachpositions.

5. Students can identify 4 or 5 jobs of their interest and can create Advertisements for the same imaging that they are Proprietors of the companies and hiring for these positions.

6. Debate on Advantages and disadvantages of hiring external and Internal for the selected jobs like Police Constable, Doctor, CEO, Mechanical Engineer, Professoretc.,

7. Role play : Students can do the role play for the entire process of hiring and selecting 3 or 4 selected roles in a specificindustry.

RECOMMENDED BOOKS:

- 1. Human Resource Selection by Robert D. Gatewood and Hubert S. Feild, South western Cengage Learning, Mason, Ohio2001
- 2. Staffing Organization, Herbert G. Heneman III, Timothy A. Judge, 5th Edition, McGraw HillInternational

REFERENCE BOOKS:

- 1. Employee Selection, Lilly M Berry, ThomsonPublications
- 2. Hiring & keeping the best people, HBSPress
- 3. Human Resource Planning, Dipak Kumar Bhattacharyya, 2nd edition, ExcelBOOKS.
- 4. High performance hiring by Robert w. Wendover, Crisp Publication, California, 1991.

PUBLIC RELATIONS

Subject Code	: 14MBA HR407	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objective:

To provide an understanding of the fundamentals tools of public relations practice and to provide a multidisciplinary understanding of the emerging trends in the field of public relations

Module1:

What is Public Relation? – Proactive and Reactive Approaches – Public Relations Process – Behavoiural Public Relations Model – Persuasion Model – Two way symmetrical Communications Model – When communications is not enough – 20 great truths about PublicRelations

Module2:

Theoretical basis for Public Relations – Theories of Relationships – Systems Theory – situational Theory – Theories of Persuasion and Social Influence – Social Exchange Theory – Diffusion Theory – Social Learning Theory – Elaborated Likelihood Theory - Theories of Mass communication – Uses and Gratification Theory – Agenda Setting Theory – Public Relations roles – Models of Public Relations – Approaches to Conflict Resolutions

Module3:

Employee communications – Role of employee communication – concept of Organizational culture – Establishing Communication Policy – Organizational change – Importance of employee communication – Special employee Communication Situations – Media of Employee communications – Objectives of Internal media – Starting internal media – controlling internal media- Occasional and Special media

Rules of Effective Employee Relations. Frontline supervisors as the key communicators Case: Investing in Employees Pays Off (CJSS)

Case: Southwest Airlines - Where Fun, LUV, and Profit Go Hand -in Hand (CJSS)

Case: Employee Retention: It is the employer who is on probation (LLHT)

Case: Maintaining Employee Relationship in a Tragedy (LLHT)

Kodak Communicates One – on - One with All of its Employees (CJSS)

Module4:

Community Relations – Importance of Public Relations – Community Relations Process – Guidelines for Effective Relations Programs -Specific Functions of Public Relations – Criteria for Community relations Activities – Corporate Social Responsibility & Philanthropy-Emerging Challenge of CommunityActivism

Case: Community Relationships Maintained During Hospital Closing (CJSS)

° (8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

Module5:

Media Relations – Media Relations –Role of Media in Public Relations – Social Media – working with the media –Media Relations Program Elements –Role of Technology in Public Relations Case: Fatal Tiger Attack at San Francisco Zoo(LLHT) Case: There's a Syringe in My Pepsi Can(CJSS)

Module6:

Issues in Public Relations – public relations challenges –Types of Issues - Target audiences-Public Service as Preventive Public Relations – Special Interests – Importance of Compromise – Issue Anticipation – Scenario Technique Case: Take your choice – Tobacco or Health (CJSS)

Module7:

Crisis Management – Understanding how people typically react to issues – Human Nature – Role of communications – Types of crises – News media influence - Fundamental guidelines Case: Bhopal – A Nightmare for Union Carbide (CJSS Case: Sir Ganga Ram Hospital – Disaster management Plan (IS))

Pedagogy: Lecture+ Case Studies + Seminars. Faculty should bring latest issues concerning public relations in class discussions.

Practical Component:

1. Related cases for each module to be discussed in the classes and presentation can be done for each case by group ofstudents.

2. Team of students can be made and asked to report the media personalities about the event held in the college. Different styles of reporting the same event can be discussed in the class with its possible reactions from themedia.

3. Collect the newspaper articles about various messages from organizations through spokespersons and analyze the effect of each type of delivery and impact on theaudience.

4. Conduct a CSR Programme for the college like Blood donation, Eye camps in association with Lions, Rotary clubs etc and gather the information's about various challenges these organizations face during such community orientedprogrammes.

RECOMMENDED BOOKS

- 1. Lattimore, Laskin, Heiman &Toth, "Public Relations The Profession and Practice", third edition, Tata McGraw Hill, 2012(LLHT)
- 2. Center, Jackson, Smith and Stansbury, "Public Relations Practices Managerial Case Studies and Problems", Seventh Edition, Prentice Hall of India,2008(CJSS)
- 3. Iqbal Sachdeva, "Public Relations Principles and Practices, Oxford University Press, 2009(IS)

(8 Hours)

(8 Hours)

WORKPLACE ETHICS AND VALUE SYSTEMS

Subject Code	: 14MBA HR408	IA Marks	: 50
No. of Lecture Hours / Week	: 04	Exam Hours	: 03
Total Number of Lecture Hours	: 56	Exam Marks	: 100
Practical Component	: 01 Hour / Week		

Objectives:

- 1. To make students understand the meaning of good ethics, doing things right and the obstacles to making good ethical decisions
- 2. To enable students to identify and critically assess the principles and values they personally embrace and use in addressing the ethical issues which arise in their workinglives.
- 3. To acquaint students with some of the major kinds of ethical problems encountered while performing work assignments and some possible ways of responding tothem.

Module1:

Workplace Ethics: Introduction, Needs, Principals, Development of Personal Ethics, Workplace Ethics for Employees-Ethical behaviour in workplace- Professionalism, Ethical violations by employees, Employee Attitude and Ethics, Employee Etiquettes. Benefits of ethics in Workplace- employee commitment, investor loyalty, customer satisfaction, profits

Module2:

Conducting Professionalism at Workplace: Unethical Conduct for employees and employers.Factors leading to Unethical Behaviours.Different unethical behaviours.Measures to control unethical behaviours. Rewarding ethicalbehaviour

Module3:

Business Ethics and Corporate Governance: Overview of Business Ethics, Corporate Governance, Ethical issues in human resource management- The principal of ethical hiring, Firing, worker safety, whistle blowing, Equality of opportunity, Discrimination, Ethics and remuneration, Ethics in retrenchment. Ethical Dilemmas at workplace, Ethical issues in global business, corporate responsibility of employers.

Module4:

Workplace Privacy & Ethics: Watching what you say and what you do in the workplace, Hardware, Software and Spyware, Plagiarism and Computer Crimes, Convenience and Death of Privacy, Defence of employee privacy rights.

Module5:

Teamwork in the Workplace & Ethics: Teams, Elements of team, Stages of team development, team meetings, team rules, and teams work and professional responsibility, rules of professional responsibility, ASME code of ethics.

Module6:

Managing Change in Workplace through Ethics: Introduction to Change Management, Models of change, the Ethics of Managing Change, the role of ethics and responsibilities in

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

(8 Hours)

(10 Hours)

leading innovation and change, ethics based model for change management, ethics and risks of change management

Module7:

(6 Hours)

Ethics, Discrimination and Harassment at Workplace: Discrimination, sexual harassment, Creating awareness about workplace harassment, Vishaka Dutta vs. State of Rajasthan – Supreme Court directions. Compulsory workplace guidelines.

Practical Components:

- 1. To solve case studies on WorkplaceEthics
- 2. To visit organizations and find out the problems and causes for unethical behavior at workplace.
- 3. To visit organizations and find out the measures adopted to control unethical behavior of employees.
- 4. To compare and contrast the various ethical codes of conduct practiced in organizations.
- 5. To study the recent cases on breach of workplaceprivacy.

RECOMMENDED BOOKS:

- 1. Ethical Theory and Business, 8th Edition, Tom L. Beauchamp, Norman E. Bowie and DenisArnold
- 2. Business Ethics, 9th Edition, O.C. Ferrell, John Fraedrich, and Linda Ferrell, Cengage Learning.
- 3. How technology is compromising Workplace Privacy, Fredrick S Lane 111, AMACOM Div American Mgmt Assn,2003
- 4. Ethics in the Workplace, Dean Bredeson, Keith Goree, Cengage Learning, 2011.
- 5. Ethics in 21st Century, Mary Alice Trent, Oral Roberts University, Longman.
- 6. Ethics in workplace, Elizabeth P Tierney, Oak treepress
- 7. Ethics in Workplace: System Perspective, William F Roth, Pearson, 2014.

CONCRETE TECHNOLOGY (COMMON TO CV/TR/CTM)

Sub Code	:	10 CV 42	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	÷	03
Total Hrs.	:	52	Exam Marks	:	100

$\mathbf{PART} - \mathbf{A}$

Unit-1

Cement, Chemical composition, hydration of cement, Types of cement, manufacture of OPC by wet and dry, process (flow charts only) Testing of cement - Field testing, Fineness by sieve test and Blaine's air permeability test, Normal consistency, testing time, soundness, Compression strength of cement and grades of cement, Quality of mixing water. -7 Hours Unit-2

Fine aggregate - grading, analysis, Specify gravity, bulking, moisture content, deleterious materials. Coarse aggregate – Importance of size, shape and texture.Grading of aggregates - Sieve analysis, specific gravity, Flakiness and elongation index, crushing, impact and abrasion tests. - 6 Hours **Unit-3**

Workability - factors affecting workability, Measurement of workability slump, flow tests, Compaction factor and vee-bee consistometer tests, Segregation and bleeding, Process of manufactures of concrete : Batching, Mixing, Transporting, Placing, Compaction, Curing. -7 Hours **Unit-4**

Chemical admixtures - plasticizers, accelerators, retarders and air entraining agents, Mineral admixtures - Fly ash, Silica fumes and rice husk ash.

-6 Hours

Part-B

Unit-5

Factors affecting strength, w/c ratio, gel/space ratio, maturity concept, Effect of aggregate properties, relation between compressive strength, and tensile strength, bond strength, modulus of rupture, Accelerated curing, aggregate - cement bond strength, Testing of hardened concrete - compressive strength, split tensile strength, Flexural strength, factors influencing strength test results. - 6Hours

Unit-6

Elasticity - Relation between modulus of elasticity and Strength, factors affecting modulus of elasticity, Poisson , Ratio, Shrinkage - plastic shrinkage and drying shrinkage, Factors affecting shrinkage, Creep - Measurement of creep, factors affecting creep, effect of creep, -7 Hours

Unit-7

Durability - definition, significance, permeability, Sulphate attack, Chloride attack, carbonation, freezing and thawing, Factors contributing to cracks in concrete - plastic shrinkage, settlement cracks, construction joints, Thermal expansion, transition zone, structural design deficiencies, - 6 Hours **Unit-8**

Concept of Concrete Mix design, variables in proportioning, exposure conditions, Procedure of mix design as per IS 10262-1982, Numerical examples of Mix Design -7 Hours

TEXT BOOKS:

1. "Concrete Technology" - Theory and Practice, M.S.Shetty, S.Chand and Company, New Delhi, 2002.

REFERENCES :

1. "Properties of Concrete"Neville, A.M.:, ELBS, London

2. "Concrete Technology" – A.R.Santakumar. Oxford University Press (2007)'

3. "Concrete Manual" - Gambhir Dhanpat Rai & Sons, New Delhi.

4. "Concrete Mix Design" - N.Krishna Raju, Sehgal - publishers.

5. "Recommended guidelines for concrete mix design" - IS:10262,BIS Publication

STRUCTURAL ANALYSIS –I (COMMON TO CV/TR)

Sub Code	:	10 CV 43	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

STRUCTURAL SYSTEMS AND ENERGY CONCEPT

1.1 Forms of structures, 1.2 Conditions of equilibrium, 1.3 Degree of freedom, 1.4 Linear and Non linear structures, 1.5 One, two, three dimensional structural systems, 1.6 Determinate and indeterminate structures [Static and Kinematics]. 1.7 Strain energy and complimentary strain energy, 1.8 Strain energy due to axial load, bending and shear, 1.9 Theorem of minimum potential energy, 1.10 Law of conservation of energy, 1.11 Principle of virtual work,

UNIT 2: DEFLECTION OF BEAMS

2.1 Moment area method, 2.2 Conjugate beam method

UNIT 3:

DEFLECTION OF BEAMS AND FRAMES BY STRAIN ENERGY

3.1 The first and second theorem of Castigliano, problems on beams, frames and trusses, 3.2 Betti's law, 3.3 Clarke - Maxwell's theorem of reciprocal deflection.

7 Hours

UNIT 4:

ANALYSIS OF BEAMS AND PLANE TRUSSES BY STRAIN ENERGY

4.1 Analysis of beams (Propped cantilever and Fixed beams) and trusses using strain energy and unit load methods

7 Hours

7 Hours

6 Hours

PART – B

UNIT 5: ARCHES AND CABLES

5.1 Three hinged circular and parabolic arches with supports at same levels and different levels, 5.2 Determination of thrust, shear and bending moment, 5.3 Analysis of cables under point loads and UDL, length of cables (Supports at same levels and at different levels).

6 Hours

UNIT 6: ANALYSIS OF BEAMS

6.1 Consistent deformation method - Propped cantilever and fixed beams

6 Hours

UNIT 7:

7.1 Clapeyron's theorem of three moments - continuous beams and fixed beams

6 Hours

UNIT 8:

ANALYSIS OF ARCHES

8.1 Two hinged parabolic arch, 8.2 Two hinged Circular Arch

7 Hours

TEXT BOOKS:

- 1. Theory of Structures, Pandit and Guptha, Vol. I, Tata McGraw Hill, New Delhi.
- 2. Basic Structural Analysis Reddy C. S., Tata McGraw Hill, New Delhi.
- 3. Strength of Materials and theory of structures Vol I & II, B.C. Pumia , R.K., Jain Laxmi Publication New Delhi

REFERENCE BOOKS:

- 1. **Elementary Structural Analysis**, Norris and Wilbur, International Student Edition. McGraw Hill Book Co: New York
- 2. **Structural Analysis**, 4th SI Edition by Amit Prasanth & Aslam Kassimali, Thomson Learning.
- 3. Analysis of Structures, Thandava Murthy, Oxford University Press, Edition 2005.

SURVEYING – II (COMMON TO CV/TR/EV/CTM)

Sub Code	:	10 CV 44	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1: THEODOLITE SURVEY

1.1 Thedolite and types, 1.2 Fundamental axes and parts of a transit theodolite, 1.3 Uses of theodolite, 1.4 Temperary adjustments of a transit thedolite, 1.5 Measurement of horizontal angles – Method of repetitions and reiterations, 1.6 Measurements of vertical angles, 1.7 Prolonging a straight line by a theodolite in adjustment and theodolite not in adjustment

6 Hours

UNIT 2: PERMANENT ADJUSTMENT OF DUMPY LEVEL AND TRANSIT THEODOLITE

2.1 Interrelationship between fundamental axes for instrument to be in adjustment and step by step procedure of obtaining permanent adjustments

7 Hours

UNIT 3:

TRIGONOMETRIC LEVELING

3.1 Determination of elevation of objects when the base is accessible and inaccessible by single plane and double plane method, 3.2 Distance and difference in elevation between two inaccessible objects by double plane method. Salient features of Total Station, Advantages of Total Station over conventional instruments, Application of Total Station.

8 Hours

UNIT 4: TACHEOMETRY

4.1 Basic principle, 4.2 Types of tacheometric survey, 4.3 Tacheometric equation for horizontal line of sight and inclined line of sight in fixed hair method, 4.4 Anallactic lens in external focusing telescopes, 4.5 Reducing the constants in internal focusing telescope, 4.6 Moving hair method and

tangential method, 4.7 Subtance bar, 4.8 Beaman stadia arc.

7 Hours

PART – B

UNIT 5:

CURVE SETTING (Simple curves)

5.1 Curves – Necessity – Types, 5.2 Simple curves, 5.3 Elements, 5.4 Designation of curves, 5.5 Setting out simple curves by linear methods, 5.6 Setting out curves by Rankines deflection angle method.

6 Hours

UNIT 6:

CURVE SETTING (Compound and Reverse curves)

6.1 Compound curves 6.2 Elements 6.3 Design of compound curves 6.4 Setting out of compound curves 6.5 Reverse curve between two parallel straights (Equal radius and unequal radius).

6 Hours

UNIT 7:

CURVE SETTING (Transition and Vertical curves)

7.1 Transition curves 7.2 Characteristics 7.3 Length of Transition curve 7.4 Setting out cubic Parabola and Bernoulli's Lemniscates, 7.5 Vertical curves – Types – Simple numerical problems.

6 Hours

UNIT 8: AREAS AND VOLUMES

8.1 Calculation of area from cross staff surveying, 8.2 Calculation of area of a closed traverse by coordinates method. 8.3 Planimeter – principle of working and use of planimeter to measure areas, digital planimeter, 8.4 Computations of volumes by trapezoidal and prismoidal rule, 8.5 Capacity contours

6 Hours

TEXT BOOKS:

1. 'Surveying' Vol 2 and Vol 3 - B. C. Punmia, Laxmi Publications 2. 'Plane Surveying' A. M. Chandra – New age international (P) Ltd

3. 'Higher Surveying' A.M. Chandra – New age international (P) Ltd

REFERENCE BOOKS:

1. **Fundamentals of Surveying** - Milton O. Schimidt – Wong, Thomson Learning.

DESIGN OF RCC STRUCTURAL ELEMENTS

Subject Code	: 10CV52	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

GENERAL FEATURES OF REINFORCED CONCRETE: Introduction, Design Loads, Materials for Reinforced Concrete and Code requirements. Design Philosophy – Limit State Design principles. Philosophy of limit state design, Principles of limit states, Factor of Safety, Characteristic and design loads, Characteristic and design strength.

6 Hours

UNIT - 2

PRINCIPLES OF LIMIT STATE DESIGN AND ULTIMATE STRENGTH OF R.C. SECTION: General aspects of Ultimate strength, Stress block parameters for limit state of collapse, Ultimate flexural strength of singly reinforced rectangular sections, Ultimate flexural strength of doubly reinforced rectangular sections, Ultimate flexural strength of flanged sections, Ultimate shear strength of RC sections, Ultimate torsional strength of RC sections, Concepts of development length and anchorage, Analysis examples of singly reinforced, doubly reinforced, flanged sections, shear strength and development length.

7 Hours

UNIT - 3

FLEXURE AND SERVICEABILITY LIMIT STATES: General Specification for flexure design of beams-practical requirements, size of beam, cover to reinforcement-spacing of bars. General aspects of serviceability-Deflection limits in IS: 456 – 2000-Calculation of deflection (Theoretical method), Cracking in structural concrete members, Calculation of deflections and crack width.

6 Hours

DESIGN OF BEAMS: Design procedures for critical sections for moment and shears. Anchorages of bars, check for development length, Reinforcement requirements, Slenderness limits for beams to ensure lateral stability, Design examples for Simply supported and Cantilever beams for rectangular and flanged sections.

PART - B

UNIT - 5

DESIGN OF SLABS: General consideration of design of slabs, Rectangular slabs spanning one direction, Rectangular slabs spanning in two directions for various boundary conditions. Design of simply supported, cantilever and continuous slabs as per IS: 456 – 2000.

UNIT - 6

DESIGN OF COLUMNS: General aspects, effective length of column, loads on columns, slenderness ratio for columns, minimum eccentricity, design of short axially loaded columns, design of column subject to combined axial load and uniaxial moment and biaxial moment using SP - 16 charts.

5 Hours

8 Hours

UNIT - 7

DESIGN OF FOOTINGS: Introduction, load for footing, Design basis for limit state method, Design of isolated rectangular footing for axial load and uniaxial moment, design of pedestal.

6 Hours

UNIT - 8

DESIGN OF STAIR CASES: General features, types of stair case, loads on stair cases, effective span as per IS code provisions, distribution of loading on stairs, Design of stair cases. With waistslabs.

6 Hours

REFERENCE BOOKS:

- 1. Limit State Design of Reinforced concrete-by P.C. Varghese, PHI Learning Private Limited 2008-2009
- **2. Fundamentals of Reinforced concrete Design-**by M.L.Gambhir, PHI Learning Private Limited 2008-2009.
- **3. Reinforced concrete Design-**by Pallai and Menon, TMH Education Private Limited,
- **4. Reinforced concrete Design-**by S.N.Shinha, TMH Education Private Limited,

38

UNIT - 4

8 Hours

5. Reinforced concrete Design-by Karve & Shaha, Structures Publishers Pune.

- Design of RCC Structural Elements S. S. Bhavikatti, Vol-I, New Age International Publications, New Delhi.
- 7. IS-456-2000 and SP-16

GEOTECHNICAL ENGINEERING - I

Subject Code	: 10CV54	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT-1

INTRODUCTION: History of soil mechanics, Definition, origin and formation of soil. Phase Diagram, Voids ratio, Porosity, Percentage Air Voids, Air content, Degree of saturation, Water content, Specific Gravity of soil solids and soil mass, Densities and Unit weights - Bulk, Dry, Saturated & Submerged and their inter relationships.

6 Hours

UNIT - 2

INDEX PROPERTIES OF SOIL AND THEIR DETERMINATION: Index Properties of soil- Water content, Specific Gravity, Particle size distribution, Relative Density, Consistency limits and indices, in-situ density, Activity of Clay, Laboratory methods of determination of index properties of soil: Water content (Oven Drying method & Rapid Moisture method), Specific gravity of soil solids (Pycnometer and density bottle method), Particle size distribution (Sieve analysis and Hydrometer analysis only), Liquid Limit- (Casagrande and Cone penetration methods), Plastic limit and shrinkage limit.

7 Hours

UNIT - 3

CLASSIFICATION OF SOILS: Purpose of soil classification, Particle size classification – MIT classification and IS classification, Textural classification. IS classification - Plasticity chart and its importance, Field identification of soils.

CLAY MINERALOGY AND SOIL STUCTURE: Single grained, honey combed, flocculent and dispersed structures, Valence bonds, Soil-Water system, Electrical diffuse double layer, adsorbed water, base-exchange capacity, Isomorphous substitution. Common clay minerals in soil and their structures- Kaolinite, Illite and Montmorillonite.

8 Hours

UNIT - 4

FLOW OF WATER THROUGH SOILS: Darcy's law- assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified soils, Seepage

velocity, Superficial velocity and coefficient of percolation, quick sand phenomena, Capillary Phenomena.

6 Hours

PART - B

UNIT - 5

SHEAR STRENGTH OF SOIL: Concept of shear strength, Mohr-coulomb theory, conventional and modified failure envelops, Effective stress concept-total stress, effective stress and Neutral stress, Concept of pore pressure, Total and effective shear strength parameters, factors affecting shear strength of soils, Sensitivity and Thixotropy of clay.

7 Hours

UNIT - 6

COMPACTION OF SOIL: Definition, Principle of compaction, Standard and Modified proctor's compaction tests, factors affecting compaction, effect of compaction on soil properties, Field compaction control – compactive effort & method, lift thickness and number of passes, Proctor's needle, Compacting equipment.

UNIT - 7

6 Hours

CONSOLIDATION OF SOIL: Definition, Mass-spring analogy, Terzaghi's one dimensional consolidation theory-assumption and limitations (no derivation), Normally consolidated, under consolidated and over consolidated soils, pre-consolidation pressure and its determination by Casagrande's method. Consolidation characteristics of soil (C_c , a_v , m_v and C_v).

UNIT-8

DETERMINATION OF SHEAR STRENGTH AND CONSOLIDATION OF SOIL: Measurement of shear parameters- Direct shear test, unconfined compression test, Triaxial compression test and vane shear test, Test under different drainage conditions.

Laboratory one dimensional consolidation test, Determination of consolidation characteristics of soils-compression index and coefficient of consolidation (square root of time fitting method, logarithmic time fitting method).

6 Hours

TEXT BOOKS:

- 1. Soil Mechanics and Foundation Engg.- Punmia B.C. (2005), 16th Edition Laxmi Publications Co., New Delhi.
- 2. **Principles of Soil Mechanics and Foundation Engineering**-Murthy V.N.S. (1996), 4th Edition, UBS Publishers and Distributors, New Delhi.

3. Geotechnical Engineering; Braja, M. Das (2002), Fifth Edition, Thomson Business Information India (P) Ltd., India

REFERENCES BOOKS:

- 1. Foundation Analysis and Design- Bowles J.E. (1996), 5th Edition, McGraw Hill Pub. Co. New York.
- Soil Engineering in Theory and Practice- Alam Singh and 2. Chowdhary G.R. (1994), CBS Publishers and Distributors Ltd., New Delhi.
- 3. Basic and Applied Soil Mechanics- Gopal Ranjan and Rao A.S.R. (2000), New Age International (P) Ltd., Newe Delhi.
- 4. Geotechnical Engineering- Donold P Coduto Phi Learning Private Limited, New Delhi
- 5. Geotechnical Engineering- Shashi K. Gulathi & Manoj Datta. (2009), "Tata Mc Graw Hill.
- 6. Text Book of Geotechnical Engineering- Iqbal H. Khan (2005), 2nd Edition, PHI, India.
- 7. Numerical Problems, Examples and objective questions in Geotechnical Engineering- Narasimha Rao A. V. & Venkatrahmaiah C. (2000), Universities Press., Hyderabad.

Hydrology and Irrigation Engineering

Hydro	logy and Irrig	gation Engine	eering	
Sub Code	10CV55	IA Marks	: 25	
<mark>Hrs/ Week</mark>	<mark>: 04</mark>	Exam Hours	<mark>: 03</mark>	
<mark>Total Hrs.</mark>	<mark>: 52</mark>	<mark>Exam Marks</mark>	<mark>: 100</mark>	
	PAR	Г-А		
	HYDRO	LOGY		
	HYDRO	LOGY		

PART-A HYDROLOGY

UNIT 1: INTRODUCTION & PRECIPITATION

Introduction ,Hydrologic cycle (Horton's representation). Water budget equation

Precipitation: introduction, forms of precipitation, types of precipitation, measurement of precipitation (Simon's gauge & Syphon gauge only), selection of rain gauge station. Adequacy of raingauges, methods of computing average rainfall, interpolation of missing data, adjustment of missing data by double mass curve method. Hyetograph and mass curve of 07 hrs rainfall,

UNIT 2 : LOSSES FROM PRECIPITATION
Evaporation: Definition, factors affecting, measurement (Class A pan). Estimation using empirical methods (Meyer's and Rohwer's equation), evaporation control.

Evapo-transpiration: Definition, factors affecting, measurement, estimation (Blaney criddle method)

Infiltration: Definition, factors affecting, measurement (double ring infiltrometer), infiltration indices, Horton's equation of infiltration. 07 hrs

UNIT 3: HYDROGRAPHS

Definition, components of hydrographs, unit hydrograph and its derivation from simple storm hydrograph, base flow separation, Prepositions of unit hydrograph- problems

06 hrs

UNIT 4: ESTIMATION OF FLOOD & FLOOD ROUTING Definition of flood, factors affecting flood, methods of estimation (envelope curves, empirical formulae, rational method).

Flood routing: Introduction to hydrological routing, relationship of out flow and storage, general storage equation, Muskingum routing method. 07 hrs

PART-B

IRRIGATION ENGINEERING

UNIT 5 : INTRODUCTION

Introduction, need for irrigation, advantages and disadvantages of irrigation, environmental impacts of irrigation, Systems of irrigation: Gravity irrigation, lift irrigation, well irrigation, tube well irrigation, infiltration galleries, sewage irrigation, supplemental irrigation.

06 hrs

UNIT 6: SOIL-WATER-CROP RELATIONSHIP

Introduction, soil profile, physical properties of soil, soil classification. Indian soils, functions of irrigation soils, maintaining soil fertility, soil-water-plant relationship, soilmoisture. Irrigation relationship, frequency of irrigation. 06 hrs

UNIT 7: WATER REQUIREMENT OF CROPS Introduction, definitions, crop seasons of India, water requirement of a crop, duty, delta, base period. Consumptive use. Irrigation efficiencies. Assessment of irrigation water.

07 hrs

Unit 8: Canals

Definition, Types of canals, Alignment of canals, Design of canals by Kenedy's and Lacey's methods- Problems 06 hrs

TEXT BOOKS:

- Engineering Hydrology Subramanya.K; Tata Mcgraw Hill NewDelhi-2008 (Ed)
- 2. Hydrology- Madan Mohan Das, Mim Mohan Das-PHI Learning private Ltd. New Delhi-2009 (Ed)
- A Text Book Of Hydrology- Jayarami Reddy, Laksmi Publications, New Delhi-2007 (Ed)
- Irrigation, water Resources and water power Engineering- P.N.Modi- standard book house, New Delhi.
- Irrigation and Water Power Engineering-Madan Mohan Das & Mimi Das Saikia; PHILearning pvy. Ltd. New Delhi 2009 (Ed).

REFERENCE BOOKS:

- Hydrology & Soil Conservation Engineering-Ghanshyam Das- PHI Learning Private Ltd., New Delhi-2009 (Ed)
- 2. Hydrology & Water Resources Engineering- Patra K.C. Narosa Book Distributors Pvt. Ltd. New Delhi-2008 (Ed)
- Hydrology & Water Resources Engineering-R.K.Sharma & Sharma, Oxford and Ibh, New Delhi
- 4. Irrigation Engineering and Hydraulic structures- S. K. garg- Khanna Publication, New Delhi.

TRANSPORTATION ENGINEERING I

Subject Code		:10CV56
I A Marks	:25	
No. of lecture Hours/week		:04
Exam Hours	:03	
Total No. of Lecture Hours		:52
Exam Marks	:100	

<u>PART – A</u>

UNIT - 1

PRINCIPLES OF TRANSPORTATION ENGINEERING: Importance of transportation, Different modes of transportation and comparison, Characteristics of road transport Jayakar committee recommendations, and implementation – Central Road Fund, Indian Roads Congress, Central Road Research Institute

04 Hrs

UNIT - 2

HIGHWAY DEVELOPMENT AND PLANNING: Road types and classification, road patterns, planning surveys, master plan – saturation system of road planning, phasing road development in India, problems on best alignment among alternate proposals Salient Features of 3rd and 4th twenty year

road development plans and Policies, Present scenario of road development in India (NHDP & PMGSY) and in Karnataka (KSHIP & KRDCL) Road development plan - vision 2021.

06 Hrs

UNIT - 3

HIGHWAY ALIGNMENT AND **SURVEYS:** Ideal Alignment, Factors affecting the alignment, Engineering surveys-Map study, Reconnaissance, Preliminary and Final location & detailed survey, Reports and drawings for new and re-aligned projects 04 Hrs HIGHWAY GEOMETRIC DESIGN - I: Importance, Terrain classification, Design speed, Factors affecting geometric design, Cross sectional elements-Camber- width of pavement-Shoulders-, Width of formation- Right of way, Typical cross sections 05 Hrs

UNIT - 4

HIGHWAY GEOMETRIC DESIGN – II: Sight Distance-Restrictions to sight distance- Stopping sight distance-Overtaking sight distance- overtaking zones- Examples on SSD and OSD- Sight distance at intersections, Horizontal alignment-Radius of Curve- Superelevation – Extra widening-Transition curve and its length, setback distance – Examples, Vertical alignment-Gradient-summit and valley curves with examples. 07 Hrs

<u> PART - B</u>

UNIT - 5

PAVEMENT MATERIALS: Subgrade soil - desirable properties-HRB soil classification-determination of CBR and modulus of subgrade reaction-Examples on CBR and Modulus of subgrade reaction, **Aggregates-** Desirable properties and list of tests, **Bituminous materials**-Explanation on Tar, bitumen,cutback and emulsion-List of tests on bituminous materials **06 Hrs**

UNIT - 6

PAVEMENT DESIGN: Pavement types, component parts of flexible and rigid pavements and their functions, design factors, ESWL and its determination-Examples, **Flexible pavement**-Design of flexible pavements as per IRC;37-2001-Examples, **Rigid pavement**- Westergaard's equations for load and temperature stresses- Examples- Design of slab thickness only as per IRC:58-2002

06 Hrs

UNIT – 7

PAVEMENT CONSTRUCTION: Earthwork –cutting-Filling, Preparation of subgrade, Specification and construction of i) Granular Subbase, ii) WBM Base, iii) WMM base, iv) Bituminous Macadam, v) Dense Bituminous Macadam vi) Bituminous Concrete, vii) Dry Lean Concrete sub base and PQC viii) concrete roads 05

Hrs

HIGHWAY DRAINAGE: Significance and requirements, Surface drainage system and design-Examples, sub surface drainage system, design of filter materials

03 Hrs

UNIT – 8

HIGHWAY ECONOMICS: Highway user benefits, VOC using charts only-Examples, Economic analysis - annual cost method-Benefit Cost Ratio method-NPV-IRR methods-Examples, Highway financing-BOT-BOOT concepts

06 Hrs

TEXT BOOKS:

1. Highway Engineering – S K Khanna and C E G Justo, Nem Chand Bros, Roorkee

2. Highway Engineering - L R Kadiyali, Khanna Publishers, New Delhi

- **3. Transportation Engineering** K P Subramanium, Scitech Publications, Chennai
- 4. Transportation Engineering James H Banks, Mc. Graw. Hill Pub. New Delhi
- Highway Engineeering –R. Sreenivasa Kumar, University Press. Pvt.Ltd. Hyderabad

REFERENCE BOOKS:

- 1. Relevant IRC Codes
- 2. Specifications for Roads and Bridges-MoRT&H, IRC, New Delhi.
- 3. Transportation Engineering C. Jotin Khisty, B. Kent lal, PHI Learning Pvt. Ltd. New Delhi.

VI SEMESTER

ENVIRONMENTAL ENGINEERING-I

Subject Code	: 10CV61	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

Part - A

Unit - 1

INTRODUCTION: Human activities and environmental pollution. Water for various beneficial uses and quality requirement. Need for protected water supply.

2 Hours

DEMAND OF WATER: Types of water demands- domestic demand in detail, institutional and commercial, public uses, fire demand. Per capita consumption –factors affecting per capita demand, population forecasting, different methods with merits &demerits- variations in demand of water. Fire demand – estimation by Kuichling's formula, Freeman formula & national board of fire underwriters formula, peak factors, design periods & factors governing the design periods

6 Hours

Unit - 2

SOURCES: Surface and subsurface sources – suitability with regard to quality and quantity.

3 Hours

COLLECTION AND CONVEYANCE OF WATER: Intake structures – different types of intakes; factor of selection and location of intakes. Pumps- Necessity, types – power of pumps; factors for the selection of a pump. Pipes – Design of the economical diameter for the rising main; Nomograms – use; Pipe appurtenances.

6 Hours

Unit - 3

QUALITY OF WATER: Objectives of water quality management. wholesomeness & palatability, water borne diseases. Water quality parameters – Physical, chemical and Microbiological. Sampling of water for examination. Water quality analysis (IS: 3025 and IS: 1622) using analytical and instrumental techniques. Drinking water

standards BIS & WHO guidelines. Health significance of Fluoride, Nitrates and heavy metals like Mercury, Cadmium, Arsenic etc. and toxic / trace organics.

6 Hours

Unit - 4 WATER TREATMENT: Objectives – Treatment flow-chart. Aeration-Principles, types of Aerators.

Hours

SEDIMENTATION: Theory, settling tanks, types, design. Coagulant aided sedimentation, jar test, chemical feeding, flash mixing, and clariflocculator.

Hours

Part - B

Unit - 5

FILTRATION: Mechanism – theory of filtration, types of filters, slow sand, rapid sand and pressure filters including construction, operation, cleaning and their design – excluding under drainage system – back washing of filters. Operational problems in filters.

6 Hours

4

2

4

Unit - 6

DISINFECTION: Theory of disinfection, types of disinfection, Chlorination, chlorine demand, residual chlorine, use of bleaching powder. UV irradiation treatment – treatment of swimming pool water

Hours

SOFTENING – definition, methods of removal of hardness by lime soda process and zeolite process RO & Membrane technique.

3 Hours

Unit - 7

MISCELLANEOUS TREATMENT: Removal of color, odor, taste, use of copper sulfate, adsorption technique, fluoridation and defluoridation.

4 Hours

DISTRIBUTION SYSTEMS: System of supply, service reservoirs and their capacity determination, methods of layout of distribution systems.

4

Hours

Unit - 8

MISCELLANEOUS: Pipe appurtenances, various valves, type of fire hydrants, pipefitting, Layout of water supply pipes in buildings.

2

Hours

TEXT BOOKS:

- 1. Water supply Engineering –S.K.Garg, Khanna Publishers
- 2. Environmental Engineering I B C Punima and Ashok Jain
- 3. Manual on Water supply and treatment –CPHEEO, Minstry of Urban Development, New Delhi

REFERENCES

1. Hammer, M.J., (1986), Water and Wastewater Technology –SI Version, 2nd

Edition, John Wiley and Sons.

2. Karia, G.L., and Christian, R.A., (2006), **Wastewater Treatment – Concepts** and **Design Approach**, Prentice Hall of India Pvt. Ltd., New Delhi.

3. Metcalf and Eddy, (2003), **Wastewater Engineering, Treatment and Reuse**, 4th Edition, Tata McGraw Hill Edition, Tata McGraw Hill Publishing Co. Ltd.

4. Peavy, H.S., Rowe, D.R., and Tchobanoglous, G., (1986), **Environmental Engineering**–Mc Graw Hill Book Co.

5. Raju, B.S.N., (1995), **Water Supply and Wastewater Engineering, T**ata McGraw Hill Pvt. Ltd., New Delhi.

6. Sincero, A.P., and Sincero, G.A., (1999), **Environmental Engineering – A Design Approach**–Prentice Hall of India Pvt. Ltd., New Delhi.

GEOTECHNICAL ENGINEERING - II

Subject Code	: 10CV64	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

SUBSURFACE EXPLORATION: Importance of exploration program, Methods of exploration: Boring, Seismic refraction method of grophysical exploration, Types of samples undisturbed, disturbed and representative samples, Samplers, sample disturbance, area ratio, Recovery ratio, clearance, Stabilisation of boreholes - Typical bore log. Number and depth of borings for various civil engineering structures, soil exploration report.

DRAINAGE AND DEWATERING: Determination of ground water level by Hvorselev's method, Control of ground water during excavation: Dewatering - Ditches and sumps, well point system, Vacuum method, Electro- Osmosis method.

8 Hours

UNIT - 2

UNIT - 3

UNIT - 4

STRESSES IN SOILS: Boussinesq's and Westergaard's theories for concentrated, circular and rectangular loads. Comparison of Boussinesq's and westergaard's analysis. Pressure distribution diagrams, Contact pressure, Newmark's chart.

Hours

6

FLOWNETS: Laplace equation (no derivation) assumptions and limitations only, characteristics and uses of flownets, Methods of drawing flownets for Dams and sheet piles. Estimating quantity of seepage and Exit gradient. Determination of phreatic line in earth dams with and without filter. Piping and protective filter.

5 Hours

LATERAL EARTH PRESSURE: Active and Passive earth pressures, Earth pressure at rest. Rankine's and Coulomb's Earth pressure theories--assumptions and limitations, Graphical solutions for active earth pressure (cohesionless soil only) – Culmann's and Rebhann's methods, Lateral earth pressure in cohesive and cohesionless soils, Earth pressure distribution.

7 Hours PART - B

UNIT - 5

STABILITY OF EARTH SLOPES: Types of slopes, causes and type of failure of slopes. Definition of factor of safety, Stability of infinite slopes, Stability of finite slopes by Method of slices and Friction Circle method, Taylor's stability number, Fellineous method,.

7 Hours

UNIT - 6

BEARING CAPACITY: Definitions of ultimate, net and safe bearing capacities, Allowable bearing pressure. Terzaghi's and Brinch Hansen's bearing capacity equations assumptions and limitations, Bearing capacity of footing subjected to eccentric loading. Effect of ground water table on bearing capacity. Field methods of evaluation of bearing capacity - Plate load test, Standard penetration test and cone penetration test.

8 Hours

UNIT - 7

FOUNDATION SETTLEMENT: Importance and Concept of Settlement Analysis, Immediate, Consolidation and Secondary settlements (no derivations, but, computation using relevant formula for Normally Consolidated soils), Tolerance. BIS specifications for total and differential settlements of footings and rafts.

5 Hours

UNIT – 8

PROPORTIONING SHALLOW AND PILE FOUNDATIONS

Allowable Bearing Pressure, Factors influencing the selection of depth of foundation, Factors influencing Allowable Bearing Pressure, Factors influencing the choice of foundation, Proportioning isolated, combined, strip and mat foundations, Classification of pile foundation, Pile load capacity, Proportioning pile foundation.

6 Hours

TEXT BOOKS:

- 1. Soil Engineering in Theory and Practice- Alam Singh and Chowdhary G.R. (1994), CBS Publishers and Distributors Ltd., New Delhi.
- Soil Mechanics and Foundation Engg.- Punmia B.C. (2005), 16th Edition Laxmi Publications Co., New Delhi. REFERENCES BOOKS:
- 1. Foundation Analysis and Design- Bowles J.E. (1996), 5th Edition, McGraw Hill Pub. Co. New York.

- Soil Mechanics and Foundation Engineering- Murthy V.N.S. (1996), 4th Edition, UBS Publishers and Distributors, New Delhi.
- 3. Basic and Applied Soil Mechanics- Gopal Ranjan and Rao A.S.R. (2000), New Age International (P) Ltd., Newe Delhi.
- Geotechnical Engineering- Venkatrahmaiah C. (2006), 3rd Edition New Age International (P) Ltd., Newe Delhi.
- Soil Mechanics- Craig R.F. (1987), Van Nostrand Reinhold Co. Ltd.
- Principles of Geotechnical Engineering- Braja M. Das (2002), 5th Edition, Thomson Business Information India (P) Ltd., India.
- Text Book of Geotechnical Engineering- Iqbal H. Khan (2005), 2nd Edition, PHI, India.

ALTERNATIVE BUILDING MATERIALS AND TECHNOLOGIES

Subject Code	: 10CV662	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

- **INTRODUCTION:** 1. Energy in building materials
- 2. Environmental issues concerned to building materials
- 3. Global warming and construction industry
- 4. Environmental friendly and cost effective building technologies.
- 5. Requirements for building of different climatic regions.
 - 6. Traditional building methods and vernacular architecture.

6 Hours

UNIT - 2

ALTERNATIVE BUILDING MATERIALS:

- 1. Characteristics of building blocks for walls
- 2. Stones and Laterite blocks
- 3. Bricks and hollow clay blocks
- 4. Concrete blocks
- 5. Stabilized blocks: Mud Blocks, Steam Cured Blocks, Fal-G Blocks and Stone Masonry Block

6 Hours

UNIT - 3 LIME-POZZOLANA CEMENTS

- 1. Raw materials
- 2. Manufacturing process
- 3. Properties and uses
- 4. Fibre reinforced concretes
- 5. Matrix materials
- 6. Fibers : metal and synthetic
- 7. Properties and applications
- 8. Fibre reinforced plastics
- 9. Matrix materials
- 10. Fibers : organic and synthetic
- 11. Properties and applications
- 12. Building materials from agro and industrial wastes
- 13. Types of agro wastes

14. Types of industrial and mine wastes

- 15. Properties and applications
 - 16. Field quality control test methods

6 Hours

UNIT - 4 ALTERNATIVE BUILDING TECHNOLOGIES

- 1. Alternative for wall construction
- 2. Types
- 3. Construction method
- 4. Masonry mortars
- 5. Types
- 6. Preparation
- 7. Properties
- 8. Ferrocement and ferroconcrete building components
- 9. Materials and specifications
- 10. Properties
- 11. Construction methods
- 12. Applications
- 13. Alternative roofing systems
- 14. Concepts
- 15. Filler slabs
- 16. Composite beam panel roofs

17. Masonry vaults and domes

8 ours

PART - B

STRUCTURAL MASONRY

- 1. Compressive strength of masonry elements
- 2. Factors affecting compressive strength
- 3. Strength of units, prisms / wallettes and walls
- 4. Effect of brick work bond on strength
- 5. Bond strength of masonry : Flexure and shear
- 6. Elastic properties of masonry materials and masonry

6 Hours

UNIT - 6

UNIT - 5

- 1. IS Code provisions
- 2. Design of masonry compression elements
- 3. Concepts in lateral load resistance

Hours

8

UNIT - 7 COST EFFECTIVE BUILDING DESIGN

1. Cost concepts in buildings

- 2. Cost saving techniques in planning, design and construction
 - 3. Cost Analysis : Case studies using alternatives.

UNIT - 8 EQUIPMENT FOR PRODUCTION OF ALTERNATIVE MATERIALS

- 1. Machines for manufacture of concrete
- 2. Equipments for production of stabilized blocks
 - 3. Moulds and methods of production of precast elements.

6 Hours

6 Hours

TEXT BOOKS:

- 1. Alternative building methodologies for engineers and architects, lecture notes edited: K.S. Jagadish and B.V. Venkatarama Reddy, Indian Institute of cience, Bangalore.
- 2. Structural Masonry by Arnold W. Hendry.

REFERENCE BOOKS:

- 1. Relevant IS Codes.
- 2. Alternative building materials and technologies.
- 3. Proceedings of workshop on Alternative building material and technology, 19th to 20th December 2003 @ BVB College of Engineering. & Tech., Hubli.

67

www.universityupdates.in || www.android.universityupdates.in

GROUND WATER HYDROLOGY

Subject Code	: 10CV665	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION: Importance. Vertical distribution of sub-surface water. Occurrence in different types of rocks and soils. Definition of aquifer, Aquifuge, Aquitard and Aquiclude. Confined and unconfined aquifers.

6 Hours

UNIT - 2

AQUIFER PROPERTIES: Aquifer parameters – Specific yield, Specific retention, Porosity, Storage coefficient, derivation of the expression. Determination of specific yield. Land subsidence due to ground water withdrawals.

6 Hours

UNIT - 3

DARCY'S LAW AND HYDRAULIC CONDUCTIVITY: Introduction. Darcy's law. Hydraulic conductivity. Coefficient of permeability and Intrinsic permeability, Transmissibility, Permeability in Isotropic, Unisotropic layered soils. Steady one dimensional flow, different cases with recharge.

7 Hours

UNIT - 4

WELL HYDRAULICS – STEADY FLOW: Introduction. Steady radial flow in confined and unconfined aquifers. Pumping tests.

7 Hours

PART - B

UNIT - 5

WELL HYDRAULICS – UNSTEADY FLOW: Introduction. General equation derivation; Theis method, Cooper and JaCob method, Chow's method. Solution of unsteady flow equations.

7 Hours

UNIT - 6

GROUND WATER DEVELOPMENT: Types of wells. Methods of constructions. Tube well design. Dug wells. Pumps for lifting water: Working principles, Power requirements.

UNIT - 7

7 Hours

GROUND WATER EXPLORATION: Seismic method, Electrical resistivity method, Bore hole geo-physical techniques; Electrical logging, Radio active logging, Induction logging, Sonic logging and Fluid logging.

6 Hours

UNIT - 8

GROUND WATER RECHARGE AND RUNOFF: Recharge by vertical leakage. Artificial recharge. Ground water runoff. Ground water budget.

6 Hours

TEXT BOOKS:

- 1. Ground Water- H.M. Raghunath, Wiley Eastern Limited, New Delhi.
- 2. Ground Water Hydrology- K. Todd, Wiley and Sons, New Delhi.
- 3. Numerical Ground Water Hydrology- A.K. Rastogi, Penram, International Publishing (India), Pvt. Ltd., Mumbai.

REFERENCE BOOKS:

- 1. Ground Water Hydrology- Bower H.- McGraw Hill, New Delhi.
- 2. Ground Water and Tube Wells- Garg Satya Prakash, Oxford and IBH, New Delhi.
- 3. Ground Water Resource Evaluation- W.C. Walton, McGraw Hill Kogakusha Ltd., New Delhi.
- 4. Water wells and Pumps Michel D.M., Khepar. S.D., Sondhi. S.K., McGraw Hill Education 2nd Edition.

TRAFFIC ENGINEERING

Subject Code	: 10CV667	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION: Definition, objectives of Traffic Engineering and scope of Traffic Engineering.

2

Hours

UNIT - 2

TRAFFIC CHARACTERISTICS: Road user characteristics, vehicular characteristics – static and dynamic characteristics, power

performance of vehicles, Resistance to the motion of vehicles – Reaction time of driver – Problems on above.

6

Hours

UNIT - 3

TRAFFIC STUDIES: Various types of traffic engineering studies, data collection, analysis objectives and method of study – Definition of study area – Sample size and analysis.

6 Hours

UNIT - 4

INTERPRETATION OF TRAFFIC STUDIES: Classified traffic Volume at mid block and intersections, PCU, origin and destination, spot speed, speed and delay, parking – on street parking, off street parking, Accident – causes, analysis measures to reduce accident – problems on above.

6 Hours

PART - B

UNIT - 5

TRAFFIC FLOW THEORIES: Traffic flow theory, Green shield theory – Goodness of fit, - correlation and regression analysis (linear only) – Queuing theory, Car following theory and relevant problems on above.

8 Hours

UNIT - 6

STATISTICAL ANALYSIS: Poisson's distribution and application to traffic engineering. Normal Distribution – Significance tests for observed traffic data, Chi Square test – problems on above. Traffic forecast – simulation technique.

12 Hours UNIT - 7

TRAFFIC REGULATION AND CONTROL: Driver, vehicle and road controls – Traffic regulations – one way – Traffic markings, Traffic signals – Vehicle actuated and synchronized signals – Signals co-ordination. Webster's method of signal design, IRC method, traffic rotary elements and designs, traffic operation – Street lighting, Road side furniture, Relevant problems on above.

Hours

10

UNIT - 8

INTELLIGENT TRANSPORT SYSTEM: Definition, Necessities, Application in the present traffic scenario

2

Hours

TEXT BOOKS:

- Traffic Engineering & Transport Planning L.R. Kadiyali-Khanna Publishers.
- 2. Highway Engineering Nemchand & Bros- Khanna & Justo-Roorkee (UA).
- 3. Traffic Engg. Matson & Smith:-Mc.Graw Hill and Co.
- 4. Traffic flow theory Drew- Mc. Graw Hill and Co.

REFERENCE BOOKS:

- 1. Traffic Engineering. Pignataro- Prentice Hall.
- 2. Highway Capacity Manual 2000.
- An introduction to traffic engineering- Jotin Khistey and Kentlal- PHI.
- 4. Traffic Engineering- Mc Shane & Roess- PHI.

ESTIMATION & VALUATION

Subject Code	: 10CV73	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

ESTIMATION: Study of various drawings with estimates, important terms, units of measurement, abstract Methods of taking out quantities and cost – center line method, long and short wall method or crossing method. Preparation of detailed and abstract estimates for the following Civil Engineering works – Buildings – RCC framed structures with flat, sloped RCC roofs with all Building components.

16 Hours

PART - B

ESTIMATE: Different type of estimates, approximate methods of estimating buildings, cost of materials. Estimation of wooden joineries such as doors, windows & ventilators.

5 Hours

ESTIMATES: Steel truss (Fink and Howe truss), manhole and septic tanks, RCC Culverts.

6 Hours

SPECIFICATIONS: Definition of specifications, objective of writing specifications, essentials in specifications, general and detail specifications of common item of works in buildings.

5 Hours

PART - C

RATE ANALYSIS: Definition and purpose. Working out quantities and rates for the following standard items of works – earth work in different types of soils, cement concrete of different mixes, bricks and stone masonry, flooring, plastering, RCC works, centering and form work for different RCC items, wood and steel works for doors, windows and ventilators.

6 Hours

MEASUREMENT OF EARTHWORK FOR ROADS: Methods for computation of earthwork - cross sections - mid section formula or average end area or mean sectional area, trapezoidal & prismoidal formula with and without cross slopes.

6 Hours

CONTRACTS: Types of contract – essentials of contract agreement – legal aspects, penal provisions on breach of contract. Definition of the terms -Tender, earnest money deposit, security deposit, tender forms, documents and types. Acceptance of contract documents. Termination of contract, completion certificate, quality control, right of contractor, refund of deposit. Administrative approval – Technical sanction. Nominal muster roll, measurement books - procedure for recording and checking measurements preparation of bills.

Valuation- Definitions of various terms, method of valuation, Freehold & Leasehold properties, Sinking fund, depreciation and method of estimating depreciation, Outgoings.

8 Hours

REFERENCE BOOKS:

- 1. Estimating & Costing, B. N. Dutta, Chand Publisher
- 2.
- Quantity Surveying- P.L. Basin S. Chand : New Delhi. Estimating & Specification S.C. Rangwala :: Charotar publishing 3. house, Anand.
- 4. Text book of Estimating & Costing- G.S. Birde, Dhanpath Rai and sons : New Delhi.
- A text book on Estimating, Costing and Accounts- D.D. Kohli 5. and R.C. Kohli S. Chand : New Delhi.
- 6. Contracts and Estimates, B. S. Patil, University Press, 2006.

DESIGN OF PRE-STRESSED CONCRETE STRUCTURES

Subject Code	: 10CV74	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

MATERIALS: High strength concrete and steel, Stress-Strain characteristics and properties.

2 Hours BASIC PRINCIPLES OF PRESTRESSING: Fundamentals, Load balancing concept, Stress concept, centre of Thrust. Pre-tensioning and posttensioning systems, tensioning methods and end anchorages.

4 Hours

UNIT - 2

ANALYSIS OF SECTIONS FOR FLEXURE: Stresses in concrete due to pre-stress and loads, stresses in steel due to loads, Cable profiles.

8 Hours

UNIT - 3

LOSSES OF PRE-STRESS: Various losses encountered in pre-tensioning and post tensioning methods, determination of jacking force.

6 Hours

UNIT - 4

DEFLECTIONS: Deflection of a pre-stressed member – Short term and long term deflections, Elastic deflections under transfer loads and due to different cable profiles. Deflection limits as per IS 1343. Effect of creep on deflection, load verses deflection curve, methods of reducing deflection **6 Hours**

PART - B

UNIT - 5

LIMIT STATE OF COLLAPSE: Flexure -IS Code recommendations – Ultimate flexural strength of sections.

5 Hours

UNIT - 6 LIMIT

LIMIT STATE OF COLLAPSE (cont...): Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking.

7 Hours

UNIT - 7

DESIGN OF END BLOCKS: Transmission of prestress in pretensioned members, transmission length, Anchorage stress in post-tensioned members. Bearing stress and bursting tensile force-stresses in end blocks-Methods, I.S. Code, provision for the design of end block reinforcement.

6 Hours

8 Hours

UNIT - 8

DESIGN OF BEAMS: Design of pre-tensioned and post-tensioned symmetrical and asymmetrical sections. Permissible stress, design of prestressing force and eccentricity, limiting zone of pre-stressing force cable profile.

REFERENCE BOOKS:

- 1. **Pre-stressed Concrete-** N. Krishna Raju Tata Mc. Graw Publishers.
- 2. **Pre-stressed Concrete-** P. Dayarathnam : Oxford and IBH Publishing Co.

- Design of pre-stressed concrete structures- T.Y. Lin and Ned H. Burns - John Wiley & Sons, New York.
- 4. Fundamental of pre-stressed concrete- N.C. Sinha & S.K. Roy
- 5. IS: 1343: 1980
- 6. Pre-stressed Concrete- N. Rajgopalan

PAVEMENT MATERIALS AND CONSTRUCTION

Subject Code	: 10CV763	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A PAVEMENT MATERIALS

UNIT - 1

AGGREGATES: Origin, classification, requirements, properties and tests on road aggregates, concepts of size and gradation – design gradation, maximum aggregate size, aggregate blending by different methods to meet specification.

6 Hours

UNIT - 2

BITUMEN AND TAR: Origin, preparation, properties and chemical constitution of bituminous road binders; requirements.

4 Hours

UNIT - 3

BITUMINOUS EMULSIONS AND CUTBACKS: Preparation, characteristics, uses and tests. Adhesion of Bituminous Binders to Road Aggregates: Adhesion failure, mechanism of stripping, tests and methods of improving adhesion.

8 Hours

UNIT - 4

BITUMINOUS MIXES: Mechanical properties, dense and open textured mixes, flexibility and brittleness, (no Hveem Stabilometer & Hubbar – Field Tests) bituminous mix, design methods using Rothfuch's Method only and

specification, Marshal mixed design criteria- voids in mineral aggregates, voids in total mix, density, flow, stability, percentage voids filled with bitumen.

6 Hours

PART - B

PAVEMENT CONSTRUCTION

UNIT - 5

EQUIPMENT IN HIGHWAY CONSTRUCTION: Various types of equipment for excavation, grading and compaction – their working principle, advantages and limitations. Special equipment for bituminous and cement concrete pavement and stabilized soil road construction.

6 Hours

UNIT - 6

SUBGRADE: Earthwork grading and construction of embankments and cuts for roads. Preparation of subgrade, quality control tests.

6 Hours

UNIT - 7

FLEXIBLE PAVEMENTS: Specifications of materials, construction method and field control checks for various types of flexible pavement layers.

8 Hours

UNIT - 8

CEMENT CONCRETE PAVEMENTS: Specifications and method of cement concrete pavement construction (PQC Importance of providing DLC as sub-base and polythene thin layer between PQC and sub-base); Quality control tests; Construction of various types of joints.

8 Hours

TEXT BOOKS:

- 1. **Highway Engineering** Khanna, S.K., and Justo, C.E.G., : Nem Chand and Bros. Roorkee
- 2. Construction Equipment and its Management- Sharma, S.C. : Khanna Publishers.
- 3. Hot Mix Asphalt Materials, Mixture Design and Construction-Freddy L. Roberts, Kandhal, P.S. : University of Texas Austin, Texas. NAPA Education Foundation Lanham, Maryland.

REFERENCES BOOKS:

- 1. RRL, DSIR, 'Bituminous Materials in Road Construction', HMSO Publication.
- 2. RRL, DSIR, 'Soil Mechanics for Road Engineers', HMSO Publication.
- 3. Relevant IRC codes and MoRT & H specifications.

CONCRETE AND HIGHWAY MATERIALS LABORATORY

Subject Code	: 10CVL78	IA Marks	: 25
No. of Practical Hours/Week	: 03	Exam Hours	: 03
Total No. of Practical Hours	: 42	Exam Marks	: 50

PART - A

CEMENT: Normal Consistency, Setting time, Soundness by Autoclave method, Compression strength test and Air permeability test for fineness, Specific gravity of cement.

FRESH CONCRETE: Workability – slump, Compaction factor and Vee Bee tests.

HARDENED CONCRETE: Compression strength and Split tensile tests. Test on flexural strength of RCC beams, Permeability of concrete.

PART - B

SOIL: Density of Soil by Sand replacement method, CBR Text.

AGGREGATES: Crushing, abrasion, impact and Shape tests (Flaky, Elongation, Angularity number) Specific gravity and water absorption.

BITUMINOUS MATERIALS AND MIXES: Specific Gravity, Penetration, Ductility, Softening point, Flash and fire point, Viscosity, proportioning of aggregate mixes by Rothfutch Method, Marshall Stability tests.

REFERENCE BOOK:

1. Relevant IS Codes and IRC Codes.

- 2. **Highway Material Testing Laboratory Manual** by Khanna S K and Justo, CEG Nemi Chand & Bros.
- 3. M. L. Gambhir : Concrete Manual : Dhanpat Rai & sons New Delhi.

www.universityupdates.in || www.android.universityupdates.in

VIII -SEMESTER

ADVANCED CONCRETE TECHNOLOGY

Subject Code	: 10CV81	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

UNIT - 1

Importance of Bogue's compounds, Structure of a Hydrated Cement Paste, Volume of hydrated product, porosity of paste and concrete, transition Zone, Elastic Modulus, factors affecting strength and elasticity of concrete, Rheology of concrete in terms of Bingham's parameter.

7 Hour

UNIT - 2

CHEMICAL ADMIXTURES- Mechanism of chemical admixture, Plasticizers and super Plasticizers and their effect on concrete property in fresh and hardened state, Marsh cone test for optimum dosage of super plasticizer, retarder, accelerator, Air-entraining admixtures, new generation superplasticiser.

MINERAL ADMIXTURE-Fly ash, Silica fume, GCBS, and their effect on concrete property in fresh state and hardened state.

6 Hours

UNIT - 3

MIX DESIGN - Factors affecting mix design, design of concrete mix by BIS method using IS10262 and current American (ACI)/ British (BS) methods. Provisions in revised IS10262-2004.

6 Hours

UNIT - 4

DURABILITY OF CONCRETE - Introduction, Permeability of concrete, chemical attack, acid attack, efflorescence, Corrosion in concrete. Thermal conductivity, thermal diffusivity, specific heat. Alkali Aggregate Reaction, IS456-2000 requirement for durability.

7 Hours

PART - B

UNIT - 5

RMC concrete - manufacture, transporting, placing, precautions, Methods of concreting- Pumping, under water concreting, shotcrete, High volume fly ash concrete concept, properties, typical mix

Self compacting concrete concept, materials, tests, properties, application and Typical mix.

6 Hours

UNIT - 6

Fiber reinforced concrete - Fibers types and properties, Behavior of FRC in compression, tension including pre-cracking stage and post-cracking stages, behavior in flexure and shear, Ferro cement - materials, techniques of manufacture, properties and application

7 Hours

UNIT - 7

Light weight concrete-materials properties and types. Typical light weight concrete mix High density concrete and high performance concrete-materials, properties and applications, typical mix.

6 Hours

UNIT - 8

Test on Hardened concrete-Effect of end condition of specimen, capping, H/D ratio, rate of loading, moisture condition. Compression, tension and flexure tests. Tests on composition of hardened concrete-cement content, original w/c ratio. NDT tests concepts-Rebound hammer, pulse velocity methods.

7 Hours

TEXT / REFERENCE BOOKS:

- 1. **Properties of Concrete** Neville, A.M. ELBS Edition, Longman Ltd., London
- 2. Concrete Technology- M.S. Shetty
- 3. **Concrete Technology-** A.R. Santhakumar,-Oxford University Press.
- 4. **Concrete** P.K. Mehta, P J M Monteiro,- Prentice Hall, New Jersey (Special Student Edition by Indian Concrete Institute Chennai)
- 5. ACI Code for Mix Design
- 6. IS 10262-2004
- 7. Concrete Mix Design- N. Krishna Raju Sehgal Publishers
- 8. Concrete Manual- Gambhir M.L.- Dhanpat Rai & Sons, New Delhi
- 9. Advanced Concrete Technology Processes- John Newman, Ban Seng Choo, London.
- 10. Advanced Concrete Technology Constituent materials- John Newman, Ban Seng Choo- London
- 11. Non-Destructive Test and Evaluation of Materials- J.Prasad, C G K Nair,-Mc Graw Hill.
- 12. High Performance Concrete- Prof Aitcin P C- E and FN, London.
- 13. Properties of Fresh Concrete- Power T.C.- E and FN, London

ENVIRONMENTAL IMPACT ASSESSMENT

Subject Code	: 10CV847	IA Marks	: 25
No. of Lecture Hours/Week	: 04	Exam Hours	: 03
Total No. of Lecture Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Development Activity and Ecological Factors EIA, Rapid and Comprehensive EIA, EIS, FONSI. Need for EIA Studies, Baseline Information,

6 Hours

UNIT - 2

Step-by-step procedures for conducting EIA, Limitations of EIA.

6 Hours

UNIT - 3

Frame work of Impact Assessment. Development Projects-Environmental Setting, Objectives and Scope, Contents of EIA, Methodologies, Techniques of EIA.

8 Hours

UNIT - 4

Assessment and Prediction of Impacts on Attributes Air, Water, Noise, Land Ecology, Soil, Cultural and Socio-economic Environment. EIA guidelines for Development Projects, Rapid and Comprehensive EIA.

6 Hours

PART - B

UNIT - 5

EIA guidelines for Development Projects, Rapid and Comprehensive EIA.

UNIT - 6

Public Participation in Environmental Decision making. Practical Considerations in preparing Environmental Impact Assessment and Statements.

6 Hours

6 Hours

UNIT - 7

Salient Features of the Project Activity-Environmental Parameter Activity Relationships- Matrices.

4 Hours

UNIT - 8

EIA for Water resource developmental projects, Highway projects: Nuclear-Power plant projects, Mining project (Coal, Iron ore), Thermal Power Plant, Infrastructure Construction Activities.

10 Hours

REFERENCES

- 1. Environmental Impact Analysis-Jain R.K.-Van Nostrand Reinhold Co.
- 2. Environment Impact Assessment.- Anjaneyalu. Y.
- 3. Guidelines for EIA of developmental Projects Ministry of Environment and Forests, GOI.
- 4. **Environment Impact Assessment** Larry W. Canter McGraw Hill Publication.

Subject Code:	10IS51	I.A. Marks : 25
Hours/Week :	04	Exam Hours: 03
Total Hours :	52	Exam Marks: 100

PART – A

UNIT - 1

6 Hours

Overview: Introduction: FAQ's about software engineering, Professional and ethical responsibility. Socio-Technical systems: Emergent system properties; Systems engineering;

Organizations, people and computer systems; Legacy systems.

UNIT - 2

6 Hours

Critical Systems, Software Processes: Critical Systems: A simple safetycritical system; System dependability; Availability and reliability.

Software Processes: Models, Process iteration, Process activities; The Rational Unified Process; Computer Aided Software Engineering.

UNIT-3

7 Hours

Requirements: Software Requirements: Functional and Non-functional requirements; User requirements; System requirements; Interface specification; The software requirements document.

Requirements Engineering Processes: Feasibility studies; Requirements elicitation and analysis; Requirements validation; Requirements management.

UNIT - 4

7 Hours System models, Project Management: System Models: Context models; Behavioral models; Data models; Object models; Structured methods. Project Management: Management activities; Project planning; Project scheduling; Risk management

PART - B

UNIT - 5

7 Hours

Software Design: Architectural Design: Architectural design decisions; System organization; Modular decomposition styles; Control styles.

Object-Oriented design: Objects and Object Classes; An Object-Oriented design process; Design evolution.

UNIT - 6

6 Hours

Development: Rapid Software Development: Agile methods; Extreme programming; Rapid application development.

Software Evolution: Program evolution dynamics; Software maintenance; Evolution processes; Legacy system evolution.

UNIT – 7

7 Hours

Verification and Validation: Verification and Validation: Planning; Software inspections; Automated static analysis; Verification and formal methods.

Software testing: System testing; Component testing; Test case design; Test automation.

UNIT-8

6 Hours

Management: Managing People: Selecting staff; Motivating people; Managing people; The People Capability Maturity Model.

Software Cost Estimation: Productivity; Estimation techniques; Algorithmic cost modeling, Project duration and staffing.

Text Books:

Software Engineering, 8th Edition, Pearson 1. Ian Sommerville: Education, 2007.

(Chapters-: 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 21, 22, 23, 25, 26)

Reference Books:

- Roger.S.Pressman: Software Engineering-A Practitioners approach, 1. 7th Edition, Tata McGraw Hill, 2007.
- 2. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India, 2009.

DATABASE MANAGEMENT SYSTEMS

Subject Code: 10CS54	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT - 1

6 Hours

6 Hours

Introduction: Introduction; An example; Characteristics of Database approach; Actors on the screen; Workers behind the scene; Advantages of using DBMS approach; A brief history of database applications; when not to use a DBMS.

Data models, schemas and instances; Three-schema architecture and data independence; Database languages and interfaces; The database system environment; Centralized and client-server architectures; Classification of Database Management systems.

UNIT - 2

Entity-Relationship Model: Using High-Level Conceptual Data Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationship types, Relationship Sets, Roles and Structural Constraints; Weak Entity Types; Refining the ER Design; ER Diagrams, Naming Conventions and Design Issues; Relationship types of degree higher than two.

UNIT - 3

Relational Model and Relational Algebra : Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update

Operations, Transactions and dealing with constraint violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations : JOIN and DIVISION; Additional Relational Operations; Examples of Queries in Relational Algebra; Relational Database Design Using ER- to-Relational Mapping.

UNIT - 4

6 Hours **SQL** – 1: SQL Data Definition and Data Types; Specifying basic constraints in SQL; Schema change statements in SQL; Basic queries in SQL; More complex SQL Queries.

UNIT – 5

PART - B

SQL - 2 : Insert, Delete and Update statements in SQL; Specifying constraints as Assertion and Trigger; Views (Virtual Tables) in SQL; Additional features of SQL; Database programming issues and techniques; Embedded SQL, Dynamic SQL; Database stored procedures and SQL / PSM.

UNIT - 6

Database Design – 1: Informal Design Guidelines for Relation Schemas; Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form

UNIT - 7

Database Design -2: Properties of Relational Decompositions; Algorithms for Relational Database Schema Design; Multivalued Dependencies and Fourth Normal Form; Join Dependencies and Fifth Normal Form; Inclusion Dependencies; Other Dependencies and Normal Forms

8 Hours

6 Hours

6 Hours

6 Hours

UNIT – 8

Transaction Management: The ACID Properties; Transactions and Schedules; Concurrent Execution of Transactions; Lock- Based Concurrency Control; Performance of locking; Transaction support in SQL; Introduction to crash recovery; 2PL, Serializability and Recoverability; Lock Management; Introduction to ARIES; The log; Other recovery-related structures; The write-ahead log protocol; Checkpointing; Recovering from a System Crash; Media Recovery; Other approaches and interaction with concurrency control.

Text Books:

1. Elmasri and Navathe: Fundamentals of Database Systems, 5th Edition, Pearson Education, 2007.

(Chapters 1, 2, 3 except 3.8, 5, 6.1 to 6.5, 7.1, 8, 9.1, 9.2 except SOLJ, 9.4, 10)

2. Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, 3rd Edition, McGraw-Hill, 2003. (Chapters 16, 17.1, 17.2, 18)

Reference Books:

- 1. Silberschatz, Korth and Sudharshan: Data base System Concepts, 6th Edition, Mc-GrawHill, 2010.
- 2. C.J. Date, A. Kannan, S. Swamynatham: An Introduction to Database Systems, 8th Edition, Pearson Education, 2006.

COMPUTER NETWORKS - I

Subject Code: 10CS55	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART – A

UNIT - 1

Introduction: Data Communications, Networks, The Internet, Protocols & Standards, Layered Tasks,

The OSI model, Layers in OSI model, TCP/IP Protocol suite, Addressing

UNIT-2

Physical Layer-1: Analog & Digital Signals, Transmission Impairment, Data Rate limits, Performance, Digital-digital conversion (Only Line coding: Polar, Bipolar and Manchester coding), Analog-to-digital conversion (only PCM), Transmission Modes, Digital-to-analog conversion

UNIT-3

Physical Layer-2 and Switching: Multiplexing, Spread Spectrum, Introduction to switching, Circuit Switched Networks, Datagram Networks, Virtual Circuit Networks

UNIT-4

Data Link Layer-1: Error Detection & Correction: Introduction, Block coding, Linear block codes, Cyclic codes, Checksum.

PART - B

UNIT-5

6 Hours Data Link Layer-2: Framing, Flow and Error Control, Protocols, Noiseless Channels, Noisy channels, HDLC, PPP (Framing, Transition phases only)

UNIT-6

Multiple Access & Ethernet: Random access, Controlled Access, Channelization, Ethernet: IEEE standards, Standard Ethernet, Changes in the standard, Fast Ethernet, Gigabit Ethernet

6 Hours

6 Hours

7 Hours

7 Hours

7 Hours
UNIT - 7

6 Hours

Wireless LANs and Cellular Networks: Introduction, IEEE 802.11,

Bluetooth, Connecting devices, Cellular Telephony

UNIT - 8:

7 Hours

Network Layer: Introduction, Logical addressing, IPv4 addresses, IPv6 addresses, Internetworking basics,

IPv4, IPv6, Comparison of IPv4 and IPv6 Headers.

Text Books:

 Behrouz A. Forouzan,: Data Communication and Networking, 4th Edition Tata McGraw-Hill, 2006. (Chapters 1.1 to 1.4, 2.1 to 2.5, 3.1 To 3.6, 4.1 to 4.3, 5.1, 6.1, 6.2, 8.1 to 8.3, 10.1 to 10.5, 11.1 to 11.7, 12.1 to 12.3, 13.1 to 13.5, 14.1, 14.2, 15.1, 16.1, 19.1, 19.2, 20.1 to 20.3)

Reference Books:

- 1. Alberto Leon-Garcia and Indra Widjaja: Communication Networks -Fundamental Concepts and Key architectures, 2nd Edition Tata McGraw-Hill, 2004.
- 2. William Stallings: Data and Computer Communication, 8th Edition, Pearson Education, 2007.
- Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 4th Edition, Elsevier, 2007.
- 4. Nader F. Mir: Computer and Communication Networks, Pearson Education, 2007.

DATABASE APPLICATIONS LABORATORY

Subject Code: 10CSL57	I.A. Marks : 25
Hours/Week : 03	Exam Hours: 03
Total Hours : 42	Exam Marks: 50

1. Consider the following relations:

Student (*snum:* integer, *sname:* string, *major:* string, *level:* string, *age:* integer)

Class (*name:* string, *meets at:* string, *room:* string, *d:* integer) Enrolled (*snum:* integer, *cname:* string)

Faculty (fid: integer, *fname:* string, *deptid:* integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per student-class pair such that the student is enrolled in the class. Level is a two character code with 4 different values (example: Junior: JR etc)

Write the following queries in SQL. No duplicates should be printed in any of the answers.

- i. Find the names of all Juniors (level = JR) who are enrolled in a class taught by Prof. Harshith
- ii. Find the names of all classes that either meet in room R128 or have five or more Students enrolled.
- iii. Find the names of all students who are enrolled in two classes that meet at the same time.
- iv. Find the names of faculty members who teach in every room in which some class is taught.
- v. Find the names of faculty members for whom the combined enrollment of the courses that they teach is less than five.
- 2. The following relations keep track of airline flight information: Flights (*no:* integer, *from:* string, *to:* string, *distance:* integer, *Departs:* time, *arrives:* time, *price:* real)

Aircraft (*aid:* integer, *aname:* string, *cruisingrange:* integer) Certified (*eid:* integer, *aid:* integer) Employees (*eid:* integer, *ename:* string, *salary:* integer) Note that the Employees relation describes pilots and other kinds of employees as well; Every pilot is certified for some aircraft, and only pilots are certified to fly. Write each of the following queries in SQL.

- i. Find the names of aircraft such that all pilots certified to operate them have salaries more than Rs.80, 000.
- ii. For each pilot who is certified for more than three aircrafts, find the *eid* and the maximum *cruisingrange* of the aircraft for which she or he is certified.
- iii. Find the names of pilots whose *salary* is less than the price of the cheapest route from Bengaluru to Frankfurt.
- iv. For all aircraft with *cruisingrange* over 1000 Kms, .find the name of the aircraft and the average salary of all pilots certified for this aircraft.
- v. Find the names of pilots certified for some Boeing aircraft.
- vi. Find the *aids* of all aircraft that can be used on routes from Bengaluru to New Delhi.
- 3. Consider the following database of student enrollment in courses & books adopted for each course.

STUDENT (regno: string, name: string, major: string, bdate:date)COURSE (course #:int, cname:string, dept:string)ENROLL (regno:string, course#:int, sem:int, marks:int)BOOK _ ADOPTION (course#:int, sem:int, book-ISBN:int)TEXT (book-ISBN:int, book-title:string, publisher:string, author:string)

- i. Create the above tables by properly specifying the primary keys and the foreign keys.
- ii. Enter at least five tuples for each relation.
- iii. Demonstrate how you add a new text book to the database and make this book be adopted by some department.
- iv. Produce a list of text books (include Course #, Book-ISBN, Book-title) in the alphabetical order for courses offered by the 'CS' department that use more than two books.
- v. List any department that has *all* its adopted books published by a specific publisher.
- vi. Generate suitable reports.
- vii. Create suitable front end for querying and displaying the results.
- 4. The following tables are maintained by a book dealer.

AUTHOR (<u>author-id</u>:int, name:string, city:string, country:string) PUBLISHER (<u>publisher-id</u>:int, name:string, city:string, country:string)

CATALOG (<u>book-id</u>:int, title:string, author-id:int, publisher-id:int, category-id:int, year:int, price:int)

CATEGORY (category-id:int, description:string)

ORDER-DETAILS (order-no:int, book-id:int, quantity:int)

- i. Create the above tables by properly specifying the primary keys and the foreign keys.
- ii. Enter at least five tuples for each relation.
- iii. Give the details of the authors who have 2 or more books in the catalog and the price of the books is greater than the average price of the books in the catalog and the year of publication is after 2000.
- iv. Find the author of the book which has maximum sales.
- v. Demonstrate how you increase the price of books published by a specific publisher by 10%.
- vi. Generate suitable reports.
- vii. Create suitable front end for querying and displaying the results.
- Consider the following database for a banking enterprise BRANCH(<u>branch-name</u>:string, branch-city:string, assets:real) ACCOUNT(<u>accno</u>:int, branch-name:string, balance:real) DEPOSITOR(<u>customer-name</u>:string, <u>accno</u>:int) CUSTOMER(<u>customer-name</u>:string, <u>customer-street</u>:string, customer-city:string) LOAN(<u>loan-number</u>:int, branch-name:string, amount:real)

BORROWER(customer-name:string, loan-number:int)

- i. Create the above tables by properly specifying the primary keys and the foreign keys
- ii. Enter at least five tuples for each relation
- iii. Find all the customers who have at least two accounts at the *Main* branch.
- iv. Find all the customers who have an account at *all* the branches located in a specific city.
- v. Demonstrate how you delete all account tuples at every branch located in a specific city.
- vi. Generate suitable reports.
- vii. Create suitable front end for querying and displaying the results.

Instructions:

- 1. The exercises are to be solved in an RDBMS environment like Oracle or DB2.
- 2. Suitable tuples have to be entered so that queries are executed correctly.
- 3. Front end may be created using either VB or VAJ or any other similar tool.
- 4. The student need not create the front end in the examination. The results of the queries may be displayed directly.
- 5. Relevant queries other than the ones listed along with the exercises may also be asked in the examination.
- 6. Questions must be asked based on lots.

COMPUTER NETWORKS - II

Subject Code: 10	0CS64	I.A. Marks : 25
Hours/Week : 04	4	Exam Hours: 03
Total Hours : 52	2	Exam Marks: 100

PART - A

UNIT - 1

6 Hours

Packet Switching Networks - 1: Network services and internal network operation, Packet network topology, Routing in Packet networks, Shortest path routing: Bellman-Ford algorithm.

UNIT - 2

6 Hours

Packet Switching Networks – 2: Shortest path routing (continued), Traffic management at the Packet level, Traffic management at Flow level, Traffic management at flow aggregate level.

UNIT - 3

6 Hours

8 Hours

TCP/IP-1: TCP/IP architecture, The Internet Protocol, IPv6, UDP.

UNIT – 4

UNIT - 5

TCP/IP-2: TCP, Internet Routing Protocols, Multicast Routing, DHCP, NAT and Mobile IP.

PART – B

7 Hours

Applications, Network Management, Network Security: Application layer overview, Domain Name System (DNS), Remote Login Protocols, E-mail, File Transfer and FTP, World Wide Web and HTTP, Network management, Overview of network security, Overview of security methods, Secret-key encryption protocols, Public-key encryption protocols, Authentication, Authentication and digital signature, Firewalls.

UNIT – 6

6 Hours

QoS, VPNs, Tunneling, Overlay Networks: Overview of QoS, Integrated Services QoS, Differentiated services QoS, Virtual Private Networks, MPLS, Overlay networks.

UNIT - 7

7 Hours

Multimedia Networking: Overview of data compression, Digital voice and compression, JPEG, MPEG, Limits of compression with loss, Compression methods without loss, Overview of IP Telephony, VoIP signaling protocols, Real-Time Media Transport Protocols, Stream control Transmission Protocol (SCTP)

UNIT – 8

6 Hours

Mobile AdHoc Networks and Wireless Sensor Neworks: Overview of Wireless Ad-Hoc networks, Routing in AdHOc Networks, Routing protocols for and Security of AdHoc networks, Sensor Networks and protocol structures, Communication Energy model, Clustering protocols, Routing protocols, ZigBee technology and 802.15.4.

Text Books:

- Communication Networks Fundamental Concepts & key architectures, Alberto Leon Garcia & Indra Widjaja, 2nd Edition, Tata McGraw-Hill, India (7 - excluding 7.6, 8)
- Computer & Communication Networks, Nadir F Mir, Pearson Education, India (9, 10 excluding 10.7, 12.1 to 12.3, 16, 17.1 to 17.6, 18.1 to18.3, 18.5, 19, 20)

Reference Books:

- 1. Behrouz A. Forouzan: Data Communications and Networking, 4th Edition, Tata McGraw-Hill, 2006.
- 2. William Stallings: Data and Computer Communication, 8th Edition, Pearson Education, 2007.
- Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 4th Edition, Elsevier, 2007.
- 4. Wayne Tomasi: Introduction to Data Communications and Networking, Pearson Education, 2005.

OBJECT-ORIENTED MODELING AND DESIGN

Subject Code: 10CS71	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

$\mathbf{PART} - \mathbf{A}$

UNIT – 1 Introduction, Modeling Concepts, class Me

Introduction, Modeling Concepts, class Modeling: What is Object Orientation? What is OO development? OO themes; Evidence for usefulness of OO development; OO modeling history

Modeling as Design Technique: Modeling; abstraction; The three models. Class Modeling: Object and class concepts; Link and associations concepts; Generalization and inheritance; A sample class model; Navigation of class models; Practical tips.

UNIT - 2

6 Hours

7 Hours

Advanced Class Modeling, State Modeling: Advanced object and class concepts; Association ends; N-ary associations; Aggregation; Abstract classes; Multiple inheritance; Metadata; Reification; Constraints; Derived data; Packages; Practical tips.

State Modeling: Events, States, Transitions and Conditions; State diagrams; State diagram behavior; Practical tips.

UNIT - 3

Advanced State Modeling, Interaction Modeling: Advanced State Modeling: Nested state diagrams; Nested states; Signal generalization; Concurrency; A sample state model; Relation of class and state models; Practical tips.

Interaction Modeling: Use case models; Sequence models; Activity models. Use case relationships; Procedural sequence models; Special constructs for activity models.

UNIT – 4

7 Hours

7 Hours

Process Overview, System Conception, Domain Analysis: Process Overview: Development stages; Development life cycle.

System Conception: Devising a system concept; Elaborating a concept; Preparing a problem statement.

Domain Analysis: Overview of analysis; Domain class model; Domain state model; Domain interaction model; Iterating the analysis.

PART - B

UNIT – 5

Application Analysis, System Design: Application Analysis: Application interaction model; Application class model; Application state model; Adding operations.

Overview of system design; Estimating performance; Making a reuse plan; Breaking a system in to sub-systems; Identifying concurrency; Allocation of sub-systems; Management of data storage; Handling global resources; Choosing a software control strategy; Handling boundary conditions; Setting the trade-off priorities; Common architectural styles; Architecture of the ATM system as the example.

UNIT – 6

7 Hours

Class Design, Implementation Modeling, Legacy Systems: Class Design: Overview of class design; Bridging the gap; Realizing use cases; Designing algorithms; Recursing downwards, Refactoring; Design optimization; Reification of behavior; Adjustment of inheritance; Organizing a class design; ATM example.

Implementation Modeling: Overview of implementation; Fine-tuning classes; Fine-tuning generalizations; Realizing associations; Testing.

Legacy Systems: Reverse engineering; Building the class models; Building the interaction model; Building the state model; Reverse engineering tips; Wrapping; Maintenance.

UNIT – 7

Design Patterns – 1: What is a pattern and what makes a pattern? Pattern categories; Relationships between patterns; Pattern description Communication Patterns: Forwarder-Receiver; Client-Dispatcher-Server; Publisher-Subscriber.

UNIT - 8

6 Hours

6 Hours

Design Patterns – 2, Idioms: Management Patterns: Command processor; View handler.

Idioms: Introduction; what can idioms provide? Idioms and style; Where to find idioms; Counted Pointer example

Text Books:

- Michael Blaha, James Rumbaugh: Object-Oriented Modeling and Design with UML, 2nd Edition, Pearson Education, 2005. (Chapters 1 to 17, 23)
- Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern-Oriented Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2007. (Chapters 1, 3.5, 3.6, 4)

Reference Books:

- 1. Grady Booch et al: Object-Oriented Analysis and Design with Applications, 3rd Edition, Pearson Education, 2007.
- 2. Brahma Dathan, Sarnath Ramnath: Object-Oriented Analysis, Design, and Implementation, Universities Press, 2009.

- Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado: 3. UML 2 Toolkit, Wiley- Dreamtech India, 2004.
- Simon Bennett, Steve McRobb and Ray Farmer: Object-Oriented Systems Analysis and Design Using UML, 2nd Edition, Tata McGraw-Hill, 2002.

EMBEDDED COMPUTING SYSTEMS

Sub Code: 10CS72	IA Marks :25	;
Hrs/Week: 04	Exam Hours :03	3
Total Hrs: 52	Exam Marks :10)0

PART-A

UNIT - 1

6 Hours Complex Systems and

Embedded **Computing:** Introduction, Microprocessors, Embedded Systems Design Process, Formalism for System design

Design Example: Model Train Controller.

UNIT - 2

7 Hours

Instruction Sets, CPUs: Preliminaries, ARM Processor, Programming Input and Output, Supervisor mode, Exceptions, Traps, Coprocessors, Memory Systems Mechanisms, CPU Performance, CPU Power Consumption. Design Example: Data Compressor.

UNIT - 3

Bus-Based Computer Systems: CPU Bus, Memory Devices, I/O devices, Component Interfacing, Designing with Microprocessor, Development and Debugging, System-Level Performance Analysis Design Example: Alarm Clock.

UNIT - 4

Program Design and Analysis: Components for embedded programs, Models of programs, Assembly, Linking and Loading, Basic Compilation Techniques, Program optimization, Program-Level performance analysis, Software performance optimization, Program-Level energy and power analysis, Analysis and optimization of program size, Program validation and testing. Design Example: Software modem.

PART-B

UNIT - 56 Hours Real Time Operating System (RTOS) Based Design - 1: Basics of OS, Kernel, types of OSs, tasks, processes, Threads, Multitasking and Multiprocessing, Context switching, Scheduling Policies, Task Communication, Task Synchronization.

UNIT-6

RTOS-Based Design - 2: Inter process Communication mechanisms, Evaluating OS performance, Choice of RTOS, Power Optimization. Design Example: Telephone Answering machine

UNIT - 7

7 Hours Distributed Embedded Systems: Distributed Network Architectures, Networks for Embedded Systems: I2C Bus, CAN Bus, SHARC Link Ports, Ethernet, Myrinet, Internet, Network Based Design. Design Example: Elevator Controller.

UNIT-8

7 Hours

6 Hours

Embedded Systems Development Environment: The Integrated Development Environment, Types of File generated on Cross Compilation, Dis-assembler /Decompiler, Simulators, Emulators, and Debugging, Target Hardware Debugging.

Text Books:

1. Wayne Wolf: Computers as Components, Principles of Embedded

7 Hours

Computing Systems Design, 2nd Edition, Elsevier, 2008.

Shibu K V: Introduction to Embedded Systems, Tata McGraw Hill, 2009

(Chapters 10, 13)

Reference Books:

- 1. James K. Peckol: Embedded Systems, A contemporary Design Tool, Wiley India, 2008
- 2. Tammy Neorgaard: Embedded Systems Architecture, Elsevier, 2005.

PROGRAMMING THE WEB

Subject Code: 10CS73	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

UNIT - 1

6 Hours

Fundamentals of Web, XHTML – 1: Internet, WWW, Web Browsers and Web Servers, URLs, MIME, HTTP, Security, The Web Programmers Toolbox.

XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links.

UNIT - 2

7 Hours

6 Hours

XHTML – 2, CSS: XHTML (continued): Lists, Tables, Forms, Frames CSS: Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution.

UNIT - 3

Javascript: Overview of Javascript, Object orientation and Javascript, Syntactic characteristics, Primitives, operations, and expressions, Screen output and keyboard input, Control statements, Object creation and modification, Arrays, Functions, Constructors, Pattern matching using regular expressions, Errors in scripts, Examples.

UNIT - 4

Javascript and HTML Documents, Dynamic Documents with Javascript: The Javascript execution environment, The Document Object Model, Element access in Javascript, Events and event handling, Handling events from the Body elements, Button elements, Text box and Password elements, The DOM 2 event model, The navigator object, DOM tree traversal and modification.

Introduction to dynamic documents, Positioning elements, Moving elements, Element visibility, Changing colors and fonts, Dynamic content, Stacking elements, Locating the mouse cursor, Reacting to a mouse click, Slow movement of elements, Dragging and dropping elements.

PART - B

UNIT – 5

XML: Introduction, Syntax, Document structure, Document type definitions, Namespaces, XML schemas, Displaying raw XML documents, Displaying XML documents with CSS, XSLT style sheets, XML processors, Web services.

UNIT – 6

Perl, CGI Programming: Origins and uses of Perl, Scalars and their operations, Assignment statements and simple input and output, Control statements, Fundamentals of arrays, Hashes, References, Functions, Pattern matching, File input and output; Examples.

The Common Gateway Interface; CGI linkage; Query string format; CGI.pm module; A survey example; Cookies.

Database access with Perl and MySQL

7 Hours

7 Hours

UNIT – 7

6 Hours

PHP: Origins and uses of PHP, Overview of PHP, General syntactic characteristics, Primitives, operations and expressions, Output, Control

statements, Arrays, Functions, Pattern matching, Form handling, Files, Cookies, Session tracking, Database access with PHP and MySQL.

UNIT – 8

7 Hours

Ruby, Rails: Origins and uses of Ruby, Scalar types and their operations, Simple input and output, Control statements, Arrays, Hashes, Methods, Classes, Code blocks and iterators, Pattern matching.

Overview of Rails, Document requests, Processing forms, Rails applications with Databases, Layouts.

Text Books:

1. Robert W. Sebesta: Programming the World Wide Web, 4th Edition, Pearson Education, 2008.

(Listed topics only from Chapters 1 to 9, 11 to 15)

Reference Books:

- 1. M. Deitel, P.J. Deitel, A. B. Goldberg: Internet & World Wide Web How to Program, 4th Edition, Pearson Education, 2004.
- Chris Bates: Web Programming Building Internet Applications, 3rd Edition, Wiley India, 2007.
- 3. Xue Bai et al: The web Warrior Guide to Web Programming, Cengage Learning, 2003.

Web Programming Laboratory

Subject Code: 10CSL78	I.A. Marks : 25
Hours/Week : 03	Exam Hours: 03
Total Hours : 42	Exam Marks: 50

- 1. Develop and demonstrate a XHTML file that includes Javascript script for the following problems:
 - a) Input: A number n obtained using prompt Output: The first n Fibonacci numbers
 - b) Input: A number n obtained using prompt Output: A table of numbers from 1 to n and their squares using **alert**
- a) Develop and demonstrate, using Javascript script, a XHTML document that collects the USN (the valid format is: A digit from 1 to 4 followed by two upper-case characters followed by two digits followed by two upper-case characters followed by three digits; no embedded spaces allowed) of the user. Event handler must be included for the form element that collects this information to validate the input. Messages in the alert windows must be produced when errors are detected.
 b) Modify the above program to get the current semester also (restricted

b) Modify the above program to get the current semester also (restricted to be a number from 1 to 8)

3. a) Develop and demonstrate, using Javascript script, a XHTML document that contains three short paragraphs of text, stacked on top of each other, with only enough of each showing so that the mouse cursor can be placed over some part of them. When the cursor is placed over the exposed part of any paragraph, it should rise to the top to become completely visible.

b) Modify the above document so that when a paragraph is moved from the top stacking position, it returns to its original position rather than to the bottom.

4. a) Design an XML document to store information about a student in an engineering college affiliated to VTU. The information must include

USN, Name, Name of the College, Brach, Year of Joining, and e-mail id. Make up sample data for 3 students. Create a CSS style sheet and use it to display the document.

b) Create an XSLT style sheet for one student element of the above document and use it to create a display of that element.

5. a) Write a Perl program to display various Server Information like Server Name, Server Software, Server protocol, CGI Revision etc.

b) Write a Perl program to accept UNIX command from a HTML form and to display the output of the command executed.

- 6. a) Write a Perl program to accept the User Name and display a greeting message randomly chosen from a list of 4 greeting messages. b) Write a Perl program to keep track of the number of visitors visiting the web page and to display this count of visitors, with proper headings.
- 7. Write a Perl program to display a digital clock which displays the current time of the server.
- 8. Write a Perl program to insert name and age information entered by the user into a table created using MySQL and to display the current contents of this table.
- 9 Write a PHP program to store current date-time in a COOKIE and display the 'Last visited on' date-time on the web page upon reopening of the same page.
- 10. Write a PHP program to store page views count in SESSION, to increment the count on each refresh, and to show the count on web page.
- 11. Create a XHTML form with Name, Address Line 1, Address Line 2, and E-mail text fields. On submitting, store the values in MySQL table. Retrieve and display the data based on Name.
- 12. Build a Rails application to accept book information viz. Accession number, title, authors, edition and publisher from a web page and store the information in a database and to search for a book with the title specified by the user and to display the search results with proper headings.

Note: In the examination each student picks one question from the lot of all 12 questions.

DATA WAREHOUSING AND DATA MINING

Subject Code: 10CS755	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART – A

UNIT - 1**Data Warehousing:**

Introduction, Operational Data Stores (ODS), Extraction Transformation Loading (ETL), Data Warehouses. Design Issues, Guidelines for Data Warehouse Implementation, Data Warehouse Metadata

UNIT - 2

Online Analytical Processing (OLAP): Introduction, Characteristics of OLAP systems, Multidimensional view and Data cube, Data Cube Implementations, Data Cube operations, Implementation of OLAP and overview on OLAP Softwares.

UNIT - 3

Data Mining: Introduction, Challenges, Data Mining Tasks, Types of Data, Data Preprocessing, Measures of Similarity and Dissimilarity, Data Mining Applications

UNIT - 4

Association Analysis: Basic Concepts and Algorithms: Frequent Itemset Generation, Rule Generation, Compact Representation of Frequent Itemsets, Alternative methods for generating Frequent Itemsets, FP Growth Algorithm, Evaluation of Association Patterns

PART - B

6 Hours

Classification -1: Basics, General approach to solve classification problem, Decision Trees, Rule Based Classifiers, Nearest Neighbor Classifiers.

UNIT - 6

UNIT - 5

6 Hours Classification - 2 : Bayesian Classifiers, Estimating Predictive accuracy of classification methods, Improving accuracy of clarification methods, Evaluation criteria for classification methods, Multiclass Problem.

6 Hours

6 Hours

6 Hours

UNIT – 7

8 Hours

Clustering Techniques: Overview, Features of cluster analysis, Types of Data and Computing Distance, Types of Cluster Analysis Methods, Partitional Methods, Hierarchical Methods, Density Based Methods, Quality and Validity of Cluster Analysis

UNIT - 8

6 Hours

Web Mining: Introduction, Web content mining, Text Mining, Unstructured Text, Text clustering, Mining Spatial and Temporal Databases.

Text Books:

- 1. Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Pearson Education, 2005.
- 2. G. K. Gupta: Introduction to Data Mining with Case Studies, 3rd Edition, PHI, New Delhi, 2009.

Reference Books:

- 1. Arun K Pujari: Data Mining Techniques 2nd Edition, Universities Press, 2009.
- 2. Jiawei Han and Micheline Kamber: Data Mining Concepts and Techniques, 2nd Edition, Morgan Kaufmann Publisher, 2006.
- 3. Alex Berson and Stephen J. Smith: Data Warehousing, Data Mining, and OLAP Computing, Mc GrawHill Publisher, 1997.

C# PROGRAMMING AND .NET

Subject Code: 10CS761	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

$\mathbf{PART} - \mathbf{A}$

UNIT – 1

6 Hours

Interfaces and Collections: Defining Interfaces Using C# Invoking Interface Members at the object Level, Exercising the Shapes Hierarchy, Understanding Explicit Interface Implementation, Interfaces As Polymorphic Agents, Building Interface Hierarchies, Implementing, Implementation, Interfaces Using VS .NET, understanding the IConvertible Interface, Building a Custom Enumerator (IEnumerable and Enumerator), Building Cloneable objects (ICloneable), Building Comparable Objects (I Comparable), Exploring the system. Collections Namespace, Building a Custom Container (Retrofitting the Cars Type).

UNIT – 2

8 Hours

Callback Interfaces, Delegates, and Events, Advanced Techniques: Understanding Callback Interfaces, Understanding the .NET Delegate Type, Members of System. Multicast Delegate, The Simplest Possible Delegate Example, , Building More a Elaborate Delegate Example, Understanding Asynchronous Delegates, Understanding (and Using)Events.

The Advances Keywords of C#, A Catalog of C# Keywords Building a Custom Indexer, A Variation of the Cars Indexer Internal Representation of Type Indexer . Using C# Indexer from VB .NET. Overloading operators, The Internal Representation of Overloading Operators, interacting with Overload Operator from Overloaded- Operator- Challenged Languages, Creating Custom Conversion Routines, Defining Implicit Conversion Routines, The Internal Representations of Customs Conversion Routines

UNIT – 3

6 Hours

Understanding .NET Assembles: Problems with Classic COM Binaries, An Overview of .NET Assembly, Building a Simple File Test Assembly, A C#. Client Application, A Visual Basic .NET Client Application, Cross Language Inheritance, Exploring the CarLibrary's, Manifest, Exploring the CarLibrary's Types, Building the Multifile Assembly ,Using Assembly, Understanding Private Assemblies, Probing for Private Assemblies (The Basics), Private A Assemblies XML Configurations Files, Probing for Private Assemblies (The Details), Understanding Shared Assembly, Understanding Shared Names,

Building a Shared Assembly, Understanding Delay Signing, Installing/Removing Shared Assembly, Using a Shared Assembly

UNIT – 4

6 Hours

Object- Oriented Programming with C#: Forms Defining of the C# Class, Definition the "Default Public Interface" of a Type, Recapping the Pillars of OOP, The First Pillars: C#'s Encapsulation Services, Pseudo- Encapsulation: Creating Read-Only Fields, The Second Pillar: C#'s Inheritance Supports, keeping Family Secrets: The "Protected" Keyword, Nested Type Definitions, The Third Pillar: C #'s Polymorphic Support, Casting Between .

PART – B

UNIT – 5

6 Hours

Exceptions and Object Lifetime: Ode to Errors, Bugs, and Exceptions, The Role of .NET Exception Handing, the System. Exception Base Class, Throwing a Generic Exception, Catching Exception, CLR System – Level Exception(System. System Exception), Custom Application-Level Exception(System. System Exception), Handling Multiple Exception, The Family Block, the Last Chance Exception Dynamically Identifying Application – and System Level Exception Debugging System Exception Using VS. NET, Understanding Object Lifetime, the CIT of "new', The Basics of Garbage Collection, Finalization a Type, The Finalization Process, Building an Ad Hoc Destruction Method, Garbage Collection Optimizations, The System. GC Type.

UNIT – 6

6 Hours

Interfaces and Collections: Defining Interfaces Using C# Invoking Interface Members at the object Level, Exercising the Shapes Hierarchy, Understanding Explicit Interface Implementation, Interfaces As Polymorphic Agents, Building Interface Hierarchies, Implementing, Implementation, Interfaces Using VS .NET, understanding the IConvertible Interface, Building a Custom Enumerator (IEnumerable and Enumerator), Building Cloneable objects (ICloneable), Building Comparable Objects (I Comparable), Exploring the system. Collections Namespace, Building a Custom Container (Retrofitting the Cars Type).

UNIT - 7

8 Hours

Callback Interfaces, Delegates, and Events, Advanced Techniques: Understanding Callback Interfaces, Understanding the .NET Delegate Type, Members of System. Multicast Delegate, The Simplest Possible Delegate Example, Building More a Elaborate Delegate Example, Understanding Asynchronous Delegates, Understanding (and Using)Events.

The Advances Keywords of C#, A Catalog of C# Keywords Building a Custom Indexer, A Variation of the Cars Indexer Internal Representation of Type Indexer . Using C# Indexer from VB .NET. Overloading operators, The Internal Representation of Overloading Operators, interacting with Overload Operator from Overloaded- Operator- Challenged Languages, Creating Custom Conversion Routines, Defining Implicit Conversion Routines, The Internal Representations of Customs Conversion Routines

UNIT – 8

6 Hours

Understanding .NET Assembles: Problems with Classic COM Binaries, An Overview of .NET Assembly, Building a Simple File Test Assembly, A C#. Client Application, A Visual Basic .NET Client Application, Cross Language Inheritance, Exploring the CarLibrary's, Manifest, Exploring the CarLibrary's Types, Building the Multifile Assembly, Using Assembly, Understanding Private Assemblies, Probing for Private Assemblies (The Basics), Private A Assemblies XML Configurations Files, Probing for Private Assemblies (The Details), Understanding Shared Assembly, Understanding Delay Signing, Installing/Removing Shared Assembly, Using a Shared Assembly

Text Books:

- 1. Andrew Troelsen: Pro C# with .NET 3.0, 4th Edition, Wiley India, 2009.
 - Chapters: 1 to 11 (up to pp.369)
- 2. E. Balagurusamy: Programming in C#, 2nd Edition, Tata McGraw

Hill, 2008.

(Programming Examples 3.7, 3.10, 5.5, 6.1, 7.2, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3, 8.5, 8.7, 8.8, 9.1, 9.2, 9.3, 9.4, 10.2, 10.4, 11.2, 11.4, 12.1, 12.4, 12.5, 12.6, 13.1, 13.2, 13.3, 13.6, 14.1, 14.2, 14.4, 15.2, 15.3, 16.1, 16.2, 16.3, 18.3, 18.5.18.6)

Reference Books:

- 1. Tom Archer: Inside C#, WP Publishers, 2001.
- 2. Herbert Schildt: C# The Complete Reference, Tata McGraw Hill, 2004.

JAVA AND J2EE

Subject Code:10CS753 Hours/Week: 4 Total Hours: 52 IA Marks: 25 Exam Marks: 100 Exam Hours: 3

PART - A

UNIT - 1

6 Hours

Introduction to Java: Java and Java applications; Java Development Kit (JDK); Java is interpreted, Byte Code, JVM; Object-oriented programming; Simple Java programs.

Data types and other tokens: Boolean variables, int, long, char, operators, arrays, white spaces, literals, assigning values; Creating and destroying objects; Access specifiers.

Operators and Expressions: Arithmetic Operators, Bitwise operators, Relational operators, The Assignment Operator, The ? Operator; Operator Precedence; Logical expression; Type casting; Strings

Control Statements: Selection statements, iteration statements, Jump Statements.

UNIT - 2

6 Hours

Classes, Inheritance, Exceptions, Applets : Classes: Classes in Java; Declaring a class; Class name; Super classes; Constructors; Creating instances of class; Inner classes.

Inheritance: Simple, multiple, and multilevel inheritance; Overriding, overloading.

Exception handling: Exception handling in Java.

The Applet Class: Two types of Applets; Applet basics; Applet Architecture; An Applet skeleton; Simple Applet display methods; Requesting repainting; Using the Status Window; The HTML APPLET tag; Passing parameters to Applets; getDocumentbase() and getCodebase(); ApletContext and showDocument(); The AudioClip Interface; The AppletStub Interface; Output to the Console.

UNIT - 3

7 Hours

Multi Threaded Programming, Event Handling: Multi Threaded Programming: What are threads? How to make the classes threadable; Extending threads; Implementing runnable; Synchronization; Changing state of the thread; Bounded buffer problems, read-write problem, producer-consumer problems.

Event Handling: Two event handling mechanisms; The delegation event model; Event classes; Sources of events; Event listener interfaces; Using the delegation event model; Adapter classes; Inner classes.

UNIT - 4

7 Hours

Swings: Swings: The origins of Swing; Two key Swing features; Components and Containers; The Swing Packages; A simple Swing Application; Create a Swing Applet; Jlabel and ImageIcon; JTextField;The Swing Buttons; JTabbedpane; JScrollPane; JList; JComboBox; JTable.

Java 2 Enterprise Edition Overview, Database Access: Overview of J2EE and J2SE

The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief Overview of the JDBC process; Database Connection; Associating the JDBC/ODBC Bridge with the Database; Statement Objects; ResultSet; Transaction Processing; Metadata, Data types; Exceptions.

UNIT – 6

7 Hours

Servlets: Background; The Life Cycle of a Servlet; Using Tomcat for Servlet Development; A simple Servlet; The Servlet API; The Javax.servlet Package; Reading Servlet Parameter; The Javax.servlet.http package; Handling HTTP Requests and Responses; Using Cookies; Session Tracking.

UNIT – 7

6 Hours

JSP, RMI: Java Server Pages (JSP): JSP, JSP Tags, Tomcat, Request String, User Sessions, Cookies, Session Objects.

Java Remote Method Invocation: Remote Method Invocation concept; Server side, Client side.

UNIT - 8

7 Hours

Enterprise Java Beans: Enterprise java Beans; Deployment Descriptors; Session Java Bean, Entity Java Bean; Message-Driven Bean; The JAR File.

Text Books:

1. Herbert Schildt: Java The Complete Reference, 7th Edition, Tata McGraw Hill, 2007.

(Chapters 1, 2, 3, 4, 5, 6, 8, 10, 11, 21, 22, 29, 30, 31)

2. Jim Keogh: J2EE - The Complete Reference, Tata McGraw Hill, 2007.

(Chapters 5, 6, 11, 12, 15)

Reference Books:

- 1. Y. Daniel Liang: Introduction to JAVA Programming, 7th Edition, Pearson Education, 2007.
- 2. Stephanie Bodoff et al: The J2EE Tutorial, 2nd Edition, Pearson Education, 2004.

SOFTWARE TESTING

Subject Code: 10CS842	I.A. Marks: 25
Hours/Week: 4	Exam Marks: 100
Total Hours: 52	Exam Hours: 3

PART – A

UNIT 1

6 Hours

7 Hours

A Perspective on Testing, Examples: Basic definitions, Test cases, Insights from a Venn diagram, Identifying test cases, Error and fault taxonomies, Levels of testing. Examples: Generalized pseudocode, The triangle problem, The NextDate function, The commission problem, The SATM (Simple Automatic Teller Machine) problem, The currency converter, Saturn windshield wiper.

UNIT 2

Boundary Value Testing, Equivalence Class Testing, Decision Table-Based Testing: Boundary value analysis, Robustness testing, Worst-case testing, Special value testing, Examples, Random testing, Equivalence classes, Equivalence test cases for the triangle problem, NextDate function, and the commission problem, Guidelines and observations. Decision tables, Test cases for the triangle problem, NextDate function, and the commission problem, Guidelines and observations.

UNIT 3

Path Testing, Data Flow Testing: DD paths, Test coverage metrics, Basis path testing, guidelines and observations. Definition-Use testing, Slice-based testing, Guidelines and observations.

Levels of Testing, Integration Testing: Traditional view of testing levels, Alternative life-cycle models, The SATM system, Separating integration and system testing. A closer look at the SATM system, Decomposition-based, call graph-based, Path-based integrations.

PART – B

UNIT 5

7 Hours

7 Hours

6 Hours

System Testing, Interaction Testing: Threads, Basic concepts for requirements specification, Finding threads, Structural strategies and functional strategies for thread testing, SATM test threads, System testing guidelines, ASF (Atomic System Functions) testing example. Context of

interaction, A taxonomy of interactions, Interaction, composition, and determinism, Client/Server Testing,.

UNIT 6

Process Framework: Validation and verification, Degrees of freedom, Varieties of software. Basic principles: Sensitivity, redundancy, restriction, partition, visibility, Feedback. The quality process, Planning and monitoring, Quality goals, Dependability properties, Analysis, Testing, Improving the process, Organizational factors.

UNIT 7

Fault-Based Testing, Test Execution: Overview, Assumptions in faultbased testing, Mutation analysis, Fault-based adequacy criteria, Variations on mutation analysis. Test Execution: Overview, from test case specifications to test cases, Scaffolding, Generic versus specific scaffolding, Test oracles, Self-checks as oracles, Capture and replay.

UNIT 8

6 Hours

Planning and Monitoring the Process, Documenting Analysis and Test: Quality and process, Test and analysis strategies and plans, Risk planning, Monitoring the process, Improving the process, The quality team, Organizing documents, Test strategy document, Analysis and test plan, Test design specifications documents, Test and analysis reports.

TEXT BOOKS:

- 1. Paul C. Jorgensen: Software Testing, A Craftsman's Approach, 3rd Edition, Auerbach Publications, 2008.
- (Listed topics only from Chapters 1, 2, 5, 6, 7, 9, 10, 12, 1314, 15) 2. Mauro Pezze, Michal Young: Software Testing and Analysis -
 - Process, Principles and Techniques, Wiley India, 2009. (Listed topics only from Chapters 2, 3, 4, 16, 17, 20, 24)

REFERENCE BOOKS:

- 1. Aditya P Mathur: Foundations of Software Testing, Pearson Education, 2008.
- Srinivasan Desikan, Gopalaswamy Ramesh: Software Testing 2. Principles and Practices, 2nd Edition, Pearson Education, 2007.
- 3. Brian Marrick: The Craft of Software Testing, Pearson Education, 1995.

INFORMATION AND NETWORK SECURITY

Subject Code: 10CS835	I.A. Marks : 25
Hours/Week: 04	Exam Hours: 03
Total Hours: 52	Exam Marks: 100

PART – A

6 Hours

UNIT 1 Planning for Security: Introduction; Information Security Policy, Standards, and Practices; The Information Security Blue Print; Contingency plan and a model for contingency plan

6 Hours

UNIT 2 Security Technology-1: Introduction; Physical design; Firewalls; Protecting **Remote Connections**

UNIT 3

Security Technology – 2: Introduction; Intrusion Detection Systems (IDS); Honey Pots, Honey Nets, and Padded cell systems; Scanning and Analysis Tools

UNIT 4

8 Hours

Cryptography: Introduction; A short History of Cryptography; Principles of Cryptography; Cryptography Tools; Attacks on Cryptosystems.

PART - B

UNIT 5 8 Hours Introduction to Network Security, Authentication Applications: Attacks, services, and Mechanisms; Security Attacks; Security Services; A model for Internetwork Security; Internet Standards and RFCs Kerberos, X.509 Directory Authentication Service.

UNIT 6

Electronic Mail Security: Pretty Good Privacy (PGP); S/MIME

UNIT 7

IP Security: IP Security Overview; IP Security Architecture; Authentication Header; Encapsulating Security Payload; Combining Security Associations; Key Management.

UNIT 8

6 Hours

Web Security: Web security requirements; Secure Socket layer (SSL) and Transport layer Security (TLS); Secure Electronic Transaction (SET)

Text Books:

- 1. Michael E. Whitman and Herbert J. Mattord: Principles of Information Security, 2nd Edition, Cengage Learning, 2005. (Chapters 5, 6, 7, 8; Exclude the topics not mentioned in the syllabus)
- 2. William Stallings: Network Security Essentials: Applications and Standards, 3rd Edition, Pearson Education, 2007. (Chapters: 1, 4, 5, 6, 7, 8)

Reference Book:

1. Behrouz A. Forouzan: Cryptography and Network Security, Special Indian Edition, Tata McGraw-Hill, 2007.

DIGITAL IMAGE PROCESSING

Subject Code: 10CS762	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART – A

UNIT - 1

6 Hours Digitized Image and its properties: Basic concepts, Image digitization, Digital image properties

UNIT - 27 Hours Image Preprocessing: Image pre-processing: Brightness and geometric transformations, local preprocessing.

UNIT - 37 Hours Segmentation – 1: Thresholding, Edge-based segmentation.

UNIT - 47 Hours Segmentation – 2: Region based segmentation, Matching.

6 Hours

6 Hours

PART – B

7 Hours

Image Enhancement: Image enhancement in the spatial domain: Background, Some basic gray level transformations, Histogram processing, Enhancement using arithmetic/ logic operations, Basics of spatial filtering, Smoothing spatial filters, Sharpening spatial filters. Image enhancement in the frequency domain: Background, Introduction to the Fourier transform and the frequency domain, Smoothing Frequency-Domain filters, Sharpening Frequency Domain filters, Homomorphic filtering.

UNIT - 6

6 Hours

Image Compression: Image compression: Fundamentals, Image compression models, Elements of information theory, Error-Free Compression, Lossy compression.

UNIT - 7

7 Hours

Shape representation: Region identification, Contour-based shape representation and description, Region based shape representation and description, Shape classes.

UNIT – 8

6 Hours

Morphology: Basic morphological concepts, Morphology principles, Binary dilation and erosion, Gray-scale dilation and erosion, Morphological segmentation and watersheds

Text Books:

1. Milan Sonka, Vaclav Hlavac and Roger Boyle: Image Processing, Analysis and Machine Vision, 2nd Edition, Thomoson Learning, 2001.

(Chapters 2, 4.1 to 4.3, 5.1 to 5.4, 6, 11.1 to 11.4, 11.7)

2. Rafel C Gonzalez and Richard E Woods: Digital Image Processing, 3rd Edition, Pearson Education, 2003.

(Chapters 3.1 to 3.7, 4.1 to 4.5, 8.1 to 8.5)

Reference Books:

- 1. Anil K Jain, "Fundamentals of Digital Image Processing", PHI, 1997, Indian Reprint 2009.
- 2. B.Chanda, D Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2002.

MULTI-CORE ARCHITECTURE AND PROGRAMMING

Subject Code: 10CS846	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT 1

Introduction The power and potential of parallelism, Examining sequential and parallel programs, Parallelism using multiple instruction streams, The Goals: Scalability and performance portability, Balancing machine specifics with portability, A look at six parallel computers: Chip multiprocessors, Symmetric multiprocessor architectures, Heterogeneous chip designs, Clusters, Supercomputers, Observations from the six parallel computers.

UNIT 2

Reasoning about Performance

Motivation and basic concepts, Sources of performance loss, Parallel structure, Performance trade-offs, Measuring performance, Scalable performance.

UNIT 3

Examples of Multi-Core Architectures

Introduction to Intel Architecture, How an Intel Architecture System works, Basic Components of the Intel Core 2 Duo Processor: The CPU, Memory Controller, I/O Controller; Intel Core i7: Architecture, The Intel Core i7

7 Hours

6 Hours

6 Hours

UNIT - 5

Processor, Intel QuickPath Interconnect, The SCH; Intel Atom Architecture.

Introduction to Texas Instruments' Multi-Core Multilayer SoC architecture for communications, infrastructure equipment

UNIT 4

Parallel Algorithm Design

Introduction, The Task / Channel model, Foster's design methodology, Examples: Boundary value problem, Finding the maximum, The n-Body problem, Adding data input.

PART – B

UNIT 5

Parallel Programming – 1 (Using OpenMP)

Designing for threads: Task decomposition, Data decomposition, Data flow decomposition, Implications of different decompositions; Challenges in decomposition, Parallel programming patters, A motivating problem: Error diffusion.

Threading and Parallel Programming Constructs: Synchronization, Critical sections, Deadlocks, Synchronization primitives: Semaphores, Locks, Condition variables; Messages, Flow Control-Based concepts: Fence, Barrier; Implementation-Dependent threading issues.

UNIT 6

Parallel Programming – 2 (Using OpenMP)

Introduction, The shared-memory model, Parallel *for* loops, Declaring private variables, Critical sections, Reductions, Performance improvements, More general data parallelism, Functional parallelism.

UNIT 7

Solutions to Common Parallel Programming Problems

Too many threads, Data races, deadlocks, and live locks, Heavily contended locks, Non-blocking algorithms, Thread-safe functions and libraries, Memory issues, Cache-related issues, Avoiding pipeline stalls, Data organization for high performance.

UNIT 8

Threading in the Processor

Single-Core Processors: Processor architecture fundamentals, Comparing Superscalar and EPIC architectures.

Multi-Core Processors: Hardware-based threading, Hyper-threading technology, Multi-Core processors, Multiple processor interactions, Power consumption, Beyond multi-core architecture.

NOTE: In order to acquire a sound understanding of the subject, it is desirable for the students to work in the laboratory using OpenMP. The

hands-on experience would reinforce the concepts learnt in theory. Problems similar to the ones solved in the Algorithms Laboratory can be solved and issues like speed-up achieved can be analyzed in depth. Several free tools are available from companies like INTEL to facilitate such a study.

Text Books:

- 1. Calvin Lin, Lawrence Snyder: Principles of Parallel Programming, Pearson Education, 2009.
 - (Listed topics only from Chapters 1, 2, 3)
- 2. Michael J. Quinn: Parallel Programming in C with MPI and OpenMP, Tata McGraw Hill, 2004.

(Listed topics only from Chapters 3, 17)

3. Shameem Akhter, Jason Roberts: Multi-Core Programming, Increasing Performance through Software Multithreading, Intel Press, 2006.

(Listed topics only from Chapters 3, 4, 7, 9, 10)

 Web resources for Example Architectures of INTEL and Texas Instruments: <u>http://download.intel.com/design/intarch/papers/321087.pdf</u>; <u>http://focus.ti.com/lit/wp/spry133/spry133.pdf</u>

7 Hours

6 Hours

7 Hours

6 Hours

- 1. Introduction to Parallel Computing Ananth Grama et. al., Pearson Education, 2009.
- 2. Reinders : Intel Threading Building Blocks, O'reilly 2005
- 3. David Culler et. al.: Parallel Computer Architecture: A Hardware/Software Approach, Elsevier, 2006.
- Richard Gerber, Aart J.C. Bik, Kevin B. Smith, Xinmin Tian: Software Optimization Cookbook, High-Performance Recipes for IA-32 Platforms, 2nd Edition, Intel Press, 2006.

WIRELESS NETWORKS AND MOBILE COMPUTING

Sub Code: 10CS831	IA Marks	: 25
Hrs/Week: 04	Exam Hours	:03
Total Hrs: 52	Exam Marks	: 100

PART-A

UNIT - 1

6 Hours

Mobile Computing Architecture: Types of Networks, Architecture for Mobile Computing, 3-tier Architecture, Design Considerations for Mobile Computing.

UNIT - 2

Wireless Networks – 1: GSM and SMS: Global Systems for Mobile Communication (GSM and Short Service Messages (SMS): GSM Architecture, Entities, Call routing in GSM, PLMN Interface, GSM Addresses and Identities, Network Aspects in GSM, Mobility Management, GSM Frequency allocation. Introduction to SMS, SMS Architecture, SM MT, SM MO, SMS as Information bearer, applications

UNIT - 3

Wireless Networks – 2: GPRS : GPRS and Packet Data Network, GPRS Network Architecture, GPRS Network Operations, Data Services in GPRS, Applications for GPRS, Billing and Charging in GPRS

UNIT – 4

Wireless Networks – 3: CDMA, 3G and WiMAX: Spread Spectrum technology, IS-95, CDMA versus GSM, Wireless Data, Third Generation Networks, Applications on 3G, Introduction to WiMAX.

UNIT – 5

PART - B

Mobile Client: Moving beyond desktop, Mobile handset overview, Mobile phones and their features, PDA, Design Constraints in applications for handheld devices. Mobile IP: Introduction, discovery, Registration, Tunneling, Cellular IP, Mobile IP with IPv6

UNIT – 6

Mobile OS and Computing Environment: Smart Client Architecture, The Client: User Interface, Data Storage, Performance, Data Synchronization, Messaging. The Server: Data Synchronization, Enterprise Data Source, Messaging. Mobile Operating Systems: WinCE, Palm OS, Symbian OS, Linux, Proprietary OS Client Development : The development process, Need analysis phase, Design phase, Implementation and Testing phase, Deployment phase, Development Tools, Device Emulators.

UNIT – 7

Building, Mobile Internet Applications: Thin client: Architecture, the client, Middleware, messaging Servers, Processing a Wireless request, Wireless Applications Protocol (WAP) Overview, Wireless Languages: Markup Languages, HDML, WML, HTML, cHTML, XHTML, VoiceXML.

UNIT – 8

J2ME: Introduction, CDC, CLDC, MIDP; Programming for CLDC, MIDlet model, Provisioning, MIDlet life-cycle, Creating new application, MIDlet

7 Hours

6 Hours

7 Hours

6 Hours

7 Hours

6 Hours

event handling, GUI in MIDP, Low level GUI Components, Multimedia APIs; Communication in MIDP, Security Considerations in MIDP.

Text Books:

- Dr. Ashok Talukder, Ms Roopa Yavagal, Mr. Hasan Ahmed: Mobile Computing, Technology, Applications and Service Creation, 2d Edition, Tata McGraw Hill, 2010
- 2. Martyn Mallik: Mobile and Wireless Design Essentials, Wiley, 2003

Reference Books:

- 1. Raj kamal: Mobile Computing, Oxford University Press, 2007.
- 2. Iti Saha Misra: Wireless Communications and Networks, 3G and Beyond, Tata McGraw Hill, 2009.

DIGITAL SIGNAL PROCESSING

Subject Code: 10CS752	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT – 1 7 Hours The Discrete Fourier Transform: Its Properties and Applications : Frequency Domain Sampling: The Discrete Fourier Transform: Frequency Domain Sampling and Reconstruction of Discrete-Time Signals, The Discrete Fourier Transform (DFT), The DFT as a Linear Transformation, Relationship of the DFT to other Transforms. Properties of the DFT: Periodicity, Linearity and Symmetry Properties, Multiplication of Two DFT's and Circular Convolution, Additional DFT Properties; Linear

Filtering Methods Based on the DFT: Use of the DFT in Linear Filtering, Filtering of Long Data Sequences; Frequency Analysis of Signals using the DFT.

UNIT - 2

7 Hours

Efficient Computation of the DFT: Fast Fourier Transform Algorithms: Efficient Computation of the DFT: FFT Algorithms : Direct Computation of the DFT, Divide-and-Conquer Approach to Computation of the DFT, Radix-2 FFT Algorithms, Radix-4 FFT Algorithms, Split-Radix FFT Algorithms, Implementation of FFT Algorithms.

Applications of FFT Algorithms: Efficient computation of the DFT of Two Real Sequences, Efficient computation of the DFT of a 2N-Point Real Sequence, Use of the FFT Algorithm in Linear filtering and Correlation.

A Linear filtering approach to Computation of the DFT: The Goertzel Algorithm, The Chirp-Z Transform Algorithm.

Quantization Effects in the Computation of the DFT: Quantization Errors in the Direct Computation of the DFT, Quantization Errors in FFT Algorithms.

UNIT – 3

6 Hours

Implementation of Discrete-Time Systems – 1: Structures for the Realization of Discrete-Time Systems

Structures for FIR Systems: Direct-Form Structures, Cascade-Form Structures, Frequency-Sampling Structures, Lattice Structure.

Structures for IIR Systems: Direct-Form Structures, Signal Flow Graphs and Transposed Structures, Cascade-Form Structures, Parallel-Form Structures, Lattice and Lattice-Ladder Structures for IIR Systems.

UNIT - 4

6 Hours

Implementation of Discrete-Time Systems – **2:** State-Space System Analysis and Structures: State-Space Descriptions of Systems Characterized by Difference Equations, Solution of the State-Space Equations, Relationships between Input-Output and State-Space Descriptions, State-Space Analysis in the Z-Domain, Additional State-Space Structures.

Representation of Numbers: Fixed-Point Representation of Numbers, Binary Floating-Point Representation of Numbers, Errors Resulting from Rounding and Truncation.

UNIT – 5

Implementation of Discrete-Time Systems – **3:** Quantization of Filter Coefficients: Analysis of Sensitivity to Quantization of Filter Coefficients, Quantization of Coefficients in FIR Filters

Round-Off Effects in Digital Filters: Limit-Cycle Oscillations in Recursive Systems, Scaling to Prevent Overflow, Statistical Characterization of Quantization effects in Fixed-Point Realizations of Digital Filters.

UNIT - 6

7 Hours

Design of Digital Filters – 1: General Considerations: Causality and its Implications, Characteristics of Practical Frequency-Selective Filters.

Design of FIR Filters: Symmetric And Antisymetric FIR Filters, Design of Linear-Phase FIR Filters Using Windows, Design of Linear-Phase FIR Filters by the Frequency-Sampling Method, Design of Optimum Equiripple Linear-Phase FIR Filters, Design of FIR Differentiators, Design of Hilbert Transformers, Comparison of Design Methods for Linear-Phase FIR filters.

UNIT - 7

6 Hours

Design of Digital Filters – **2:** Design of IIR Filters from Analog Filters: IIR Filter Design by Approximation of Derivatives, IIR Filter Design by Impulse Invariance, IIR Filter Design by the Bilinear Transformation, The Matched-Z Transformation, Characteristics of commonly used Analog Filters, Some examples of Digital Filters Designs based on the Bilinear Transformation.

UNIT – 8

7 Hours

Design of Digital Filters – **3:** Frequency Transformations: Frequency Transformations in the Analog Domain, Frequency Transformations in the Digital Domain.

Design of Digital Filters based on Least-Squares method: Padé Approximations method, Least-Square design methods, FIR least-Squares Inverse (Wiener) Filters, Design of IIR Filters in the Frequency domain.

Text Books:

 John G. Proakis and Dimitris G. Manolakis: Digital Signal Processing, 3rd Edition, Pearson Education, 2003. (Chapters 5, 6, 7 and 8)

Reference Books:

- 1. Paulo S. R. Diniz, Eduardo A. B. da Silva And Sergio L. Netto: Digital Signal Processing: System Analysis and Design, Cambridge University Press, 2002.
- 2. Sanjit K. Mitra: Digital Signal Processing: A Computer Based Approach, Tata Mcgraw-Hill, 2001.
- 3. Alan V Oppenheim and Ronald W Schafer: Digital Signal Processing, PHI, Indian Reprint, 2008.

DIGITAL SIGNAL PROCESSING

Subject Code: 10CS752	I.A. Marks : 25
Hours/Week : 04	Exam Hours: 03
Total Hours : 52	Exam Marks: 100

PART - A

UNIT - 1

7 Hours

The Discrete Fourier Transform: Its Properties and Applications : Frequency Domain Sampling: The Discrete Fourier Transform: Frequency Domain Sampling and Reconstruction of Discrete-Time Signals, The Discrete Fourier Transform (DFT), The DFT as a Linear Transformation, Relationship of the DFT to other Transforms. Properties of the DFT: Periodicity, Linearity and Symmetry Properties, Multiplication of Two DFT's and Circular Convolution, Additional DFT Properties; Linear Filtering

Methods Based on the DFT: Use of the DFT in Linear Filtering, Filtering of Long Data Sequences; Frequency Analysis of Signals using the DFT.

UNIT - 2

7 Hours

Efficient Computation of the DFT: Fast Fourier Transform Algorithms: Efficient Computation of the DFT: FFT Algorithms : Direct Computation of the DFT, Divide-and-Conquer Approach to Computation of the DFT, Radix- 2 FFT Algorithms, Radix-4 FFT Algorithms, Split-Radix FFT Algorithms, Implementation of FFT Algorithms.

Applications of FFT Algorithms: Efficient computation of the DFT of Two Real Sequences, Efficient computation of the DFT of a 2N-Point Real Sequence, Use of the FFT Algorithm in Linear filtering and Correlation.

A Linear filtering approach to Computation of the DFT: The Goertzel Algorithm, The Chirp-Z Transform Algorithm.

Quantization Effects in the Computation of the DFT: Quantization Errors in the Direct Computation of the DFT, Quantization Errors in FFT Algorithms.

UNIT - 3

6 Hours

6 Hours

Implementation of Discrete-Time Systems - 1: Structures for the Realization of **Discrete-Time Systems**

Structures for FIR Systems: Direct-Form Structures, Cascade-Form Structures, Frequency-Sampling Structures, Lattice Structure.

Structures for IIR Systems: Direct-Form Structures, Signal Flow Graphs and Transposed Structures, Cascade-Form Structures, Parallel-Form Structures, Lattice and Lattice-Ladder Structures for IIR Systems.

UNIT - 4

Implementation of Discrete-Time Systems - 2: State-Space System Analysis and Structures: State-Space Descriptions of Systems Characterized by Difference Equations, Solution of the State-Space Equations, Relationships between Input-Output and State-Space Descriptions, State-Space Analysis in the Z-Domain, Additional State-Space Structures.

Representation of Numbers: Fixed-Point Representation of Numbers, Binary Floating-Point Representation of Numbers, Errors Resulting from Rounding and Truncation.

PART – B

UNIT - 5

6 Hours Implementation of Discrete-Time Systems - 3: Quantization of Filter Coefficients: Analysis of Sensitivity to Quantizatior of Filter Coefficients, Quantization of Coefficients in FIR Filters

Round-Off Effects in Digital Filters: Limit-Cycle Oscillations in Recursive Systems, Scaling to Prevent Overflow, Statistical Characterization of Quantization effects in Fixed-Point Realizations of Digital Filters.

UNIT - 6

7 Hours

6 Hours

Design of Digital Filters - 1: General Considerations: Causality and its Implications, Characteristics of Practical Frequency-Selective Filters.

Design of FIR Filters: Symmetric And Antisymetric FIR Filters, Design of Linear-Phase FIR Filters Using Windows, Design of Linear-Phase FIR Filters by the Frequency-Sampling Method, Design of Optimum Equiripple Linear- Phase FIR Filters, Design of FIR Differentiators, Design of Hilbert Transformers, Comparison of Design Methods for Linear-Phase FIR filters.

UNIT - 7

Design of Digital Filters - 2: Design of IIR Filters from Analog Filters: IIR Filter Design by Approximation of Derivatives, IIR Filter Design by Impulse Invariance, IIR Filter Design by the Bilinear Transformation, The Matched-Z Transformation, Characteristics of commonly used Analog Filters, Some examples of Digital Filters

Designs based on the Bilinear Transformation.

7 Hours

Design of Digital Filters – **3:** Frequency Transformations: Frequency Transformations in the Analog Domain, Frequency Transformations in the Digital Domain.

Design of Digital Filters based on Least-Squares method: Padé Approximations method, Least-Square design methods, FIR least-Squares Inverse (Wiener) Filters, Design of IIR Filters in the Frequency domain.

Text Books:

UNIT – 8

 John G. Proakis and Dimitris G. Manolakis: Digital Signal Processing, 3rd Edition, Pearson Education, 2003. (Chapters 5, 6, 7 and 8)

Reference Books:

- 4. Paulo S. R. Diniz, Eduardo A. B. da Silva And Sergio L. Netto: Digital Signal Processing: System Analysis and Design, Cambridge University Press, 2002.
- 5. Sanjit K. Mitra: Digital Signal Processing: A Computer Based Approach, Tata Mcgraw-Hill, 2001.
- 6. Alan V Oppenheim and Ronald W Schafer: Digital Signal Processing, PHI, Indian Reprint, 2008.

8

Year: 2014-2015

Course Title: Cloud Computing	Course Code: 14SCS12
Credits(L:T:P):3:0:1	Core/Elective: Core
Type of Course: Lecture & Practical	Total Contact Hours: 50 Hrs

COURSE OBJECTIVES

-To learn how to use Cloud Services.

-To implement Virtualization

- To implement Task Scheduling algorithms.

-Apply Map-Reduce concept to applications.

-To build Private Cloud.

Topics:

Semester: I

Module I

Introduction. Cloud Infrastructure

Cloud computing, Cloud computing delivery models and services, Ethical issues, Cloud vulnerabilities, Cloud computing at Amazon, Cloud computing the Google perspective, Microsoft Windows Azure and online services, Open-source software platforms for private clouds, Cloud storage diversity and vendor lock-in, Energy use and ecological impact, Service level agreements, User experience and software licensing. Exercises and problems.

10 Hours

Module II

Cloud Computing: Application Paradigms.

Challenges of cloud computing, Architectural styles of cloud computing, Workflows: Coordination of multiple activities, Coordination based on a state machine model: The Zookeeper, The Map Reduce programming model, A case study: The GrepTheWeb application, Cloud for science and engineering, High-performance computing on a cloud, Cloud computing for Biology research, Social computing, digital content and cloud computing.

10 Hours

10 Hours

Module III

Cloud Resource Virtualization.

Virtualization, Layering and virtualization, Virtual machine monitors, Virtual Machines, Performance and Security Isolation, Full virtualization and paravirtualization, Hardware support for virtualization, Case Study: Xen a VMM based paravirtualization, Optimization of network virtualization, vBlades, Performance comparison of virtual machines, The dark side of virtualization, Exercises and problems.

Module IV

Cloud Resource Management and Scheduling.

Policies and mechanisms for resource management, Application of control theory to task scheduling on a cloud, Stability of a two-level resource allocation architecture, Feedback control based on dynamic thresholds, Coordination of specialized autonomic performance managers, A utility-based model for cloud-based Web services, Resourcing bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems.

Module V **Cloud Security, Cloud Application Development.**

Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, Amazon web services: EC2 instances, Connecting clients to cloud instances through firewalls, Security rules for application and transport layer protocols in EC2, How to launch an EC2 Linux instance and connect to it, How to use S3 in java, Cloud-based simulation of a distributed trust algorithm, A trust management service, A cloud service for adaptive data streaming, Cloud based optimal FPGA synthesis .Exercises and problems.

10 Hours

LAB EXPERIMENTS

NOTE: Simulate using object oriented programming, any available cloud environment (Eg; Amazon cloud) and VM ware for resource virtualization.

1. Create a Collaborative learning environment for a particular learning topic using Google Apps. Google Drive, Google Docs and Google Slides must be used for hosting e-books, important articles and presentations respectively. The instructor must use the Google Sheets to convey the timetable for different events and for analyzing the scores for individual assignment submission.

2. Modeling and simulation Cloud computing environments, including Data Centers, Hosts and Cloudlets and perform VM provisioning using CloudSim: Design a host with two CPU cores, which receives request for hosting two VMs, such that each one requires two cores and plans to host four tasks units. More specifically, tasks t1, t2, t3 and t4 to be hosted in VM1, while t5, t6, t7, and t8 to be hosted in VM2. Implement space-shared allocation policy and time-shared allocation policy. Compare the results.

3. Model a Cloud computing environment having Data center that had 100 hosts. The hosts are to be modeled to have a CPU core (1000 MIPS), 2 GB of RAM and 1 TB of storage. Consider the workload model for this evaluation included provisioning requests for 400 VMs, with each request demanding 1 CPU core (250 MIPS), 256 MB of RAM and 1 GB of storage. Each VM hosts a *web-hosting application service*, whose CPU utilization distribution was generated according to the uniform distribution. Each instance of a webhosting service required 150,000 MIPS or about 10 minutes to complete execution assuming 100% utilization. Simulate Energy-conscious model for power consumption and power management techniques such as Dynamic Voltage and Frequency Scaling (DVFS). Initially, VMs are to be allocated according to requested parameters (4 VMs on each host). The Cloud computing architecture that is to be considered for studying energy conscious resource management techniques/policies included a data center, CloudCoordinator, and Sensor component. The CloudCoordinator and Sensor perform their usual roles. Via the attached Sensors (which are connected with every host), CloudCoordinator must periodically monitor the performance status of active VMs such as load conditions, and processing share. This real time information is to be passed to VMM, which can use it for performing appropriate resizing of VMs and application of DVFS and soft scaling. CloudCoordinator continuously1 has to adapt allocation of VMs by issuing VM migration commands and changing power states of nodes according to its policy and current utilization of resources.

4. Model and simulate the environment consisting of a data center with 10,000 hosts where each host was modeled to have a single CPU core (1200MIPS), 4GB of RAM memory and 2TB of storage. Consider the provisioning policy for VMs as space-shared, which allows one VM to be active in a host at a given instance of time. Make a request from the end-user (through the Datacenter Broker) for creation and instantiation of 50 VMs that had following constraints: 1024MB of physical memory, 1 CPU core and 1GB of storage. The application granularity was modeled to be composed of 300 task units, with each task unit requiring 1,440,000 million instructions (20 minutes in the simulated hosts) to be executed on a host. Minimal data transfer (300 KB) overhead can be considered for the task units (to and from the data center). After the creation of VMs, task units were submitted in small groups of 50 (one for each VM) at inter-arrival delay of 10 minutes.

- 5. Implement Map Reduce concept for
- a. Strassen's Matrix Multiplication for a huge matrix.

b. Computing the average number of citation index a researcher has according to age among some 1 billion journal articles. Consider a network of entities and relationships between them. It is required to calculate a state of each entity on

the basis of properties of the other entities in its neighborhood. This state can represent a distance to other nodes, indication that there is a neighbor

with the certain properties, characteristic of neighborhood density and so on. A network is stored as a set of nodes and each node contains a list of adjacent node IDs. Mapper emits messages for each node using ID of the adjacent node as a key. Reducer must re compute state and rewrite node with the new state. Implement this scenario.

Course Outcomes:

The students should be able to:

-Demonstrate and experiment simple Cloud Applications

- -Apply resource allocation, scheduling algorithms.
- Implement Map-Reduce concept.
- Create virtual machines from available physical resources.
- Setup a private cloud.
- Familiarize with Open Stack.

Text Book:

1. Dan C Marinescu: Cloud Computing Theory and Practice. Elsevier(MK) 2013.

REFERENCES:

- 1. Rajkumar Buyya, James Broberg, Andrzej Goscinski: Cloud Computing Principles and Paradigms, Willey 2014.
- 2. John W Rittinghouse, James F Ransome: Cloud Computing Implementation, Management and Security, CRC Press 2013.

Semester: I

Year: 2014-2015

Course Title: Embedded Computing Systems	Course Code: 14SCS153	
Credits(L:T:P):4:0:0	Core/Elective: Elective	
Type of Course: Lecture	Total Contact Hours: 50 Hrs	COUR

OBJECTIVES

- Provide a general overview of Embedded Systems
- Show current statistics of Embedded Systems
- Design a complete microprocessor-based hardware system
- Design, code, compile, and test real-time software
- Integrate a fully functional system including hardware and software
- Gain the ability to make intelligent choices between hardware/software tradeoffs.

Topics:

MODULE I

Introduction to embedded systems: Embedded systems, Processor embedded into a system, Embedded hardware units and device in a system, Embedded software in a system, Examples of embedded systems, Design process in embedded system, Formalization of system design, Design process and design examples, Classification of embedded systems, skills required for an embedded system designer.

MODULE II

Devices and communication buses for devices network :IO types and example, Serial communication devices, Parallel device ports, Sophisticated interfacing features in device ports, Wireless devices, Timer and counting devices, Watchdog timer, Real time clock, Networked embedded systems, Serial bus communication protocols, Parallel bus device protocolsparallel communication internet using ISA, PCI, PCI-X and advanced buses, Internet enabled systems- network protocols, Wireless and mobile system protocols.

13 Hours

MODULE III

Device drivers and interrupts and service mechanism: Programming-I/O busy-wait approach without interrupt service mechanism, ISR concept, Interrupt sources, Interrupt servicing (Handling) Mechanism, Multiple interrupts, Context and the periods for context switching, interrupt latency and deadline, Classification of processors interrupt service mechanism from Context-saving angle, Direct memory access, Device driver programming.

MODULE IV

Interprocesses communication and synchronization of processes, Threads and tasks: Multiple process in an application, Multiple threads in an application, Tasks, Task states, Task and Data, Clear-cut distinction between functions. ISRS and tasks by their characteristics, concept and semaphores, Shared data, Inter-process communication, Signal function, Semaphore functions, Message Queue functions, Mailbox functions, Pipe functions, Socket functions, RPC functions. 10 Hours

MODULE V

Real-time operating systems: OS Services, Process management, Timer functions, Event functions, Memory management, Device, file and IO subsystems management, Interrupt routines in RTOS environment and handling of interrupt source calls, Real-time operating systems, Basic design using an RTOS, RTOS task scheduling models, interrupt latency and response of the tasks as performance metrics, OS security issues. Introduction to embedded

7 Hours

10 Hours

SE

software development process and tools, Host and target machines, Linking and location software.

10 Hours

Course Outcomes:

The students should be able to:

- Knowledge to distinguish the characteristics of embedded computer systems.
- Ability examines the various vulnerabilities of embedded computer systems.
- Ability to design embedded systems.
- Awareness of the changing landscape in embedded systems

Text Books:

1. Raj Kamal, "Embedded Systems: Architecture, Programming, and Design" 2nd edition, Tata McGraw hill-2013

Chapters: Chapter 1.1 to 1.5, 1.8 to 1.12, Chapter 3, 4, 7, 8 and 13.1 to 13.3.

References:

2. Marilyn Wolf ,"Computer as Components, Principles of Embedded Computing System Design" 3rd edition , Elsevier-2014 .

Semester: II

Year: 2014-2015

Course Title: Managing Big Data	Course Code: 14SCS21
Credits(L:T:P):3:0:1	Core/Elective: Core
Type of Course: Lecture & Practical	Total Contact Hours: 50 Hrs

Course Objectives:

- To Understand big data for business intelligence
- To Learn business case studies for big data analytics
- To Understand Nosql big data management
- To manage Big data without SQL
- To understanding map-reduce analytics using Hadoop and related tools

TOPICS:

MODULE I

UNDERSTANDING BIG DATA What is big data – why big data –.Data!, Data Storage and Analysis, Comparison with Other Systems, Rational Database

Management System, Grid Computing, Volunteer Computing, convergence of key trends - unstructured data - industry examples of big data - web analytics - big data and marketing - fraud and big data - risk and big data - credit risk management - big data and algorithmic trading - big data and healthcare - big data in medicine - advertising and big data - big data technologies - introduction to Hadoop - open source technologies - cloud and big data - mobile business intelligence - Crowd sourcing analytics - inter and trans firewall analytics

MODULE II NOSOL DATA MANAGEMENT

10 Hours Introduction to NoSQL - aggregate data models - aggregates - key-value and document data models - relationships graph databases - schema less databases - materialized views - distribution models - sharding - version - Map reduce partitioning and combining - composing map-reduce calculations

MODULE III BASICS OF HADOOP

Data format – analyzing data with Hadoop – scaling out – Hadoop streaming – Hadoop pipes – design of Hadoop distributed file system (HDFS) - HDFS concepts - Java interface - data flow - Hadoop I/O - data integrity - compression - serialization - Avro - file-based data structures

MODULE IV

MAPREDUCE APPLICATIONS

MapReduce workflows - unit tests with MRUnit - test data and local tests - anatomy of MapReduce job run - classic Mapreduce - YARN - failures in classic Map-reduce and YARN - job scheduling - shuffle and sort - task execution -MapReduce types - input formats - output formats

MODULE V

HADOOP RELATED TOOLS

Hbase - data model and implementations - Hbase clients - Hbase examples - praxis. Cassandra - Cassandra data model cassandra examples - cassandra clients -Hadoop integration. Pig - Grunt - pig data model - Pig Latin - developing and testing Pig Latin scripts. Hive – data types and file formats – HiveQL data definition – HiveQL data manipulation – HiveQL queries.

LAB Experiments

Exercise 1 --- HDFS

10 Hours

10 Hours

10 Hours

10 Hours

24

Start by reviewing HDFS. You will find that its composition is similar to your local Linux file system. You will use the hadoop fs command when interacting with HDFS.

- 1. Review the commands available for the Hadoop Distributed File System:
- 2. Copy file foo.txt from local disk to the user's directory in HDFS
- 3. Get a directory listing of the user's home directory in HDFS
- 4. Get a directory listing of the HDFS root directory
- 5. Display the contents of the HDFS file user/fred/bar.txt
- 6. Move that file to the local disk, named as baz.txt
- 7. Create a directory called input under the user's home directory
- 8. Delete the directory input old and all its contents
- 9. Verify the copy by listing the directory contents in HDFS:

Exercise 2 --- MapReduce

- 1. Create a JOB and submit to cluster
- 2. Track the job information
- 3. Terminate the job
- 4. Counters in MR Jobs with example
- 5. Map only Jobs and generic map examples
- 6. Distributed cache example
- 7. Combiners, Secondary sorting and Job chain examples

Exercise 3 --- MapReduce (Programs)

Using movie lens data

- 1. List all the movies and the number of ratings
 - 2. List all the users and the number of ratings they have done for a movie
 - 3. List all the Movie IDs which have been rated (Movie Id with at least one user rating it)
 - 4. List all the Users who have rated the movies (Users who have rated at least one movie)
 - 5. List of all the User with the max, min, average ratings they have given against any movie
 - 6. List all the Movies with the max, min, average ratings given by any user

Exercise4 – Extract facts using Hive

Hive allows for the manipulation of data in HDFS using a variant of SQL. This makes it excellent for transforming and consolidating data for load into a relational database. In this exercise you will use HiveQL to filter and aggregate click data to build facts about user's movie preferences. The query results will be saved in a staging table used to populate the Oracle Database.

The moveapp_log_json table contains an activity column. Activity states are as follows:

RATE_MOVIE
 COMPLETED_MOVIE
 PAUSE_MOVIE
 START_MOVIE
 BROWSE_MOVIE
 LIST_MOVIE
 LOGIN
 LOGOUT
 INCOMPLETE_MOVIE

hive> SELECT * FROM movieapp_log_json LIMIT 5; hive> drop table movieapp_log_json; hive> CREATE EXTERNAL TABLE movieapp_log_json (custId INT, movieId INT, genreId INT, time STRING, recommended STRING, activity INT, rating INT, price FLOAT) ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.JsonSerde' LOCATION '/user/oracle/moviework/applog/';

hive> SELECT * FROM movieapp_log_json LIMIT 20;

hive> SELECT MIN(time), MAX(time) FROM movieapp_log_json

1. PURCHASE_MOVIE

Hive maps queries into Map Reduce jobs, simplifying the process of querying large datasets in HDFS. HiveQL statements can be mapped to phases of the Map Reduce framework. As illustrated in the following figure, selection and transformation operations occur in map tasks, while aggregation is handled by reducers. Join operations are flexible: they can be performed in the reducer or mappers depending on the size of the leftmost table.

1. Write a query to select only those clicks which correspond to starting, browsing, completing, or purchasing movies. Use a CASE statement to transform the RECOMMENDED column into integers where 'Y' is 1 and 'N' is 0. Also, ensure GENREID is not null. Only include the first 25 rows.

2. Write a query to select the customer ID, movie ID, recommended state and most recent rating for each movie.

3. Load the results of the previous two queries into a staging table. First, create the staging table:

4. Next, load the results of the queries into the staging table.

Exercise 5 Extract sessions using Pig

While the SQL semantics of HiveQL are useful for aggregation and projection, some analysis is better described as the flow of data through a series of sequential operations. For these situations, Pig Latin provides a convenient way of implementing data flows over data stored in HDFS. Pig Latin statements are translated into a sequence of Map Reduce jobs on the execution of any STORE or DUMP command. Job construction is optimized to exploit as much parallelism as possible, and much like Hive, temporary storage is used to hold intermediate results. As with Hive, aggregation occurs largely in the reduce

tasks. Map tasks handle Pig's FOREACH and LOAD, and GENERATE statements. The EXPLAIN command will show the execution plan for any Pig Latin script. As of Pig 0.10, the ILLUSTRATE command will provide sample results for each stage of the execution plan.

In this exercise you will learn basic Pig Latin semantics and about the fundamental types in Pig Latin, Data Bags and Tuples.

- 1. Start the Grunt shell and execute the following statements to set up a dataflow with the click stream data. Note: Pig Latin statements are assembled into Map Reduce jobs which are launched at execution of a DUMP or STORE statement.
- 2. Group the log sample by movie and dump the resulting bag.

3. Add a GROUP BY statement to the sessionize.pig script to process the click stream data into user sessions.

Course Outcomes:

The students should be able to:

- Describe big data and use cases from selected business domains
- Explain NoSQL big data management
- Install, configure, and run Hadoop and HDFS
- Perform map-reduce analytics using Hadoop
- Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data Analytics

TEXT BOOKS:

- 1. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 2. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.

REFERENCES:

- 1. Vignesh Prajapati, Big data analytics with R and Hadoop, SPD 2013.
- 2. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 3. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 4. Alan Gates, "Programming Pig", O'Reilley, 2011.

Semester: II

Course Title: Advances in Computer Networks	Course Code: 14SCS22
Credits(L:T:P):3:0:1	Core/Elective: Core
Type of Course: Lecture & Practical	Total Contact Hours: 50 Hrs

Course Objectives:

- To become familiar with the basics of Computer Networks
- To understand various Network architectures
- Concepts of fundamental protocols
- To understand the network traffic, congestion, controlling and resource allocation.

Topics:

MODULE I

Foundation

Building a Network, Requirements, Perspectives, Scalable Connectivity, Cost-Effective Resource sharing, Support for Common Services, Manageability, Protocol layering, Performance, Bandwidth and Latency, Delay X Bandwidth Product, Perspectives on Connecting, Classes of Links, Reliable Transmission, Stop-and-Wait, Sliding Window, Concurrent Logical Channels.

T1: Chapter 1.1, 1.2, 1.5.1, 1.5.2., 2.1, 2.5 T2: Chapter 4

MODULE II

Internetworking- I

Switching and Bridging, Datagram's, Virtual Circuit Switching, Source Routing, Bridges and LAN Switches, Basic Internetworking (IP), What is an Internetwork ?, Service Model, Global Addresses, Datagram Forwarding in IP, sub netting and classless addressing, Address Translation(ARP), Host Configuration(DHCP), Error Reporting(ICMP), Virtual Networks and Tunnels.

T1: Chapter 3.1, 3.2,

MODULE III

Internetworking- II

Network as a Graph, Distance Vector(RIP), Link State(OSPF), Metrics, The Global Internet, Routing Areas, Routing among Autonomous systems(BGP), IP Version 6(IPv6), Mobility and Mobile IP T2:Chapter 13.1 to 13.18, Ch 18. **10 Hours T1:** Chapter 3.3, 4.1.1,4.1.3

MODULE IV

End-to-End Protocols

Simple Demultiplexer (UDP), Reliable Byte Stream(TCP), End-to-End Issues, Segment Format, Connecting Establishment and Termination, Sliding Window Revisited, Triggering Transmission, Adaptive Retransmission, Record Boundaries, TCP Extensions, Queuing Disciplines, FIFO, Fair Queuing, TCP Congestion Control, Additive Increase/ Multiplicative Decrease, Slow Start, Fast Retransmit and Fast Recovery. **T1:** Chapter 5.1, 5.2.1 to 5.2.8, 6.2, 6.3 **10 Hours**

MODULE V

Congestion Control and Resource Allocation

Congestion-Avoidance Mechanisms, DEC bit, Random Early Detection (RED), Source-Based Congestion Avoidance. The Domain Name System(DNS), Electronic Mail(SMTP, POP, IMAP, MIME), World Wide Web(HTTP), Network Management(SNMP).

T1: Chapter 6.4 T2: Chapter 23.1 to 23.16, Chapter 24, Chapter 25, Chapter 27.1 to 27.8

10 Hours

10 Hours

Laboratory Work:

PART A: Implement the following using C/C++:

1. Write a program to transfer the contents of a requested file from server to the client using TCP/IP Sockets (using TCP/IP Socket programming).

2. Write a program to archive Traffic management at Flow level by implementing Closed Loop Control technique. (Leaky Bucket Algorithm)

3. Write a program to implement dynamic routing strategy in finding optimal path for data transmission. (Bellman ford algorithm).

4. Write a program to implement Link State Routing (Dijkstra Algorithm).

5. Write a program for implementing the error detection technique while data transfer in unreliable network code using CRC (16-bits) Technique.

6. Write a program for providing security for transfer of data in the network. (RSA Algorithm)

7. Write a program for encrypting 64 bit playing text using DES algorithm.

PART B: Simulation Programs using OPNET /NS2 or any other equivalent software

1. Simulate a 3 node point to point network with duplex links between them. Set the Queue size and vary the bandwidth and find the number of packets dropped.

2. Simulate a four-node point-to-point network, and connect the links as follows: n0->n2, n1->n2 and n2->n3. Apply TCP agent changing the parameters and determine the number of packets sent/received by TCP/UDP

3. Simulate the different types of internet traffic such as FTP and TELNET over network and analyze the throughput.

Course Outcomes:

The students should be able to:

- List and classify network services, protocols and architectures, explain why they are layered.
- Choose key Internet applications and their protocols, and apply to develop their own applications (e.g. Client Server applications, Web Services) using the sockets API.
- Explain develop effective communication mechanisms using techniques like connection establishment, queuing theory, recovery Etc.
- Explain various congestion control techniques.

Text books:

- 1. T1: Larry Peterson and Bruce S Davis "Computer Networks : A System Approach" 5th Edition, Elsevier -2014
- 2. T2: Douglas E Comer, "Internetworking with TCP/IP, Principles, Protocols and Architecture" 6th Edition, PHI 2014

References:

- 1. Uyless Black "Computer Networks, Protocols, Standards and Interfaces" 2nd Edition PHI
- 2. Behrouz A Forouzan "TCP/IP Protocol Suite" 4th Edition Tata McGraw-Hill

Semester: II

10 Hours

10 Hours

10 Hours

Course Title: Advanced Algorithms	Course Code: 14SCS23
Credits(L:T:P):4:0:0	Core/Elective: Core
Type of Course: Lecture	Total Contact Hours: 50 Hrs

COURSE OBJECTIVES

- To learn the graph search algorithms.
- To study network flow and linear programming problems.
- To learn the hill climbing and dynamic programming design techniques.
- To develop recursive backtracking algorithms.
- To get an awareness of NP completeness and randomized algorithms.

Topics:

MODULE I

Review of Analysis Techniques: Growth of Functions: Asymptotic notations; Standard notations and common functions; Recurrences and Solution of Recurrence equations- The substitution method, The recurrence – tree method, The master method; Amortized Analysis: Aggregate, Accounting and Potential Methods.

MODULE II

Graph Algorithms: Bellman - Ford Algorithm; Single source shortest paths in a DAG; Johnson's Algorithm for sparse graphs; Flow networks and Ford-Fulkerson method; Maximum bipartite matching. **Polynomials and the FFT:** Representation of polynomials; The DFT and FFT; Efficient implementation of FFT.

10 Hours MODULE III Number - Theoretic Algorithms: Elementary notions; GCD; Modular Arithmetic; Solving modular linear equations; The Chinese remainder theorem; Powers of an element; RSA cryptosystem; Primality testing; Integer factorization. 10 Hours

MODULE IV

String-Matching Algorithms: Naïve string Matching; Rabin - Karp algorithm; String matching with finite automata; Knuth-Morris-Pratt algorithm; Boyer – Moore algorithms.

MODULE V

Probabilistic and Randomized Algorithms: Probabilistic algorithms; Randomizing deterministic algorithms, Monte Carlo and Las Vegas algorithms; Probabilistic numeric algorithms.

Course Outcomes:

Upon completion of the course, the students will be able to

- Design and apply iterative and recursive algorithms.
- Design and implement optimization algorithms in specific applications.
- Design appropriate shared objects and concurrent objects for applications.

TEXT BOOKS:

1. T. H Cormen, C E Leiserson, R L Rivest and C Stein: Introduction to Algorithms, 3rd Edition, Prentice-Hall of India, 2010.

2. Kenneth A. Berman, Jerome L. Paul: Algorithms, Cengage Learning, 2002.

REFERENCE BOOKS:

1. Ellis Horowitz, Sartaj Sahni, S.Rajasekharan: Fundamentals of Computer Algorithms, 2nd Edition, Universities press, 2007.

Semester: II

Year: 2014-2015

Course Title: Web Services	Course Code: 14SCS251
Credits(L:T:P):4:0:0	Core/Elective: Elective
Type of Course: Lecture	Total Contact Hours: 50 Hrs

Course objectives:

- To provide an in-depth knowledge of Web Services.
- To understand the fundamental concepts of Web services.
- To understand the fundamental concepts of WSDL Web Services.
- To design Web service Architecture.
- To Study Building Blocks of Web services.

TOPICS:

MODULE I

Middleware: Understanding the middle ware, RPC and Related Middle ware, TP Monitors, Object Brokers, Message-Oriented Middleware. 10 Hours

MODULE II

Web Services: Web Services Technologies, Web Services Architecture.

MODULE III

Basic Web Services Technology: WSDL Web Services Description Language, UDDI Universal Description Discovery and Integration, Web Services at work interactions between the Specifications, Related Standards.

10 Hours

10 Hours

10 Hours

MODULE IV

Service Coordination Protocols: Infrastructure for Coordination Protocols, WS- Coordination, WS-Transaction, Rosetta Net and Other Standards Related to Coordination Protocols. 10 Hours

MODULE V

Service Composition: Basic of Service Composition, A New Chance of Success for Composition, Services Composition Models, Dependencies between Coordination and Composition, BPEL: Business Process Execution Language for Web Services, Outlook, Applicability of the Web Services, Web services as a Problem and a Solution : AN Example.

Course Outcomes:

The students should be able to:

- Bind and unbind services in UDDI.
- Develop WSDL document
- Implement web service client to call public service.
- Implement a service and exposing it as public service.

Text Books:

1. Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju: Web Services(Concepts, Architectures and Applications), Springer International Edition 2009.

Semester: II	Year: 2014-2015

Course Title: Information And Network Security	Course Code: 14SCS252
Credits(L:T:P):4:0:0	Core/Elective: Elective
Type of Course: Lecture	Total Contact Hours: 50 Hrs

Course Objectives:

- To understand the fundamentals of Cryptography
- To acquire knowledge on standard algorithms used to provide confidentiality, integrity and authenticity.
- To understand the various key distribution and management schemes.
- To understand how to deploy encryption techniques to secure data in transit across data networks
- To design security applications in the field of Information technology

TOPICS:

MODULE I

Classical Encryption Techniques

Symmetric Cipher Model, Cryptography, Cryptanalysis and Brute-Force Attack, Substitution Techniques, Caesar Cipher, Monoalphabetic Cipher, Playfair Cipher, Hill Cipher, Polyalphabetic Cipher, One Time Pad. **Block Ciphers and the data encryption standard:** Traditional block Cipher structure, stream Ciphers and block Ciphers, Motivation for the feistel Cipher structure, the feistel Cipher, The data encryption standard, DES encryption, DES decryption, A DES example, results, the avalanche effect, the strength of DES, the use of 56-Bit Keys, the nature of the DES algorithm, timing attacks, Block cipher design principles, number of rounds, design of function F, key schedule algorithm.

10 Hours

MODULE II

Public-Key Cryptography and RSA: Principles of public-key cryptosystems. Public-key cryptosystems. Applications for public-key cryptosystems, requirements for public-key cryptosystems. public-key cryptanalysis. The RSA algorithm, description of the algorithm, computational aspects, the security of RSA. Other Public-Key Cryptosystems: Diffiehellman key exchange, The algorithm, key exchange protocols, man in the middle attack, Elgamal Cryptographic systems, Elliptic curve arithmetic, abelian groups, elliptic curves over real numbers, elliptic curves over Zp, elliptic curves overGF(2m), Elliptic curve cryptography, Analog of Diffie-hellman key exchange, Elliptic curve encryption/ decryption, security of Elliptic curve cryptography, Pseudorandom number generation based on an asymmetric cipher, PRNG based on RSA.

MODULE III

Key Management and Distribution: Symmetric key distribution using Symmetric encryption, A key distribution scenario, Hierarchical key control, session key lifetime, a transparent key control scheme, Decentralized key control, controlling key usage, Symmetric key distribution using asymmetric encryption, simple secret key distribution, secret key distribution with confidentiality and authentication, A hybrid scheme, distribution of public keys, public announcement of public keys, publicly available directory, public key authority, public keys certificates, X-509 certificates. Certificates, X-509 version 3, public key infrastructure .**User Authentication:** Remote user Authentication principles, Mutual Authentication, one way Authentication, remote user Authentication using Symmetric encryption, Mutual Authentication using Asymmetric encryption, Mutual Authentication, one way Authentication, personal identity verification.

MODULE IV

Wireless network security: Wireless security, Wireless network threats, Wireless network measures, mobile device security, security threats, mobile device security strategy, IEEE 802.11 Wireless LAN overview, the Wi-Fi alliance, IEEE 802 protocol architecture. Security, IEEE 802.11 is services, IEEE 802.11 iphases of operation, discovery phase, Authentication phase, key management phase, protected data transfer phase, the IEEE 802.11 ipseudorandom function, .
Web Security Considerations: Web Security Threats, Web Traffic Security Approaches. Secure Sockets Layer: SSL Architecture, SSL Record Protocol, Change Cipher Spec Protocol, Alert Protocol, and shake Protocol, Cryptographic
Computations. **Transport Layer Security:** Version Number, Message Authentication Code, Pseudorandom Functions, Alert Codes, Cipher Suites, Client Certificate Types, Certificate Verify And Finished Messages, Cryptographic Computations, Padding. **HTTPS** Connection Initiation, Connection Closure. **Secure Shell** (SSH) Transport Layer Protocol, User Authentication Protocol, Connection Protocol.

10 Hours

MODULE V

Electronic Mail Security: Pretty good privacy, notation, operational; description, S/MIME, RFC5322, Multipurpose internet mail extensions, S/MIME functionality, S/MIME messages, S/MIME certificate processing, enhanced security services, Domain keys identified mail, internet mail architecture, E-Mail threats, DKIM strategy, DKIM functional flow. **IP Security:** IP Security overview, applications of IPsec, benefits of IPsec, Routing applications, IPsec documents, IPsec services, transport and tunnel modes, IP Security policy, Security associations, Security associations database, Security policy database, IP traffic processing, Encapsulating Security payload, ESP format, encryption and authentication algorithms, Padding, Anti replay service, transport and tunnel modes, combining security associations, authentication plus confidentiality, basic combinations of security associations, internet key exchange, key determinations protocol, header and payload formats, cryptographic suits. **10 Hours**

Course Outcomes:

- The students be able to
- Analyze the vulnerabilities in any computing system and hence be able to design a
- security solution.
- Identify the security issues in the network and resolve it.
- Evaluate security mechanisms using rigorous approaches, including theoretical.
 - **Text Books:**
- 1. William Stallings: Cryptography and Network Security, Pearson 6th edition. 2013

References

1. V k Pachghare: Cryptography and Information Security, PHE ,2013.

Semester: II

Year: 2014-2015

Course Title : Pattern Recognition	Course Code: 14SCS253
Credits(L:T:P):4:0:0	Core/Elective: Elective
Type of Course: Lecture	Total Contact Hours: 50 Hrs

Course Objectives:

- To study the mathematical morphology necessary for Pattern recognition.
- To introduce the student to various Pattern recognition techniques.
- To study the Representation and description and feature extraction.
- To study the principles of decision trees and clustering in pattern recognition.

TOPICS:

MODULE I

Introduction: Definition of PR, Applications, Datasets for PR, Different paradigms for PR, Introduction to probability, events, random variables, Joint distributions and densities, moments. Estimation minimum risk estimators, problems.

10 Hours

MODULE II

Representation: Data structures for PR, Representation of clusters, proximity measures, size of patterns, Abstraction of Data set, Feature extraction, Feature selection, Evaluation. 10 Hours

MODULE III

Nearest Neighbor based classifiers & Bayes classifier: Nearest neighbor algorithm, variants of NN algorithms, use of NN for transaction databases, efficient algorithms, Data reduction, prototype selection, Bayes theorem, minimum error rate classifier, estimation of probabilities, estimation of probabilities, comparison with NNC, Naive Bayes classifier, Basyessian belief network. 10 Hours

MODULE IV

Decision Trees: Introduction, DT for PR, Construction of DT, Splitting at the nodes, Over-fitting & Pruning, Examples.

10 Hours

MODULE V

Clustering: Hierarchical (Agglomerative, single/complete/average linkage, wards, Partitional (Forgy's, k-means, Isodata), clustering large data sets, examples. 10 Hours

COURSE OUTCOMES:

Upon Completion of the course, the students will be able to

- Develop and analyze decision tress.
- Design the nearest neighbor classifier.
- Develop algorithms for Pattern Recognition.

Text Books:

- Pattern Recognition (An Introduction), V Susheela Devi, M Narsimha Murthy, Universities Press, ISBN 978-81-7371-725-3,2011.
- Pattern Recognition & Image Analysis, Earl Gose, Richard Johnsonbaugh, Steve Jost. PHI ISBN-81-203-1484-0, 1996.

References

1. Duda R. O., P.E. Hart, D.G. Stork., Pattern Classification, John Wiley and sons, 2000.

05.

To understand the basic concepts of learning and decision trees.To understand the neural networks and genetic algorithms

• To understand the Bayesian techniques

Course Title: Mach Credits(L:T:P):3:0:1

COURSE OBJECTIVES:

Semester: IV

- To understand the instant based learning
- To understand the analytical learning and reinforced learning

Type of Course: Lecture & Practical

TOPICS:

MODULE I

INTRODUCTION, CONCEPT LEARNING AND DECISION TREES

Machine Learning Techniques

Learning Problems – Designing Learning systems, Perspectives and Issues – Concept Learning – Version Spaces and Candidate Elimination Algorithm – Inductive bias – Decision Tree learning – Representation – Algorithm – Heuristic Space Search. **10 Hrs**

MODULE II

NEURAL NETWORKS AND GENETIC ALGORITHMS

Neural Network Representation – Problems – Perceptrons – Multilayer Networks and Back Propagation Algorithms – Advanced Topics – Genetic Algorithms – Hypothesis Space Search – Genetic Programming – Models of Evolution and Learning.

MODULE III

BAYESIAN AND COMPUTATIONAL LEARNING

Bayes Theorem – Concept Learning – Maximum Likelihood – Minimum Description	
Length Principle – Bayes Optimal Classifier – Gibbs Algorithm – Naïve Bayes Classifier	
– Bayesian Belief Network – EM Algorithm – Probably Learning – Sample Complexity for	
Finite and Infinite Hypothesis Spaces – Mistake Bound Model.	10 Hrs

MODULE IV

INSTANT BASED LEARNING AND LEARNING SET OF RULES

K- Nearest Neighbor Learning – Locally Weighted Regression – Radial Basis Functions – Case-Based Reasoning – Sequential Covering Algorithms – Learning Rule Sets – Learning First Order Rules – Learning Sets of First Order Rules – Induction as Inverted Deduction – Inverting Resolution 10 Hrs

MODULE V

ANALYTICAL LEARNING AND REINFORCED LEARNING

Perfect Domain Theories – Explanation Based Learning – Inductive-Analytical Approaches - FOCL Algorithm – Reinforcement Learning – Task – Q-Learning – Temporal Difference Learning

LABORATORY WORK

(The following tasks can be implemented in a language of your choice or any tools available)

- 1) Implement the CANDIDATE ELIMINATION algorithm. Show how it is used to learn from training examples and hypothesize new instances in Version Space.
- 2) Implement the FIND–S algorithm. Show how it can be used to classify new instances of target concepts. Run the experiments to deduce instances and hypothesis consistently.

Year: 2014-2015

Course Code: 14SCS41

Total Contact Hours: 50 Hrs

Core/Elective: Core

10 Hrs

10 Hrs

- 3) Implement the ID3 algorithm for learning Boolean–valued functions for classifying the training examples by searching through the space of a Decision Tree.
- 4) Design and implement the Back-propagation algorithm by applying it to a learning task involving an application like FACE RECOGNITION.
- 5) Design and implement Naïve Bayes Algorithm for learning and classifying TEXT DOCUMENTS.

COURSE OUTCOMES:

On Completion of the course, the students will be able to

- Choose the learning techniques with this basic knowledge.
- Apply effectively neural networks and genetic algorithms for appropriate applications.
- Apply bayesian techniques and derive effectively learning rules.
- Choose and differentiate reinforcement and analytical learning techniques

TEXT BOOK:

1. Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (INDIAN EDITION), 2013.

REFERENCES:

- 2. Ethem Alpaydin, "Introduction to Machine Learning", 2nd Ed., PHI Learning Pvt. Ltd., 2013.
- 3. T. Hastie, R. Tibshirani, J. H. Friedman, "The Elements of Statistical Learning", Springer; 1st edition, 2001.

ANALOG ELECTRONIC CIRCUITS (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES32	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

$\mathbf{PART} - \mathbf{A}$

UNIT 1:

Diode Circuits: Diode Resistance, Diode equivalent circuits, Transition and diffusion capacitance, Reverse recovery time, Load line analysis, Rectifiers, Clippers and clampers. **6 Hours**

UNIT 2:

Transistor Biasing: Operating point, Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased, DC bias with voltage feedback, Miscellaneous bias configurations, Design operations, Transistor switching networks, PNP transistors, Bias stabilization. **6 Hours**

UNIT 3:

Transistor at Low Frequencies: BJT transistor modeling, CE Fixed biasconfiguration, Voltage divider bias, Emitter follower, CB configuration,Collector feedback configuration, Analysis of circuits r_e model; analysis ofCE configuration using h- parameter model; Relationship between h-parameter model of CE,CC and CE configuration.7 Hours

UNIT 4:

Transistor Frequency Response: General frequency considerations, low frequency response, Miller effect capacitance, High frequency response, multistage frequency effects. 7 Hours

PART – B

UNIT 5:

(a) General Amplifiers: Cascade connections, Cascode connections, Darlington connections. 3 Hours

(b) Feedback Amplifier: Feedback concept, Feedback connections type, Practical feedback circuits. Design procedures for the feedback amplifiers. 4 Hours

UNIT 6:

Power Amplifiers: Definitions and amplifier types, series fed class Aamplifier, Transformer coupled Class A amplifiers, Class B amplifieroperations, Class B amplifier circuits, Amplifier distortions. Designing ofPower amplifiers.7 Hours

UNIT 7:

Oscillators: Oscillator operation, Phase shift Oscillator, Wienbridge Oscillator, Tuned Oscillator circuits, Crystal Oscillator. (BJT Version Only) Simple design methods of Oscillators. **6 Hours**

UNIT 8:

FET Amplifiers: FET small signal model, Biasing of FET, Common drain common gate configurations, MOSFETs, FET amplifier networks.

6 Hours

TEXT BOOK:

1. **"Electronic Devices and Circuit Theory"**, Robert L. Boylestad and Louis Nashelsky, PHI/Pearson Eduication. 9TH Edition.

REFERENCE BOOKS:

- 'Integrated Electronics', Jacob Millman & Christos C. Halkias, Tata - McGraw Hill, 2nd Edition, 2010
- 2. **"Electronic Devices and Circuits",** David A. Bell, PHI, 4th Edition, 2004
- 3. "Analog Electronics Circuits: A Simplified Approach", U.B. Mahadevaswamy, Pearson/Saguine, 2007.

LOGIC DESIGN (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES33	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Principles of combinational logic-1: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables,

PART – A

UNIT 6:

Power Amplifiers: Definitions and amplifier types, series fed class Aamplifier, Transformer coupled Class A amplifiers, Class B amplifieroperations, Class B amplifier circuits, Amplifier distortions. Designing ofPower amplifiers.7 Hours

UNIT 7:

Oscillators: Oscillator operation, Phase shift Oscillator, Wienbridge Oscillator, Tuned Oscillator circuits, Crystal Oscillator. (BJT Version Only) Simple design methods of Oscillators. **6 Hours**

UNIT 8:

FET Amplifiers: FET small signal model, Biasing of FET, Common drain common gate configurations, MOSFETs, FET amplifier networks.

6 Hours

TEXT BOOK:

1. **"Electronic Devices and Circuit Theory"**, Robert L. Boylestad and Louis Nashelsky, PHI/Pearson Eduication. 9TH Edition.

REFERENCE BOOKS:

- 'Integrated Electronics', Jacob Millman & Christos C. Halkias, Tata - McGraw Hill, 2nd Edition, 2010
- 2. **"Electronic Devices and Circuits",** David A. Bell, PHI, 4th Edition, 2004
- 3. "Analog Electronics Circuits: A Simplified Approach", U.B. Mahadevaswamy, Pearson/Saguine, 2007.

LOGIC DESIGN (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES33	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Principles of combinational logic-1: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables,

PART – A

Karnaugh maps-3, 4 and 5 variables, Incompletely specified functions (Don't Care terms), Simplifying Max term equations. **6 Hours**

UNIT 2:

Principles of combinational Logic-2: Quine-McCluskey minimization technique- Quine-McCluskey using don't care terms, Reduced Prime Implicant Tables, Map entered variables. 7 Hours

UNIT 3:

Analysis and design of combinational logic - I: General approach,Decoders-BCD decoders, Encoders.6 Hours

UNIT 4:

Analysis and design of combinational logic - II: Digital multiplexers-Using multiplexers as Boolean function generators. Adders and subtractors-Cascading full adders, Look ahead carry, Binary comparators. Design methods of building blocks of combinational logics.

7 Hours

PART – B

UNIT 5:

Sequential Circuits – 1: Basic Bistable Element, Latches, SR Latch,Application of SR Latch, A Switch Debouncer, The $\overline{S^{\Box}} \ \overline{R^{\Box}}$ Latch, The gated D Latch, The Master-Slave Flip-Flops (Pulse-TriggeredFlip-Flops): The Master-Slave SR Flip-Flops, The Master-Slave JK Flip-Flop, Edge Triggered Flip-Flop: The Positive Edge-Triggered D Flip-Flop,Negative-Edge Triggered D Flip-Flop.7 Hours

UNIT 6:

Sequential Circuits – **2:** Characteristic Equations, Registers, Counters -Binary Ripple Counters, Synchronous Binary counters, Counters based on Shift Registers, Design of a Synchronous counters, Design of a Synchronous Mod-6 Counter using clocked JK Flip-Flops Design of a Synchronous Mod-6 Counter using clocked D, T, or SR Flip-Flops **7 Hours**

UNIT 7:

Sequential Design - I: Introduction, Mealy and Moore Models, State Machine Notation, Synchronous Sequential Circuit Analysis and Design. 6 Hours

UNIT 8:

Sequential Design - II: Construction of state Diagrams, Counter Design.

6 Hours

TEXT BOOKS:

- 1. **"Digital Logic Applications and Design"**, John M Yarbrough, Thomson Learning, 2001.
- 2. **"Digital Principles and Design ",** Donald D Givone, Tata McGraw Hill Edition, 2002.

REFERENCE BOOKS:

- 1. **"Fundamentals of logic design",** Charles H Roth, Jr; Thomson Learning, 2004.
- 2. "Logic and computer design Fundamentals", Mono and Kim, Pearson, Second edition, 2001.
- 3. "Logic Design", Sudhakar Samuel, Pearson/Saguine, 2007

NETWORK ANALYSIS (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES34	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Basic Concepts: Practical sources, Source transformations, Network reduction using Star – Delta transformation, Loop and node analysis With linearly dependent and independent sources for DC and AC networks, Concepts of super node and super mesh. 7 Hours UNIT 2:

Network Topology: Graph of a network, Concept of tree and co-tree, incidence matrix, tie-set, tie-set and cut-set schedules, Formulation of equilibrium equations in matrix form, Solution of resistive networks, Principle of duality. **7 Hours**

UNIT 3:

Network Theorems – 1: Superposition, Reciprocity and Millman's theorems. 6 Hours

transform representation of discrete time signals. Sampling theorm and Nyquist rate. **7 Hours**

UNIT 7:

Z-Transforms – 1: Introduction, Z – transform, properties of ROC, properties of Z – transforms, inversion of Z – transforms.

UNIT 8:

6 Hours

Z-transforms – **2:** Transform analysis of LTI Systems, unilateral Z-Transform and its application to solve difference equations. **6 Hours**

TEXT BOOK

- 1. Simon Haykin, "Signals and Systems", John Wiley India Pvt. Ltd., 2nd Edn, 2008.
- 2. Michael Roberts, "Fundamentals of Signals & Systems", 2nd ed, Tata McGraw-Hill, 2010.

REFERENCE BOOKS:

- 1. Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson Education Asia / PHI, 2nd edition, 1997. Indian Reprint 2002.
- 2. H. P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006.
- 3. **B. P. Lathi**, "Linear Systems and Signals", Oxford University Press, 2005.
- 4. Ganesh Rao and Satish Tunga, "Signals and Systems", Pearson/Sanguine Technical Publishers, 2004.

FUNDAMENTALS OF HDL (Common to EC/TC/IT/BM/ML)

Sub Code	:	10EC45	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Introduction: Why HDL?, A Brief History of HDL, Structure of HDL Module, Operators, Data types, Types of Descriptions, simulation and synthesis, Brief comparison of VHDL and Verilog

7 Hours

UNIT 2:

Data –Flow Descriptions: Highlights of Data-Flow Descriptions, Structureof Data-Flow Description, Data Type – Vectors.6 Hours

UNIT 3:

Behavioral Descriptions: Behavioral Description highlights, structure of HDL behavioral Description, The VHDL variable –Assignment Statement, sequential statements. **6 Hours**

UNIT 4:

Structural Descriptions: Highlights of structural Description, Organization of the structural Descriptions, Binding, state Machines, Generate, Generic, and Parameter statements.

7 Hours

PART – B

UNIT 5:

Procedures, Tasks, and Functions: Highlights of Procedures, tasks, and Functions, Procedures and tasks, Functions.

Advanced HDL Descriptions: File Processing, Examples of File Processing 7 Hours

UNIT 6:

Mixed –Type Descriptions: Why Mixed-Type Description? VHDL User-Defined Types, VHDL Packages, Mixed-Type Description examples

UNIT 7:

Mixed –Language Descriptions: Highlights of Mixed-Language Description, How to invoke One language from the Other, Mixed-language Description Examples, Limitations of Mixed-Language Description.

UNIT 8:

7 Hours

6 Hours

Synthesis Basics: Highlights of Synthesis, Synthesis information from Entity and Module, Mapping Process and Always in the Hardware Domain.

6 Hours

TEXT BOOKS:

1. HDL Programming (VHDL and Verilog)- Nazeih M.Botros- John Weily India Pvt. Ltd. 2008.

REFERENCE BOOKS:

- 1. Fundamentals of HDL Cyril P.R. Pearson/Sanguin 2010.
- 2. VHDL -Douglas perry-Tata McGraw-Hill.
- 3. A Verilog HDL Primer- J.Bhaskar BS Publications
- 4. Circuit Design with VHDL-Volnei A.Pedroni-PHI.

MICROCONTROLLERS LAB (Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ESL47	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

I. PROGRAMMING

- 1. Data Transfer Block move, Exchange, Sorting, Finding largest element in an array.
- 2. Arithmetic Instructions Addition/subtraction, multiplication and division, square, Cube (16 bits Arithmetic operations bit addressable).
- 3. Counters.
- 4. Boolean & Logical Instructions (Bit manipulations).
- 5. Conditional CALL & RETURN.
- 6. Code conversion: BCD ASCII; ASCII Decimal; Decimal ASCII; HEX Decimal and Decimal HEX .
- 7. Programs to generate delay, Programs using serial port and on-Chip timer / counter.

Note: Programming exercise is to be done on both 8051 & MSP430.

II. INTERFACING:

Write C programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

- 8. Simple Calculator using 6 digit seven segment displays and Hex Keyboard interface to 8051.
- 9. Alphanumeric LCD panel and Hex keypad input interface to 8051.
- 10. External ADC and Temperature control interface to 8051.
- 11. Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC interface to 8051; change the frequency and amplitude.

- 12. Stepper and DC motor control interface to 8051.
- 13. Elevator interface to 8051.

HDL LAB (Common to EC/TC/IT/BM/ML)

Sub Code	:	10ECL48	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

Note: Programming can be done using any compiler. Download the programs on a FPGA/CPLD boards such as Apex/Acex/Max/Spartan/Sinfi/TK Base or equivalent and performance testing may be done using 32 channel pattern generator and logic analyzer apart from verification by simulation with tools such as Altera/Modelsim or equivalent.

PROGRAMMING (using VHDL /Verilog)

- 1. Write HDL code to realize all the logic gates
- 2. Write a HDL program for the following combinational designs
 - a. 2 to 4 decoder
 - b. 8 to 3 (encoder without priority & with priority)
 - c. 8 to 1 multiplexer
 - d. 4 bit binary to gray converter
 - e. Multiplexer, de-multiplexer, comparator.
- 2. Write a HDL code to describe the functions of a Full Adder Using three modeling styles.

3. Write a model for 32 bit ALU using the schematic diagram shown below A (31:0) B (31:0)

- ALU should use combinational logic to calculate an output based on the four bit op-code input.
- ALU should pass the result to the out bus when enable line in high, and tri-state the out bus when the enable line is low.
- ALU should decode the 4 bit op-code according to the given in example below.

OPCODE	ALU OPERATION
1.	A + B
2.	A - B
3.	A Complement
4.	A * B
5.	A AND B
6.	A OR B
7.	A NAND B
8.	A XOR B

- 4. Develop the HDL code for the following flip-flops, SR, D, JK, T.
- 5. Design 4 bit binary, BCD counters (Synchronous reset and Asynchronous reset) and "any sequence" counters

<u>INTERFACING</u> (at least four of the following must be covered using VHDL/Verilog)

- 1. Write HDL code to display messages on the given seven segment display and LCD and accepting Hex key pad input data.
- 2. Write HDL code to control speed, direction of DC and Stepper motor.
- 3. Write HDL code to accept 8 channel Analog signal, Temperature sensors and display the data on LCD panel or Seven segment display.
- 4. Write HDL code to generate different waveforms (Sine, Square, Triangle, Ramp etc.,) using DAC change the frequency and amplitude.
- 5. Write HDL code to simulate Elevator operations
- 6. Write HDL code to control external lights using relays.

DIGITAL SIGNAL PROCESSING

Subject Code	: 10EC52	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Discrete Fourier Transforms (DFT): Frequency domain sampling and reconstruction of discrete time signals. DFT as a linear transformation, its relationship with other transforms. **6** Hours

UNIT - 2

Properties of DFT, multiplication of two DFTs- the circular convolution, additional DFT properties. **6** Hours

UNIT - 3

Use of DFT in linear filtering, overlap-save and overlap-add method. Direct computation of DFT, need for efficient computation of the DFT (FFT algorithms). 7 Hours

UNIT - 4

Radix-2 FFT algorithm for the computation of DFT and IDFT-decimationin-time and decimation-in-frequency algorithms. Goertzel algorithm, and chirp-z transform. 7 Hours

PART – B

UNIT - 5

IIR filter design: Characteristics of commonly used analog filters -Butterworth and Chebysheve filters, analog to analog frequency transformations. **6** Hours

UNIT - 6

Implementation of discrete-time systems: Structures for IIR and FIR systemsdirect form I and direct form II systems, cascade, lattice and parallel 7 Hours realization.

UNIT - 7

FIR filter design: Introduction to FIR filters, design of FIR filters using -Rectangular, Hamming, Bartlet and Kaiser windows, FIR filter design using frequency sampling technique. **6** Hours

Design of IIR filters from analog filters (Butterworth and Chebyshev) impulse invariance method. Mapping of transfer functions: Approximation of derivative (backward difference and bilinear transformation) method, Matched z transforms, Verification for stability and linearity during mapping **7 Hours**

TEXT BOOK:

 Digital signal processing – Principles Algorithms & Applications, Proakis & Monalakis, Pearson education, 4th Edition, New Delhi, 2007.

REFERENCE BOOKS:

- 1. Discrete Time Signal Processing, Oppenheim & Schaffer, PHI, 2003.
- 2. **Digital Signal Processing**, S. K. Mitra, Tata Mc-Graw Hill, 3rd Edition, 2010.
- 3. Digital Signal Processing, Lee Tan: Elsivier publications, 2007

ANALOG COMMUNICATION

Subject Code	: 10EC53	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

RANDOM PROCESS: Random variables: Several random variables. Statistical averages: Function of Random variables, moments, Mean, Correlation and Covariance function: Principles of autocorrelation function, cross – correlation functions. Central limit theorem, Properties of Gaussian process. **7 Hours**

UNIT - 2

AMPLITUDE MODULATION: Introduction, AM: Time-Domain description, Frequency – Domain description. Generation of AM wave: square law modulator, switching modulator. Detection of AM waves: square law detector, envelop detector. Double side band suppressed carrier modulation (DSBSC): Time-Domain description, Frequency-Domain representation, Generation of DSBSC waves: balanced modulator, ring modulator. Coherent detection of DSBSC modulated waves. Costas loop.

7 Hours

TEXT BOOKS:

- 1. **Communication Systems**, Simon Haykins, 5th Edition, John Willey, India Pvt. Ltd, 2009.
- 2. An Introduction to Analog and Digital Communication, Simon Haykins, John Wiley India Pvt. Ltd., 2008

REFERENCE BOOKS:

- Modern digital and analog Communication systems B. P. Lathi, Oxford University Press., 4th ed, 2010,
- 2. **Communication Systems**, Harold P.E, Stern Samy and A Mahmond, Pearson Edn, 2004.
- 3. **Communication Systems**: Singh and Sapre: Analog and digital TMH 2nd, Ed 2007.

MICROWAVES AND RADAR

Subject Code	: 10EC54	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

MICROWAVE TRANSMISSION LINES: Introduction, transmission lines equations and solutions, reflection and transmission coefficients, standing waves and SWR, line impedance and line admittance. Smith chart, impedance matching using single stubs, Microwave coaxial connectors.

7 Hours

UNIT - 2

MICROWAVE WAVEGUIDES AND COMPONENTS: Introduction, rectangular waveguides, circular waveguides, microwave cavities, microwave hybrid circuits, directional couplers, circulators and isolators.

6 Hours

UNIT - 3

MICROWAVE DIODES,

Transfer electron devices: Introduction, GUNN effect diodes – GaAs diode, RWH theory, Modes of operation, Avalanche transit time devices: READ diode, IMPATT diode, BARITT diode, Parametric amplifiers Other diodes: PIN diodes, Schottky barrier diodes. **7 Hours**

Microwave network theory and passive devices. Symmetrical Z and Y parameters, for reciprocal Networks, S matrix representation of multi port networks. 6 Hours

PART – B

UNIT - 5

Microwave passive devices, Coaxial connectors and adapters, Phase shifters, Attenuators, Waveguide Tees, Magic tees. **6 Hours**

UNIT - 6

STRIP LINES: Introduction, Microstrip lines, Parallèle strip lines, Coplanar strip lines, Shielded strip Lines. **6 Hours**

UNIT - 7

AN INTRODUCTION TO RADAR: Basic Radar, The simple form of the Radar equation, Radar block diagram, Radar frequencies, application of Radar, the origins of Radar. 7 Hours

UNIT - 8

MTI AND PULSE DOPPLER RADAR: Introduction to Doppler and MTI Radar, delay line Cancellers, digital MTI processing, Moving target detector, pulse Doppler Radar. 7 Hours

TEXT BOOKS:

- 1. Microwave Devices and circuits- Liao / Pearson Education.
- 2. Introduction to Radar systems-Merrill I Skolnik, 3rd Ed, TMH, 2001.
- 3. **Microwave Engineering** Annapurna Das, Sisir K Das TMH Publication, 2nd, 2010.

REFERENCE BOOK:

1. **Microwave Engineering** – David M Pozar, John Wiley India Pvt. Ltd., 3rd Edn, 2008.

INFORMATION THEORY AND CODING

Subject Code	: 10EC55	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

INFORMATION THEORY: Introduction, Measure of information, Average information content of symbols in long independent sequences, Average information content of symbols in long dependent sequences. Markoff statistical model for information source, Entropy and information rate of mark-off source. **7 Hours**

UNIT - 2

SOURCE CODING: Encoding of the source output, Shannon's encoding algorithm. Communication Channels, Discrete communication channels, Continuous channels. 6 Hours

UNIT - 3

FUNDAMENTALLIMITSONPERFORMANCE:Sourcecodingtheorem,Huffmancoding,DiscretememorylessChannels,Mutualinformation,Channel Capacity.7Hours

UNIT - 4

Channel coding theorem, Differential entropy and mutual information for continuous ensembles, Channel capacity Theorem. **6 Hours**

PART – B

UNIT - 5

INTRODUCTION TO ERROR CONTROL CODING: Introduction, Types of errors, examples, Types of codes Linear Block Codes: Matrix description, Error detection and correction, Standard arrays and table look up for decoding. 7 Hours

UNIT - 6

Binary Cycle Codes, Algebraic structures of cyclic codes, Encoding using an (n-k) bit shift register, Syndrome calculation. BCH codes. **6 Hours**

RS codes, Golay codes, Shortened cyclic codes, Burst error correcting codes. Burst and Random Error correcting codes. **7 Hours**

UNIT - 8

Convolution Codes, Time domain approach. Transform domain approach. 6 Hours

TEXT BOOKS:

- 1. **Digital and analog communication systems**, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 1996.
- 2. **Digital communication**, Simon Haykin, John Wiley India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **ITC and Cryptography**, Ranjan Bose, TMH, II edition, 2007
- 2. **Digital Communications** Glover and Grant; Pearson Ed. 2nd Ed 2008.

FUNDAMENTALS OF CMOS VLSI

Subject Code	: 10EC56	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	:100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

BASIC MOS TECHNOLOGY: Integrated circuit's era. Enhancement and depletion mode MOS transistors. nMOS fabrication. CMOS fabrication. Thermal aspects of processing. BiCMOS technology. Production of E-beam masks. **3 Hours**

MOS TRANSISTOR THEORY: Introduction, MOS Device Design Equations, The Complementary CMOS Inverter – DC Characteristics, Static Load MOS Inverters, The Differential Inverter, The Transmission Gate, Tristate Inverter. 4 Hours

TESTABILITY: Performance parameters. Layout issues. I/O pads. Real estate. System delays. Ground rules for design. Test and testability.

7 Hours

TEXT BOOKS:

- CMOS VLSI Design A Circuits and Systems Perspective. 3rd Edition. N.H. Weste and David Harris. Addison-Wesley, 2005. (Refer to http://www.cmosvlsi.com).
- Principles of CMOS VLSI Design: A Systems Perspective, Neil H. E. Weste, K. Eshragian, and ??? 3rd edition, Pearson Education (Asia) Pvt. Ltd., 200?. (Shift to the latest edition.).
- Basic VLSI Design Douglas A. Pucknell & Kamran Eshraghian, PHI 3rd Edition (original Edition – 1994), 2005.

REFERENCE BOOKS:

- 1. R. Jacob Baker. CMOS Circuit Design, Layout and Simulation. John Wiley India Pvt. Ltd, 2008.
- 2. Fundamentals of Semiconductor Devices, M. K. Achuthan and K. N. Bhat, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2007.
- CMOS Digital Integrated Circuits: Analysis and Design, Sung-Mo Kang & Yusuf Leblebici, 3rd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007.
- 4. **Analysis and Design of Digital Integrated Circuits** D.A Hodges, H.G Jackson and R.A Saleh. 3rd Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2007.

DIGITAL SIGNAL PROCESSING LABORATORY

Subject Code	: 10ECL57	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

A LIST OF EXPERIMENTS USING MATLAB / SCILAB / OCTAVE / WAB

- 3. Verification of Sampling theorem.
- 4. Impulse response of a given system
- 5. Linear convolution of two given sequences.
- 6. Circular convolution of two given sequences

- 7. Autocorrelation of a given sequence and verification of its properties.
- 8. Cross correlation of given sequences and verification of its properties.
- 9. Solving a given difference equation.
- 10. Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum.
- 11. Linear convolution of two sequences using DFT and IDFT.
- 12. Circular convolution of two given sequences using DFT and IDFT
- 13. Design and implementation of FIR filter to meet given specifications.
- 14. Design and implementation of IIR filter to meet given specifications.

B. LIST OF EXPERIMENTS USING DSP PROCESSOR

1.Linear convolution of two given sequences.

2. Circular convolution of two given sequences.

3.Computation of N- Point DFT of a given sequence

4.Realization of an FIR filter (any type) to meet given specifications .The input can be a signal from function generator / speech signal.

5.Audio applications such as to plot time and frequency (Spectrum) display of Microphone output plus a cosine using DSP. Read a wav file and match with their respective spectrograms

6.Noise: Add noise above 3kHz and then remove; Interference suppression using 400 Hz tone.

7.Impulse response of first order and second order system

REFERENCE BOOKS:

- 1. Digital signal processing using MATLAB Sanjeet Mitra, TMH, 2001
- 2. Digital signal processing using MATLAB J. G. Proakis & Ingale, MGH, 2000
- 3. Digital Signal Processors, B. Venkataramani and Bhaskar, TMH,2002

ANALOG COMMUNICATION LAB + LIC LAB

Subject Code	: 10ECL58	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

EXPERIMENTS USING DESCERTE COMPONENTS and LABVIEW - 2009 CAN BE USED FOR VERIFICATION AND TESTING.

- 1. Second order active LPF and HPF
- 2. Second order active BPF and BE
- 3. Schmitt Trigger Design and test a Schmitt trigger circuit for the given values of UTP and LTP

VI SEMESTER

DIGITAL COMMUNICATION

Subject Code	: 10EC61	IA Marks	: 25
No. of Lecture Hrs/Wee	k : 04	Exam Hours	: 03
Total no. of Lecture Hrs	. : 52	Exam Marks	: 100

PART – A

UNIT - 1

Basic signal processing operations in digital communication. Sampling Principles: Sampling Theorem, Quadrature sampling of Band pass signal, Practical aspects of sampling and signal recovery. **7 Hours**

UNIT - 2

PAM, TDM. Waveform Coding Techniques, PCM, Quantization noise and SNR, robust quantization. **6 Hours**

UNIT - 3

DPCM, DM, applications. Base-Band Shaping for Data Transmission, Discrete PAM signals, power spectra of discrete PAM signals. **7 Hours**

UNIT - 4

ISI, Nyquist's criterion for distortion less base-band binary transmission, correlative coding, eye pattern, base-band M-ary PAM systems, adaptive equalization for data transmission. **6 Hours**

PART - B

UNIT - 5

DIGITAL MODULATION TECHNIQUES: Digital Modulation formats, Coherent binary modulation techniques, Coherent quadrature modulation techniques. Non-coherent binary modulation techniques. **6 Hours**

UNIT - 6

Detection and estimation, Model of DCS, Gram-Schmidt Orthogonalization procedure, geometric interpretation of signals, response of bank of correlators to noisy input. **6 Hours**

UNIT - 7

Detection of known signals in noise, correlation receiver, matched filter receiver, detection of signals with unknown phase in noise. **7 Hours**

Spread Spectrum Modulation: Pseudo noise sequences, notion of spread spectrum, direct sequence spread spectrum, coherent binary PSK, frequency hop spread spectrum, applications. **7 Hours**

TEXT BOOK:

1. **Digital communications**, Simon Haykin, John Wiley India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **Digital and Analog communication systems,** Simon Haykin, John Wildy India Lts, 2008
- 2. An introduction to Analog and Digital Communication, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 2008.
- 3. Digital communications Bernard Sklar: Pearson education 2007

MICROPROCESSOR

Subject Code	: 10EC62	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	:100

PART – A

UNIT - 1

8086 PROCESSORS: Historical background, The microprocessor-based personal computer system, 8086 CPU Architecture, Machine language instructions, Instruction execution timing. **6 Hours**

UNIT - 2

INSTRUCTION SET OF 8086: Assembler instruction format, data transfer and arithmetic, branch type, loop, NOP & HALT, flag manipulation, logical and shift and rotate instructions. Illustration of these instructions with example programs, Directives and operators. **6 Hours**

UNIT - 3

BYTE AND STRING MANIPULATION: String instructions, REP Prefix, Table translation, Number format conversions, Procedures, Macros, Programming using keyboard and video display. **7 Hours**

UNIT - 4

8086 INTERRUPTS: 8086 Interrupts and interrupt responses, Hardware interrupt applications, Software interrupt applications, Interrupt examples.

7 Hours

Stability problem. Effect of feedback an amplifier poles. Stability study using Bode plots. Frequency compensation. SPICE examples. **7 Hours**

UNIT - 6

Operational Amplifiers: The two stage CMOS Op-amp, folded cascade CMOS op-amp, 741 op-amp circuit, DC analysis of the 741, small signal analysis of 741, gain, frequency response and slew rate of 741. Data Converters. A-D and D-A converters. **6 Hours**

UNIT – 7 & 8

Digital CMOS circuits. Overview. Design and performance analysis of CMOS inverter. Logic Gate Circuits. Pass-transistor logic. Dynamic Logic Circuits. SPICE examples. 12 Hours

TEXT BOOK:

1. **"Microelectronic Circuits"**, Adel Sedra and K.C. Smith, 5th Edition, Oxford University Press, Interantional Version, 2009.

REFERENCE BOOK:

- 1. "Fundamentals of Microelectronics", Behzad Razavi, John Wiley India Pvt. Ltd, 2008.
- 2. "Microelectronics Analysis and Design", Sundaram Natarajan,
- 3. Tata McGraw-Hill, 2007

ANTENNAS AND PROPAGATION

Subject Code	: 10EC64	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

ANTENNA BASICS: Introduction, basic Antenna parameters, patterns, beam area, radiation intensity, beam efficiency, diversity and gain, antenna apertures, effective height, bandwidth, radiation, efficiency, antenna temperature and antenna filed zones.

7 Hours

POINT SOURCES AND ARRAYS: Introduction, point sources, power patterns, power theorem, radiation intensity, filed patterns, phase patterns. Array of two isotropic point sources. Endfire array and Broadside array.

6 Hours

UNIT - 3

ELECTRIC DIPOLES AND THIN LINEAR ANTENNAS: Introduction, short electric dipole, fields of a short dipole(no derivation of field components), radiation resistance of short dipole, radiation resistances of lambda/2 Antenna, thin linear antenna, micro strip arrays, low side lobe arrays, long wire antenna, folded dipole antennas. **7 Hours**

UNIT - 4

LOOP, SLOT, PATCH AND HORN ANTENNA: Introduction, small loop, comparison of far fields of small loop and short dipole, loop antenna general case, far field patterns of circular loop, radiation resistance, directivity, slot antenna, Babinet's principle and complementary antennas, impedance of complementary and slot antennas, patch antennas.

8 Hours

PART – B

UNIT – 5 & 6

ANTENNA TYPES: Horn antennas, rectangular horn antennas, Helical Antenna, Yagi-Uda array, corner reflectors, parabolic reflectors, log periodic antenna, lens antenna, antenna for special applications – sleeve antenna, turnstile antenna, omni directional antennas, antennas for satellite antennas for ground penetrating radars, embedded antennas, ultra wide band antennas, plasma antenna, high-resolution data, intelligent antennas, antenna for remote sensing.

12 Hours

UNIT - 7 & 8

RADIO WAVE PROPAGATION: Introduction, Ground wave propagation, free space propagation, ground reflection, surface wave, diffraction.

TROPOSPHERE WAVE PROPAGATION:Troposcopic scatter,Ionosphere propagation, electrical properties of the ionosphere, effects of
earth's magnetic field.10 Hours

TEXT BOOKS:

- 1. Antennas and Wave Propagation, John D. Krauss, 4th Edn,McGraw-Hill International edition, 2010.
- 2. Antennas and Wave Propagation Harish and Sachidananda: Oxford Press 2007.

REFERENCE BOOKS:

- 1. Antenna Theory Analysis and Design C A Balanis, 3rd Edn, John Wiley India Pvt. Ltd, 2008.
- 2. Antennas and Propagation for Wireless Communication Systems Sineon R Saunders, John Wiley, 2003.
- 3. Antennas and wave propagation G S N Raju: Pearson Education 2005.

OPERATING SYSTEMS

Subject Code	: 10EC65	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION AND OVERVIEW OF OPERATING SYSTEMS: Operating system, Goals of an O.S, Operation of an O.S, Resource allocation and related functions, User interface related functions, Classes of operating systems, O.S and the computer system, Batch processing system, Multi programming systems, Time sharing systems, Real time operating systems, distributed operating systems. **6 Hours**

UNIT - 2

STRUCTURE OF THE OPERATING SYSTEMS: Operation of an O.S, Structure of the supervisor, Configuring and installing of the supervisor, Operating system with monolithic structure, layered design, Virtual machine operating systems, Kernel based operating systems, and Microkernel based operating systems. **7 Hours**

TEXT BOOKS:

- 1. Antennas and Wave Propagation, John D. Krauss, 4th Edn,McGraw-Hill International edition, 2010.
- 2. Antennas and Wave Propagation Harish and Sachidananda: Oxford Press 2007.

REFERENCE BOOKS:

- 1. Antenna Theory Analysis and Design C A Balanis, 3rd Edn, John Wiley India Pvt. Ltd, 2008.
- 2. Antennas and Propagation for Wireless Communication Systems Sineon R Saunders, John Wiley, 2003.
- 3. Antennas and wave propagation G S N Raju: Pearson Education 2005.

OPERATING SYSTEMS

Subject Code	: 10EC65	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

INTRODUCTION AND OVERVIEW OF OPERATING SYSTEMS: Operating system, Goals of an O.S, Operation of an O.S, Resource allocation and related functions, User interface related functions, Classes of operating systems, O.S and the computer system, Batch processing system, Multi programming systems, Time sharing systems, Real time operating systems, distributed operating systems. **6 Hours**

UNIT - 2

STRUCTURE OF THE OPERATING SYSTEMS: Operation of an O.S, Structure of the supervisor, Configuring and installing of the supervisor, Operating system with monolithic structure, layered design, Virtual machine operating systems, Kernel based operating systems, and Microkernel based operating systems. **7 Hours**

PROCESS MANAGEMENT: Process concept, Programmer view of
processes, OS view of processes, Interacting processes, Threads, Processes in
UNIX, Threads in Solaris.**6 Hours**

UNIT - 4

MEMORY MANAGEMENT: Memory allocation to programs, Memory allocation preliminaries, Contiguous and noncontiguous allocation to programs, Memory allocation for program controlled data, kernel memory allocation. 7 Hours

PART – B

UNIT - 5

VIRTUAL MEMORY: Virtual memory basics, Virtual memory using paging, Demand paging, Page replacement, Page replacement policies, Memory allocation to programs, Page sharing, UNIX virtual memory.

6 Hours

UNIT - 6

FILE SYSTEMS: File system and IOCS, Files and directories, Overview of I/O organization, Fundamental file organizations, Interface between file system and IOCS, Allocation of disk space, Implementing file access, UNIX file system. 7 Hours

UNIT - 7

SCHEDULING: Fundamentals of scheduling, Long-term scheduling, Medium and short term scheduling, Real time scheduling, Process scheduling in UNIX. 6 Hours

UNIT - 8

MESSAGE PASSING: Implementing message passing, Mailboxes, Inter process communication in UNIX. 7 Hours

TEXT BOOK:

1. "Operating Systems - A Concept based Approach", D. M. Dhamdhare, TMH, 3rd Ed, 2010.

REFERENCE BOOK:

- 1. **Operating Systems Concepts**, Silberschatz and Galvin, John Wiley India Pvt. Ltd, 5th Edition, 2001.
- 2. **Operating System Internals and Design Systems**, Willaim Stalling, Pearson Education, 4th Ed, 2006.
- 3. Design of Operating Systems, Tennambhaum, TMH, 2001.

POWER ELECTRONICS

Subject Code	: 10EC73	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction, Applications of power electronics, Power semiconductor devices, Control characteristics, Types of power electronics circuits, Peripheral effects. 6 Hours

UNIT - 2

POWER TRANSISTOR: Power BJT's, Switching characteristics, Switching limits, Base derive control, Power MOSFET's, Switching characteristics, Gate drive, IGBT's, Isolation of gate and base drives.

6 Hours

7 Hours

UNIT - 3

INTRODUCTION TO THYRISTORS: Principle of operation states anode-cathode characteristics, Two transistor model. Turn-on Methods, Dynamic Turn-on and turn-off characteristics, Gate characteristics, Gate trigger circuits, di / dt and dv / dt protection, Thyristor firing circuits.

UNIT - 4

CONTROLLED RECTIFIERS: Introduction, Principles of phase controlled converter operation, 1\u03c6 fully controlled converters, Duel

7 Hours

PART – B

converters, 1 ϕ semi converters (all converters with R & RL load).

UNIT - 5

Thyristor turn off methods, natural and forced commutation, self commutation, class A and class B types, Complementary commutation, auxiliary commutation, external pulse commutation, AC line commutation, numerical problems. 7 Hours

UNIT - 6

AC VOLTAGE CONTROLLERS: Introduction, Principles of on and off control, Principles of phase control, Single phase controllers with restive loads and Inductive loads, numerical problems.

6 Hours

DC CHOPPERS: Introduction, Principles of step down and step up choppers, Step down chopper with RL loads, Chopper classification, Switch mode regulators – buck, boost and buck – boost regulators. **6 Hours**

UNIT - 8

INVERTORS: Introduction, Principles of operation, Performance parameters, 1ϕ bridge inverter, voltage control of 1ϕ invertors, current source invertors, Variable DC link inverter.

7 Hours

TEXT BOOKS:

- 1. **"Power Electronics" -** M. H. Rashid 3rd edition, PHI / Pearson publisher 2004.
- 2. **"Power Electronics" -** M. D. Singh and Kanchandani K.B. TMH publisher, 2nd Ed. 2007.

REFERENCE BOOKS:

- 1. **"Power Electronics, Essentials and Applications", L Umanand, John** Wiley India Pvt. Ltd, 2009.
- 2. "Power Electronics", Daniel W. Hart, McGraw Hill, 2010.
- 3. "Power Electronics", V Nattarasu and R.S. Anandamurhty, Pearson/Sanguine Pub. 2006.

EMBEDED SYSTEM DESIGN

Subject Code	: 10EC74	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT 1:

Introduction to Embedded System: Introducing Embedded Systems, Philosophy, Embedded Systems, Embedded Design and Development Process. 5 Hours

UNIT 2:

The Hardware Side: An Introduction, The Core Level, Representing Information, Understanding Numbers, Addresses, Instructions, Registers-A

DC CHOPPERS: Introduction, Principles of step down and step up choppers, Step down chopper with RL loads, Chopper classification, Switch mode regulators – buck, boost and buck – boost regulators. **6 Hours**

UNIT - 8

INVERTORS: Introduction, Principles of operation, Performance parameters, 1ϕ bridge inverter, voltage control of 1ϕ invertors, current source invertors, Variable DC link inverter.

7 Hours

TEXT BOOKS:

- 1. **"Power Electronics" -** M. H. Rashid 3rd edition, PHI / Pearson publisher 2004.
- 2. **"Power Electronics" -** M. D. Singh and Kanchandani K.B. TMH publisher, 2nd Ed. 2007.

REFERENCE BOOKS:

- 1. **"Power Electronics, Essentials and Applications", L Umanand, John** Wiley India Pvt. Ltd, 2009.
- 2. "Power Electronics", Daniel W. Hart, McGraw Hill, 2010.
- 3. "Power Electronics", V Nattarasu and R.S. Anandamurhty, Pearson/Sanguine Pub. 2006.

EMBEDED SYSTEM DESIGN

Subject Code	: 10EC74	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT 1:

Introduction to Embedded System: Introducing Embedded Systems, Philosophy, Embedded Systems, Embedded Design and Development Process. 5 Hours

UNIT 2:

The Hardware Side: An Introduction, The Core Level, Representing Information, Understanding Numbers, Addresses, Instructions, Registers-A

First Look, Embedded Systems-An Instruction Set View, Embedded Systems-A Register View, Register View of a Microprocessor The Hardware Side: Storage Elements and Finite-State Machines (2 hour) The concepts of State and Time, The State Diagram, Finite State Machines-A Theoretical Model.

8 Hours

UNIT 3:

Memories and the Memory Subsystem: Classifying Memory, A General Memory Interface, ROM Overview, Static RAM Overview, Dynamic RAM Overview, Chip Organization, Terminology, A Memory Interface in Detail, SRAM Design, DRAM Design, DRAM Memory Interface, The Memory Map, Memory Subsystem Architecture, Basic Concepts of Caching, Designing a Cache System, Dynamic Memory Allocation.

7 Hours

UNIT 4:

Embedded Systems Design and Development : System Design and Development, Life-cycle Models, Problem Solving-Five Steps to Design, The Design Process, Identifying the Requirements, Formulating the Requirements Specification, The System Design Specification, System Specifications versus System Requirements, Partitioning and Decomposing a System, Functional Design, Architectural Design, Functional Model versus Architectural Model, Prototyping, Other Considerations, Archiving the Project. **6 Hours**

PART – B

UNIT 5 & 6:

Real-Time Kernels and Operating Systems: Tasks and Things, Programs and Processes, The CPU is a resource, Threads – Lightweight and heavyweight, Sharing Resources, Foreground/Background Systems, The operating System, The real time operating system (RTOS), OS architecture, Tasks and Task control blocks, memory management revisited.

UNIT 7 & 8:

Performance Analysis and Optimization: Performance or Efficiency Measures, Complexity Analysis, The methodology, Analyzing code, Instructions in Detail, Time, etc. – A more detailed look, Response Time, Time Loading, Memory Loading, Evaluating Performance, Thoughts on Performance Optimization, Performance Optimization, Tricks of the Trade, Hardware Accelerators, Caches and Performance.

12 Hours

12 Hours

TEXT BOOK:

1. Embedded Systems – A contemporary Design Tool, James K. Peckol, John Weily India Pvt. Ltd, 2008.

REFERENCE BOOKS:

- 1. **Embedded Systems: Architecture and Programming,** Raj Kamal, TMH. 2008.
- Embedded Systems Architecture A Comprehensive Guide for Engineers and Programmers, Tammy Noergaard, Elsevier Publication, 2005.
- 3. **Programming for Embedded Systems**, Dreamtech Software Team, John Wiley India Pvt. Ltd, 2008.

VLSI LAB

Subject Code	: 10ECL77	IA Marks	: 25
No. of Practical Hrs/Week	: 03	Exam Hours	: 03
Total no. of Practical Hrs.	: 42	Exam Marks	: 50

(Wherever necessary Cadence/Synopsis/Menta Graphics tools <u>must be</u> used)

PART - A DIGITAL DESIGN

ASIC-DIGITAL DESIGN FLOW

1. Write Verilog Code for the following circuits and their Test Bench for **verification**, observe the waveform and **synthesize** the code with technological library with given Constraints*. Do the initial timing verification with gate level simulation.

- 1. An inverter
- 2. A Buffer
- 3. Transmission Gate
- 4. Basic/universal gates
- 5. Flip flop -RS, D, JK, MS, T
- 6. Serial & Parallel adder
- 7. 4-bit counter [Synchronous and Asynchronous counter]
- 8. Successive approximation register [SAR]

* An appropriate constraint should be given

VIII SEMESTER WIRELESS COMMUNICATION

Subject Code	: 10EC81	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Introduction to wireless telecommunication systems and Networks, History and Evolution Different generations of wireless cellular networks 1G, 2g,3G and 4G networks. **6 Hours**

UNIT - 2

Common Cellular System components, Common cellular network components, Hardware and software, views of cellular networks, 3G cellular systems components, Cellular component identification Call establishment.

7 Hours

UNIT - 3

Wireless network architecture and operation, Cellular concept Cell fundamentals, Capacity expansion techniques, Cellular backbone networks, Mobility management, Radio resources and power management Wireless network security. **7 Hours**

UNIT - 4

GSM and TDMA techniques, GSM system overview, GSM Network and system Architecture, GSM channel concepts, GSM identifiers

6 Hours

PART – B

UNIT - 5

GSM system operation, Traffic cases, Cal handoff, Roaming, GSM protocol architecture. TDMA systems. **6 Hours**

UNIT - 6

CDMA technology, CDMA overview, CDMA channel concept CDMA operations. **6 Hours**

UNIT - 7

Wireless Modulation techniques and Hardware, Characteristics of air interface, Path loss models, wireless coding techniques, Digital modulation

techniques, OFDM, UWB radio techniques, Diversity techniques, Typical GSM Hardware. **7 Hours**

UNIT - 8

Introduction to wireless LAN 802.11X technologies, Evolution of Wireless LAN Introduction to 802.15X technologies in PAN Application and architecture Bluetooth Introduction to Broadband wireless MAN, 802.16X technologies. **7 Hours**

TEXT BOOK:

1. Wireless Telecom Systems and networks, Mullet: Thomson Learning 2006.

REFERENCE BOOKS:

- 1. **Mobile Cellular Telecommunication**, Lee W.C.Y, MGH, 2nd, 2009.
- 2. Wireless communication D P Agrawal: 2nd Edition Thomson learning 2007.
- 3. **Fundamentals of Wireless Communication**, David Tse, Pramod Viswanath, Cambridge 2005.
- S. S. Manvi, M. S. Kakkasageri, "Wireles and Mobile Network concepts and protocols", John Wiley India Pvt. Ltd, 1st edition, 2010.
- 5. "Wireless Communication Principles & Practice", T.S. Rappaport, PHI 2001.

DIGITAL SWITCHING SYSTEMS

Subject Code	: 10EC82	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Developments of telecommunications, Network structure, Network services, terminology, Regulation, Standards. Introduction to telecommunications transmission, Power levels, Four wire circuits, Digital transmission, FDM, TDM, PDH and SDH, Transmission performance.

7 Hours
DESIGN OF RTSS – GENERAL INTRODUCTION: Introduction, Specification documentation, Preliminary design, Single-program approach, Foreground/background, Multi-tasking approach, Mutual exclusion, Monitors. 6 Hours

UNIT - 8

RTS DEVELOPMENT METHODOLOGIES: Introduction, Yourdon Methodology, Requirement definition for Drying Oven, Ward and Mellor Method, Hately and Pirbhai Method. **6 Hours**

TEXT BOOKS:

 Real - Time Computer Control- An Introduction, Stuart Bennet, 2nd Edn. Pearson Education. 2005.

REFERENCE BOOKS:

- 1. **Real-Time Systems Design and Analysis**, Phillip. A. Laplante, second edition, PHI, 2005.
- 2. Real-Time Systems Development, Rob Williams, Elsevier. 2006.
- 3. Embedded Systems, Raj Kamal, Tata Mc Graw Hill, India, 2005.

IMAGE PROCESSING

Subject Code	: 10EC763	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	:100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

DIGITAL IMAGE FUNDAMENTALS: What is Digital Image Processing. fundamental Steps in Digital Image Processing, Components of an Image processing system, elements of Visual Perception. **6 Hours**

UNIT - 2

Image Sensing and Acquisition, Image Sampling and Quantization, Some Basic Relationships between Pixels, Linear and Nonlinear Operations.

6 Hours

IMAGE TRANSFORMS: Two-dimensional orthogonal & unitary transforms, properties of unitary transforms, two dimensional discrete Fourier transform. 7 Hours

UNIT - 4

Discrete cosine transform, sine transform, Hadamard transform, Haar transform, Slant transform, KL transform. **7 Hours**

PART - B

UNIT - 5

IMAGE ENHANCEMENT: Image Enhancement in Spatial domain, SomeBasic Gray Level Trans -formations, Histogram Processing, EnhancementUsing Arithmetic/Logic Operations.7 Hours

UNIT - 6

Basics of Spatial Filtering Image enhancement in the Frequency Domain filters, Smoothing Frequency Domain filters, Sharpening Frequency Domain filters, homomorphic filtering. **6 Hours**

UNIT - 7

Model of image degradation/restoration process, noise models, Restoration in the Presence of Noise, Only-Spatial Filtering Periodic Noise Reduction by Frequency Domain Filtering, Linear Position-Invariant Degradations, inverse filtering, minimum mean square error (Weiner) Filtering,

7 Hours

UNIT - 8

Color Fundamentals. Color Models, Pseudo color Image Processing., processing basics of full color image processing

6 Hours

TEXT BOOK:

1. **"Digital Image Processing"**, Rafael C.Gonzalez, Richard E. Woods, etl, TMH, 2nd Edition 2010.

REFERENCE BOOKS:

- 1. **"Fundamentals of Digital Image Processing"**, Anil K. Jain, Pearson Education, 2001.
- 2. **"Digital Image Processing and Analysis"**, B. Chanda and D. Dutta Majumdar, PHI, 2003.

PROTOCOL PERFORMANCE TESTING: SDL based performance testing of TCP, OSPF, Interoperability testing, SDL based interoperability testing of CSMA/CD and CSMA/CA protocol using bridge, Scalability testing.

7 Hours

UNIT - 8

PROTOCOL SYNTHESIS:Synthesis methods, interactive synthesisalgorithms, automatic synthesis algorithm, automatic synthesis of SDL fromMSC protocol re synthesis.6 Hours

TEXT BOOK:

1. **Communication Protocol Engineering**, P. Venkatarm and S. S. Manvi, PHI, 2004.

REFERENCES BOOKS:

- 1. The Internet and its Protocols, Adrian Farrel, Elsevier, 2006.
- 2. **TCP/IP Protocol Stack**, B A Forouzan, TMH, 2006.

ELECTIVE –V (GROUP E) MULTIMEDIA COMMUNICATIONS

Subject Code	: 10EC841	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

MULTIMEDIA COMMUNICATIONS: Introduction, multimedia information representation, multimedia networks, multimedia applications, media types, communication modes, network types, multipoint conferencing, network QoS application QoS. 6 Hours

UNIT - 2

MULTIMEDIA INFORMATION REPRESENTATION:Introduction,digital principles, text, images, audio, video.7 Hours

UNIT - 3

TEXT AND IMAGE COMPRESSION: Introduction, compression principles, text compression, image compression.

6 Hours

AUDIO AND VIDEO COMPRESSION: Introduction, audio compression, DPCM, ADPCM, APC, LPC, video compression, video compression principles, H.261, H.263, MPEG, MPEG-1, MPEG-2, and MPEG-4.

7 Hours

PART – B

UNIT - 5

MULTIMEDIA INFORMATION NETWORKS: Introduction, LANs, Ethernet, Token ring, Bridges, FDDI High-speed LANs, LAN protocol.

6 Hours

UNIT - 6

THE INTERNET: Introduction, IP Datagrams, Fragmentation, IP Address,ARP and RARP, QoS Support, IPv8.7 Hours

UNIT - 7

BROADBAND ATM NETWORKS: Introduction, Cell format, Swith and Protocol Architecture ATM LANs. 6 Hours

UNIT - 8

TRANSPORT PROTOCOL: Introduction, TCP/IP, TCP, UDP, RTP and
RTCP.**7 Hours**

TEXT BOOK:

1. Multimedia Communications: Applications, Networks, Protocols and Standards, Fred Halsall, Pearson Education, Asia, Second Indian reprint 2002.

REFERENCE BOOKS:

- 1. **Multimedia Information Networking**, Nalin K. Sharda, PHI, 2003.
- 2. "Multimedia Fundamentals: Vol 1 Media Coding and Content Processing", Ralf Steinmetz, Klara Narstedt, Pearson Education, 2004.
- 3. **"Multimedia Systems Design"**, Prabhat K. Andleigh, Kiran Thakrar, PHI, 2004.

UNIT 6

Embedded System Components:

Firmware components, RTOS system software mechanisms, Software application components.

Debugging Components:

Execptions assert, Checking return codes, Single-step debugging, kernel scheduler traces, Test access ports, Trace ports, Power-On self test and diagnostics, External test equipment, Application-level debugging.

7 Hours

UNIT 7

Performance Tuning:

Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations. **6 Hours**

UNIT 8

High availability and Reliability Design:

Reliability and Availability, Similarities and differences, Reliability, Reliable software, Available software, Design trade offs, Hierarchical applications for Fail-safe design.

Design of RTOS – PIC microcontroller. (Chap 13 of book Myke Predko) 7 Hours

REFERENCE BOOKS:

- 1. "**Real-Time Embedded Systems and Components**" Sam Siewert, Cengage Learning India Edition, 2007.
- 2. "**Programming and Customizing the PIC microcontroller**", Myke Predko, 3rd Ed, TMH, 2008

GSM

Subject Code	: 10EC843	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

GSM ARCHITECTURE AND INTERFACES: Introduction, GSM frequency bands, GSM PLMN, Objectives of a GSM PLMN, GSM PLMN Services, GSM Subsystems, GSM Subsystems entities, GSM interfaces, The radio interface (MS to BSC), A_{bits} interface (BTS to BSC), A interface (BSC

to MSC), Interfaces between other GSM entities, Mapping of GSM layers onto OSI layers. **6 Hours**

UNIT - 2

RADIO LINK FEATURES IN GSM SYSTEMS: Introduction, Radio link measurements, Radio link features of GSM, Dynamic power control, Discontinuous transmission (DTX), SFH, Future techniques to reduce interface in GSM, Channel borrowing, Smart antenna. **7 Hours**

UNIT - 3

GSM LOGICAL CHANNELS AND FRAME STRUCTURE: Introduction, GSM logical channels, Allowed logical channel combinations, TCH multi frame for TCH/H, CCH multi frame, GSM frame structure, GSM bursts, Normal burst, Synchronization burst, Frequency correction channel burst, Access burst, Data encryption in GSM, Mobility management, Location registration, Mobile identification. **7 Hours**

UNIT - 4

SPEECH CODING IN GSM: Introduction, Speech coding methods, Speech code attributes, Transmission bit rate, Delay, Complexity, Quality, LPAS, ITU-T standards, Bit rate, Waveform coding, Time domain waveform coding, Frequency domain waveform coding, Vocoders, Full-rate vocoder, Half-rate vocoder. MESSAGES, SERVICES, AND CALL FLOWS IN GSM: Introduction, GSM PLMN services.

7 Hours

PART – B

UNIT - 5

GSM messages, MS-BS interface, BS to MSC messages on the A interface, MSC to VLR and HLR, GSM call setup by an MS, Mobile-Terminated call, Call release, Handover. Data services, Introduction, Data interworking, GSM data services, Interconnection for switched data, Group 3 fax, Packet data on the signaling channel, User-to-user signaling, SMS, GSM GPRS.

6 Hours

UNIT - 6

PRIVACY AND SECURITY IN GSM: Introduction, Wireless security requirements, Privacy of communications, Authentication requirements, System lifetime requirements, Physical requirements, SIM cards, Security algorithms for GSM, Token-based authentication, Token-based registration, Token-based challenge.

UNIT - 7

6 Hours

PLANNING AND DESIGN OF A GSM WIRELESS NETWORK: Introduction, Tele traffic models, Call model, Topology model, Mobility in

cellular / PCS networks, Application of a fluid flow model, Planning of a wireless network, Radio design for a cellular / PCS network, Radio link design, Coverage planning, Design of a wireless system, Service requirements, Constraints for hardware implementation, Propagation path loss, System requirements, Spectral efficiency of a wireless system, Receiver sensitivity and link budget, Selection of modulation scheme, Design of TDMA frame, Relationship between delay spread and symbol rate, Design example for a GSM system.

7 Hours

UNIT - 8

MANAGEMENT OF GSM NETWORKS: Introduction, Traditional approaches to NM, TMN, TMN layers, TMN nodes, TMN interface, TMN management services, Management requirements for wireless networks, Management of radio resources, Personal mobility management, Terminal mobility, Service mobility management, Platform-centered management, SNMP, OSI systems management, NM interface and functionality, NMS functionality, OMC functionality, Management of GSM network, TMN applications, GSM information model, GSM containment tree, Future work items.

TEXT BOOK:

7 Hours

1. **"Principles of Applications of GSM"**, Vijay K. Garg & Joseph E. Wilkes, Pearson education/ PHI, 1999.

REFERENCE BOOKS:

- 1. **GSM: Evolution towards 3rd Generation Systems**, (Editor), Z. Zvonar Peter Jung, Karl Kammerlander Springer; 1st edition 1998
- 2. **GSM & UMTS: The Creation of Global Mobile Communication,** Friedhelm Hillebrand, John Wiley & Sons; 2001.

ADHOC WIRELESS NETWORKS

Subject Code	: 10EC844	IA Marks	: 25
No. of Lecture Hrs/Week	: 04	Exam Hours	: 03
Total no. of Lecture Hrs.	: 52	Exam Marks	: 100

PART – A

UNIT - 1

AD HOC NETWORKS: Introduction, Issues in Ad hoc wireless networks, Ad hoc wireless internet. 6 Hours

10EE35 ELECTRICAL and ELECTRONIC MEASUREMENTS and INSTRUMENTATION

Subject Code	:	10EE35	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

1-(a) Units and Dimensions: Review of fundamental and derived units. S.I. units. Dimensional equations, problems. **3 Hours**

1-(b) Measurement of Resistance: Wheatstone's bridge, sensitivity, limitations. Kelvin's double bridge. Earth resistance, measurement by fall of potential method and by using Megger. 3 Hours

UNIT 2:

Measurement of Inductance and Capacitance: Sources and detectors, Maxwell's inductance bridge, Maxwell's inductance &capacitance bridge, Hay's bridge, Anderson's bridge, Desauty's bridge, Schering bridge. Shielding of bridges. Problems. 07 Hours

UNIT 3:

Extension of Instrument Ranges: Shunts and multipliers. Construction and theory of instrument transformers, Equations for ratio and phase angle errors of C.T. and P.T (derivations excluded). Turns compensation, illustrative examples (excluding problems on turns compensation), Silsbees's method of testing CT. 07 Hours **UNIT 4:**

Measurement of Power and Energy: Dynamometer wattmeter. UPF and LPF wattmeters, Measurement of real and reactive power in three-phase circuits. Induction type energy meter — construction, theory, errors, adjustments and calibration. Principle of working of electronic energy meter. 06 Hours

PART – B

UNIT 5:

(a) Construction and operation of electro-dynamometer single-phase power factor meter. Weston frequency meter and phase sequence indicator. 04 Hours

(b) Electronic Instruments: Introduction. True RMS responding voltmeter. Electronic multimeters. Digital voltmeters. Q meter. 04 Hours

UNIT 6:

Dual trace oscilloscope — front panel details of a typical dual trace oscilloscope. Method of measuring voltage, current, phase, frequency and period. Use of Lissajous patterns. Working of a digital storage oscilloscope. Brief note on current probes. 06 Hours

UNIT 7:

Transducers: Classification and selection of transducers. Strain gauges, LVDT. Measurement of temperature and pressure. Photo-conductive and photo-voltaic cells.

UNIT 8:

(a) Interfacing resistive transducers to electronic circuits. Introduction to data acquisition systems. 2 Hours

(b) Display Devices and Signal Generators: X-Y recorders. Nixie tubes. LCD and LED display. Signal generators and function generators. 04 Hours

Text Books

- 1. Electrical and Electronic Measurements and Instrumentation, A. K. Sawhney, Dhanpatrai and Sons. New Delhi.
- 2. Modern Electronic Instrumentation and Measuring Techniques, Cooper D. and A.D. Heifrick, PHI, 2009 Edition.

References

- 1. Electronic Instrumentation and Measurement, David A. Bell, oxford Publication ,2nd Edition, 2009.
- 2. Electrical Measurements and Measuring Instruments, Golding and Widdies, Pitman

06 Hours

10EE36 ELECTRIC POWER GENERATION

Subject Code	:	10EE36	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Sources of Electrical Power: Wind, solar, fuel cell, tidal, geo-thermal, hydro-electric, thermal-steam, diesel, gas, nuclear power plants (block diagram approach only). Concept of co-generation. Combined heat and power distributed generation. 06 **Hours**

UNIT 2:

Diesel electric plants. Gas turbine plants. Mini, micro, and bio generation. Concept of distributed generation. 06 Hours

UNIT 3:

(a) Hydro Power Generation: Selection of site. Classification of hydro-electric plants. General arrangement and operation. Hydroelectric plant power station structure and control. 5 Hours

(b) Thermal Power Generation: Introduction. Main parts of a thermal power plant. Working. Plant layout.
3 Hours

UNIT 4:

Nuclear Power Station: Introduction. Pros and cons of nuclear power generation. Selection of site, cost, components of reactors. Description of fuel sources. Safety of nuclear power reactor. 6 Hours

PART – B

UNIT 5 and 6:

(a) **Economics Aspects:** Introduction. Terms commonly used in system operation. Diversity factor, load factor, plant capacity factor, plant use factor, plant utilization factor and loss factor, load duration curve. Cost of generating station, factors influencing the rate of tariff designing, tariff, types of tariff. Power factor improvement.

(b) Substations: Introduction, types, Bus bar arrangement schemes, Location of substation equipment. Reactors and capacitors. Interconnection of power stations. 14 Hours

UNIT 7 and 8 :

Grounding Systems: Introduction, grounding systems. Neutral grounding. Ungrounded system. Resonant grounding. Solid grounding, reactance grounding, resistance grounding. Earthing transformer. Neutral grounding transformer. 12 Hours

Text Books

1. **Power System Engineering,** A. Chakrabarti, M. L. Soni, and P.V. Gupta, Dhanpat Rai and Co.,NewDelhi.

2. Electric Power Generation, Transmission and Distribution, S. N. Singh, PHI, 2nd Edition, 2009.

References

1. Elements of Electrical Power System Design, M. V. Deshpande, PHI,2010

10ES42 MICROCONTROLLERS

(Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ES42	IA Marks	:	25
Hrs/ Week	:	04	Exam Hours	:	03
Total Hrs.	:	52	Exam Marks	:	100

UNIT 1:

Microprocessors and microcontroller. Introduction, Microprocessors and Microcontrollers, RISC & CISC CPU Architectures, Harvard & Von-Neumann CPU architecture, Computer software. The 8051 Architecture: Introduction, Architecture of 8051, Pin diagram of 8051, Memory organization, External Memory interfacing, Stacks.

UNIT 2:

Addressing Modes: Introduction, Instruction syntax, Data types, Subroutines, Addressing modes: Immediate addressing, Register addressing, Direct addressing, Indirect addressing, relative addressing, Absolute addressing, Long addressing, Indexed addressing, Bit inherent addressing, bit direct addressing.

Instruction set: Instruction timings, 8051 instructions: Data transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instruction.

6Hours

6 Hours

6 Hours

UNIT 4:

8051 Interfacing and Applications: Basics of I/O concepts, I/O Port Operation, Interfacing 8051 to LCD, Keyboard, parallel and serial ADC, DAC, Stepper motor interfacing and DC motor interfacing and programming

UNIT 5:

8051 Interrupts and Timers/counters: Basics of interrupts, 8051 interrupt structure, Timers and Counters, 8051 timers/counters, programming 8051 timers in assembly and C.

UNIT 6:

8051 Serial Communication: Data communication, Basics of Serial Data Communication, 8051 Serial Communication, connections to RS-232, Serial communication Programming in assembly and C.8255A Programmable Peripheral Interface:, Architecture of 8255A, I/O addressing,, I/O devices interfacing with 8051 using 8255A.

Course Aim – The MSP430 microcontroller is ideally suited for development of low-power embedded systems that must run on batteries for many years. There are also applications where MSP430 microcontroller must operate on energy harvested from the environment. This is possible due to the ultra- low power operation of MSP430 and the fact that it provides a complete system solution including a RISC CPU, flash memory, on-chip data converters and on-chip peripherals.

UNIT 7:

Motivation for MSP430microcontrollers – Low Power embedded systems, On-chip peripherals (analog and digital), low-power RF capabilities. Target applications (Single-chip, low cost, low power, high performance system design).

2 Hours

MSP430 RISC CPU architecture, Compiler-friendly features, Instruction set, Clock system, Memory subsystem. Key differentiating factors between different MSP430 families.

2 Hours

Introduction to Code Composer Studio (CCS v4). Understanding how to use CCS for Assembly, C, Assembly+C projects for MSP430 microcontrollers. Interrupt programming.

UNIT 3: 8051 programming: Assembler directives, Assembly language programs and Time delay calculations.

6 Hours

6 Hours

2 Digital I/O – I/O ports programming using C and assembly, Understanding the muxing scheme of the MSP430 pins. 2 Hours

UNIT 8:

On-chip peripherals. Watchdog Timer, Comparator, Op-Amp, Basic Timer, Real Time Clock (RTC), ADC, DAC, SD16, LCD, DMA.

Using the Low-power features of MSP430. Clock system, low-power modes, Clock request feature, Low-power programming and Interrupt.

Interfacing LED, LCD, External memory. Seven segment LED modules interfacing. Example – Real-time clock.

Case Studies of applications of MSP430 - Data acquisition system, Wired Sensor network, Wireless sensor network with Chipcon RF interfaces.

3 Hours

2 Hours

2 Hours

2 Hours

TEXT BOOKS:

- 1. "The 8051 Microcontroller and Embedded Systems using assembly and C "-, Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; PHI, 2006 / Pearson, 2006
- 2. "MSP430 Microcontroller Basics", John Davies, Elsevier, 2010

REFERENCE BOOKS:

- 1. "The 8051 Microcontroller Architecture, Programming & Applications", 2e Kenneth J. Ayala ;, Penram International, 1996 / Thomson Learning 2005.
- 2. "The 8051 Microcontroller", V.Udayashankar and MalikarjunaSwamy, TMH, 2009
- 3. MSP430 Teaching CD-ROM, Texas Instruments, 2008 (can be requested http://www.uniti.in)
- 4. Microcontrollers: Architecture, Programming, Interfacing and System Design", Raj Kamal, "Pearson Education, 2005

10EE45 POWER ELECTRONICS

Subject Code	:	10EE45	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART – A

UNIT 1:

Power Semiconductor Devices:

Introduction to semiconductors, Power Electronics, Power semiconductor devices, Control Characteristics. Types of power electronic converters and industrial applications-Drives, Electrolysis, Heating, Welding, Static Compensators, SMPS, HVDC power transmission, Thyristorized tap changers and Circuit breakers.

UNIT 2:

Power Transistors: Power BJT's – switching characteristics, switching limits, base drive control. Power MOSFET's and IGBT's –characteristics, gate drive , di/dt and dv/dt limitations. Isolation of gate and base drives. **6 Hours**

UNIT 3:

Thyristors

Introduction, Two Transistor Model, characteristics-static and dynamic. di/dt and dv/dt protection. Ratings of thyristors. Thyristor types. Series and parallel operation of Thyristors. Thyristor firing circuits. Design of firing circuits using UJT, R, R-C circuits. Analysis of firing circuits using operational amplifiers and digital IC's. **7 Hours**

UNIT 4:

UNIT 5:

Commutation Techniques: Introduction. Natural Commutation. Forced commutation- self-commutation, impulse commutation and complementary commutation. 6 Hours

PART – B

Controlled Rectifiers: Introduction. Principle of phase controlled converter operation. Single- phase semiconverters. Full converters. Three-phase half-wave converters. Three-phase full-wave converters. **7 Hours**

UNIT 6:

Choppers: Introduction. Principle of step-down and step-up chopper with R-L load. Performance parameters. Chopper classification. Analysis of impulse commutated thyristor chopper (only qualitative analysis) **6 Hours**

UNIT 7:

Inverters: Introduction. Principle of operation. Performance parameters. Single-phase bridge inverters. Threephase inverters. Voltage control of single-phase inverters – single pulse width, multiple pulse width, and sinusoidal pulse width modulation. Current source inverters. **7 Hours**

UNIT 8:

(a) AC Voltage Controllers: Introduction. Principle of ON-OFF and phase control. Single-phase, bidirectional controllers with resistive and R-L loads.

(b) Electromagnetic Compatibility: Introduction, effect of power electronic converters and remedial measures.

6 Hours

Text Book:

1. Power Electronics, M.H.Rashid, , Pearson, 3rd Edition, 2006.

2. Power Electronics, M.D. Singh and Khanchandani K.B., T.M.H., 2nd Edition,2001

References

- 1. Power Electronics Essentials and Applications, L. Umanand, Wiley India Pvt Ltd, Reprint, 2010
- 2. Thyristorised Power Controllers, G.K. Dubey, S.R. Doradla, A. Joshi and R.M.K. Sinha, New Age International Publishers.
- 3. **Power Electronics Converters, Applications and Design,** Ned Mohan, Tore M. Undeland, and William P. Robins, Third Edition, John Wiley and Sons,2008.
- 4. **Power Electronics: A Simplified Approach,** R.S. Ananda Murthy and V. Nattarasu, pearson/Sanguine Technical Publishers.

7 hours

MICROCONTROLLERS LAB

(Common to EC/TC/EE/IT/BM/ML)

Sub Code	:	10ESL47	IA Marks	:	25
Hrs/ Week	:	03	Exam Hours	:	03
Total Hrs.	:	42	Exam Marks	:	50

I. PROGRAMMING

1. Data Transfer - Block move, Exchange, Sorting, Finding largest element in an array.

- 2. Arithmetic Instructions Addition/subtraction, multiplication and division, square, Cube (16 bits Arithmetic operations bit addressable).
- 3. Counters.
- 4. Boolean & Logical Instructions (Bit manipulations).
- 5. Conditional CALL & RETURN.
- 6. Code conversion: BCD ASCII; ASCII Decimal; Decimal ASCII; HEX Decimal and Decimal HEX .

7. Programs to generate delay, Programs using serial port and on-Chip timer / counter.

Note: Programming exercise is to be done on both 8051 & MSP430.

II. INTERFACING:

Write C programs to interface 8051 chip to Interfacing modules to develop single chip solutions.

8. Simple Calculator using 6 digit seven segment displays and Hex Keyboard interface to 8051.

- 9. Alphanumeric LCD panel and Hex keypad input interface to 8051.
- 10. External ADC and Temperature control interface to 8051.
- 11. Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC interface to 8051; change the frequency and amplitude.
- 12. Stepper and DC motor control interface to 8051.
- 13. Elevator interface to 8051.

10EEL48 POWER ELECTRONICS LAB

Subject Code	:	10EEL48	IA Marks	:	25
No. of Practical Hrs./ Week	:	03	Exam Hours	:	03
Total No. of Practical Hrs.	:	42	Exam Marks	:	50

1. Static characteristics of SCR.

2. Static characteristics of MOSFET and IGBT.

- 3. SCR turn-on circuit using synchronized UJT relaxation oscillator.
- 4. SCR Digital triggering circuit for a single-phase controlled rectifier and A.C. voltage controller.
- 5. Single-phase controlled full-wave rectifier with *R* and *R*-*L* loads.
- 6. A.C. voltage controller using TRIAC and DIAC combination connected to *R* and *R*-*L* loads.
- 7. Speed control of a separately excited D.C. motor using an IGBT or MOSFET chopper.
- 8. Speed control of D.C. motor using single semi converter
- Speed control of a stepper motor.
 Speed control of universal motor using A.C. voltage controller.
- 11. MOSFET OR IGBT based single-phase full-bridge inverter connected to R load.
- 12. Study of commutation using LC circuits and auxiliary circuits.

10EEL57 MEASUREMENTS AND CIRCUIT SIMULATION LABORATORY

Subject Code	:	10EEL57	IA Marks	:	25
No. of Practical Hrs./ Week	:	03	Exam Hours	:	03
Total No. of Practical Hrs.	:	42	Exam Marks	:	50

- 1. Measurement of low resistance using Kelvin's double bridge.
- 2. Measurement of cable insulation and earth resistance using Meggar
- 3. Measurement of inductance using Maxwell Inductance-Capacitance bridge & determination of Qfactor
- 4. Measurement of capacitance using De-Sauty's bridge & determination of dissipation factor.
- 5. M easurement of active and reactive power in balanced 3-phase circuit using two-watt meter method.
- 6. Adjustment & calibration of 1-phase energy meter
- 7. Determination of ratio & phase angle error in CT.
- 8. a) Inverting, non-inverting & scale changing of signals using op -amps
- b) RC phase shift oscillator using op amps (Both using simulation package)
- 9. RC coupled amplifier-frequency response for variation of bias & coupling using simulation package
- 10. Rectifier circuits-Bridge rectifier, diode clipping & clamping circuits using simulation package.
- 11. Schmitt -trigger- inverting and non-inverting.
 12 Signal generator- triangular, saw tooth and rectangular wave generation
 Note: All experiments, except 5,6 and 7, are to be carried out by using components and verify the result by using a simulation package.

10EE61 POWER SYSTEM ANALYSIS AND STABILITY

Subject Code	:	10EE61	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

REPRESENTATION OF POWER SYSTEM COMPONENTS: Circuit models of Transmission line, Synchronous machines, Transformers and load. Single line diagram, impedance and reactance diagrams. Per unit system, per unit impedance diagram of power system. UNIT - 2

SYMMETRICAL 3 - PHASE FAULTS: Analysis of Synchronous machines and Power system. Transients on a transmission line, Short-Circuit currents and the reactance of synchronous machines with and without load . 6 Hours

UNIT - 3 & 4

SYMMETRICAL COMPONENTS: Introduction, analysis of unbalanced load against balanced Threephase supply, neutral shift. Resolution of unbalanced phasors into their symmetrical components, Phase shift of symmetrical components in star-delta transformer bank, Power in terms of symmetrical components, Analysis of balanced and unbalanced loads against unbalanced 3 phase supply, Sequence impedances and networks of power system elements (alternator, transformer and transmission line) Sequence networks of power systems. Measurement of sequence impedance of synchronous generator.

12 Hours

Part - B

UNIT - 5 & 6

UNSYMMETRICAL FAULTS: L-G, L-L, L-L-G faults on an unbalanced alternator with and without fault impedance. Unsymmetrical faults on a power system with and without fault impedance. Open conductor faults in power system. 14 Hours

UNIT - 7

STABILITY STUDIES: Introduction, Steady state and transient stability. Rotor dynamics and the swing equation. Equal area criterion for transient stability evaluation and its applications. **8 Hours**

UNIT – 8

UNBALANCED OPERATION OF THREE PHASE INDUCTION MOTRORS: Analysis of three phase induction motor with one line open., Analysis of three phase induction motor with unbalanced voltage. 4 Hours

TEXT BOOKS:

- 1. Elements of Power System Analysis, W.D.Stevenson, TMH,4th Edition
- 2. Modern Power System Analysis, I. J. Nagrath and D.P.Kothari-TMH, 3rd Edition, 2003.
- 3. Symmetrical Components and Short Circuit Studies, Dr.P.N.Reddy, Khanna Publishers

REFERENCE BOOKS:

- 1. **Power System Analysis**, Hadi Sadat, TMH,2nd Edition.
- 2. Power system Analysis, <u>R.</u>Bergen, and Vijay Vittal, Pearson publications, 2nd edition, 2006.
- 3. Computer Aided Power system analysis, G.L., Kusic, PHI.Indian Edition, 2010 .
- 4. Power System Analysis, W.D. Stevenson & Grainger, TMH, First Edition, 2003.

PART -	A
--------	---

SWITCHES AND FUSES: Introduction, energy management of power system, definition of switchgear, switches - isolating, load breaking and earthing. Introduction to fuse, fuse law, cut -off characteristics,: Time current characteristics, fuse material, HRC fuse, liquid fuse, Application of fuse

UNIT - 2

PRINCIPLES OF CIRCUIT BREAKERS: Introduction, requirement of a circuit breakers, difference between an isolator and circuit breaker, basic principle of operation of a circuit breaker, phenomena of arc, properties of arc, initiation and maintenance of arc, arc interruption theories - slepian's theory and energy balance theory, Restriking voltage, recovery voltage, Rate of rise of Restriking voltage, DC circuit breaking, AC circuit breaking, current chopping, capacitance switching, resistance switching, Rating of Circuit breakers.

UNIT - 3 & 4 CIRCUITS BREAKERS: Air Circuit breakers – Air break and Air blast Circuit breakers, oil Circuit breakers - Single break, double break, minimum OCB, SF₆ breaker - Preparation of SF₆ gas, Puffer and non Puffer type of SF₆ breakers. Vacuum circuit breakers - principle of operation and constructional details. Advantages and disadvantages of different types of Circuit breakers, Testing of Circuit breakers, Unit testing, synthetic testing, substitution test, compensation test and capacitance test.

LIGHTNING ARRESTERS: Causes of over voltages – internal and external, lightning, working principle of different types of lightning arresters. Shield wires.

PART - B

UNIT - 5

UNIT - 1

PROTECTIVE RELAYING: Requirement of Protective Relaying, Zones of protection, primary and backup protection, Essential qualities of Protective Relaying, Classification of Protective Relays

UNIT - 6

INDUCTION TYPE RELAY: Non-directional and directional over current relays, IDMT and Directional characteristics. Differential relay – Principle of operation, percentage differential relay, bias characteristics, distance relay – Three stepped distance protection, Impedance relay, Reactance relay, Mho relay, Buchholz relay, Negative Sequence relay, Microprocessor based over current relay – block diagram approach.

UNIT - 7 & 8

PROTECTION SCHEMES: Generator Protection - Merz price protection, prime mover faults, stator and rotor faults, protection against abnormal conditions – unbalanced loading, loss of excitation, over speeding. Transformer Protection - Differential protection, differential relay with harmonic restraint, Inter turn faults Induction motor protection - protection against electrical faults such as phase fault, ground fault, and abnormal operating conditions such as single phasing, phase reversal, over load. **12 Hours**

TEXT BOOKS:

- 1. Switchgear & Protection Sunil S.Rao,,Khanna Publishers,13th Edition,2008.
- 2. Power System Protection & Switchgear, Badriram & Viswa Kharma, TMH, 1st edition, 2001.
- 3. Fundamentals of Power System protection, Y G. Painthankar and S R Bhide, PHI, 2009.

REFERENCE BOOKS:

- 1. A Course in Electrical Power, Soni, Gupta & Bhatnagar, Dhanapatirai.
- 2. Power System Protection & Switchgear, Ravindarnath & Chandra -New age Publications.
- **3** Electrical Power, Dr S. L. Uppal, Khanna Publishers.
- 4. Handbook of Switchgears, BHEL, TMH, 5th reprint, 2008.

10EE62 SWITCHGEAR & PROTECTION

Subject Code	:	10EE62	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

10 Hours

4 Hours

12 Hours

4 Hours

4 Hours

10 Hours

10EE664 OBJECT ORIENTED PROGRAMMING USING C ++

Subject Code	:	10EE664	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

PRINCIPLES OF OBJECT-ORIENTED PROGRAMMING: Review of Procedure OrientedProgramming, Basic concepts of Object Oriented Programming – Object, Class, Encapsulation,Inheritance, Polymorphism; Benefits of OOPs, Applications of OOP's.**4 Hours**

UNIT - 2

THE BASIC LANGUAGE C++: A comparison of C and C++, Structure of C++ program with Class, Preprocessor directives, C++ Statements – Input/Output, Comments, Tokens, Keywords, Identifiers, Constants, Data types – string, pointer, reference, boole, enumeration, array, complex number; typedef names, type compatibility, type conversion, qualifier – const, volatile; Operators in C++, Operator Precedence and Operator Overloading; C++ expressions – New and Delete. **6 Hours**

UNIT - 3

FUNCTIONS IN C++: Introduction, The main() function, Function prototype, Call by reference, Return by reference, Inline functions, Default arguments, const Arguments, Function Overloading, Friend and Virtual functions, pointer to functions. **8 hours**

UNIT - 4

CLASSES AND OBJECTS: Introduction – declaration and definition of a Class, defining member functions, C++ program with a Class, Making an outside function Inline, Nesting of member functions, Arrays within a class, Static data members, static member functions, Objects – global & local objects, scope & lifetime, memory allocation for objects, dynamically allocated objects, pointers to objects, arrays of objects, function arguments with objects, returning objects; const member functions. **8 Hours**

PART - B

UNIT - 5

CONSTRUCTORS AND DESTRUCTORS: Introduction, Constructors, Parameterized Constructors, Multiple constructors in a class, Constructors with default arguments, Dynamic initialization of objects, Copy constructor, Constructing two-dimensional arrays, const Objects, Destructors. **4 Hours**

UNIT - 6

OPERATOR OVERLOADING AND TYPE CONVERSION: Introduction, Defining operator overloading, Overloading unary operators, Overloading binary operators, Overloading binary operators using Friends, Rules for overloading operators, overloading a comma operator, overloading the output operator, Type conversion. **7 Hours**

UNIT - 7

INHERITANCE: Introduction, Defining derived classes, Single inheritance, Making a private member Inheritable, Multilevel inheritance, Multiple inheritance, Hierarchical inheritance, Hybrid inheritance, Virtual base classes, Abstract classes, Constructors & Destructors in base & derived classes. **6 Hours**

UNIT - 8

POINTER, VIRTUAL FUNCTIONS AND POLYMORPHISM: Introduction, Pointers, Pointers to Objects, this pointer, Pointers to derived classes, type-checking pointers, pointers to members, Virtual functions, Pure virtual functions.

MANAGING CONSOLE I/O AND FILE I/O: C++ streams, C++ stream classes, examples of formatted and unformatted I/O operations, Classes for file stream operations, Methods of Opening and Closing a File, Examples of Opening file using constructor open(), file modes (simple programming exercises). **9 Hours**

TEXT BOOKS:

1. **Object Oriented Programming with C++-** Balagurusamy, E, TMH,4th edition, 2008.

2. C++, The Complete Reference -Herbert Schildt, , TMH, 4th edition

3. Object Oriented Programming with C++, Farrell, Cengage Learning, First Edition, 2008. **REFERENCE BOOKS:**

1. The C++ programming language,Bjarne Stroustrup, Pearson Education, 3rd edition,2006.

2. Objected oriented programming with C++, Bhave, Pearson Education, First Edition, 2006.

10EE72 ELECTRICAL POWER UTILIZATION

Subject Code	:	10EE72	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

HEATING AND WELDING: Advantages and methods of electric of heating, resistance ovens, induction heating, dielectric heating, the arc furnace, heating of building. Electric welding, resistance and arc welding, control devices and welding equipment. **10 Hours**

UNIT - 2

ELECTROLYTIC PROCESS: Fundamental principles, extraction, refining of metals and electroplating. Factors affecting electro deposition process, power supply for electrolytic process. **6 Hours**

UNIT - 3 & 4

ILLUMINATION: Laws of illumination, lighting calculation, factory lighting, flood lighting, street lighting, different types of lamps-incandescent, fluorescent, vapor, CFL and LED lamps and their working, comparision, Glare and its remedy. **10 Hours**

PART - B

UNIT - 5, 6 & 7

ELECTRIC TRACTION: Introduction, requirements of an ideal traction, systems of traction, speed time curve, tractive effort, co-efficient of adhesion, selection of traction motors, method of speed control, energy saving by series parallel control, ac traction equipment. AC series motor, characteristics, regenerative braking, linear induction motor and their use. AC traction, diesel electric equipment, trains lighting system, specific energy, factors affecting specific energy consumption. **20 Hours**

UNIT - 8

INTRODUCTION TO ELECTRIC AND HYBRID VEHICLES: Configuration and performance of electrical vehicles, traction motor characteristics, tractive effort, transmission requirement, vehicle performance and energy consumption. **6 Hours**

TEXT BOOKS:

- 1. Utilization Of Electric Energy, E Openshaw Taylor, 12th Impression, 2009, Universities Press.
- 2. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad, Ehsani, Yimin Gao, Sabastien. E. Gay, Ali Emadi- CRC Press.

REFERENCE BOOKS:

- 1. A Course in Electrical Power, Soni Gupta and Bhatnager-Dhanapat Rai & sons.
- 3. Electrical Power, Dr. S.L.Uppal, Khanna Publications

10EE73 HIGH VOLTAGE ENGINEERING

Subject Code	:	10EE73	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

PART - A

UNIT - 1

INTRODUCTION: Introduction to HV technology, need for generating high voltages in laboratory. Industrial applications of high voltage, Electrostatic precipitation, separation, painting and printing.

6Hours

UNIT - 2 & 3

BREAKDOWN PHENOMENA: Classification of HV insulating media. Properties of important HV insulating media under each category. Gaseous dielectrics, Ionization: primary and secondary ionization processes. Criteria for gaseous insulation breakdown based on Townsend's theory. Limitations of Townsend's theory. Streamer's theory breakdown in non uniform fields. Corona discharges. Breakdown in electro negative gases. Paschen's law and its significance. Time lags of Breakdown. Breakdown in solid dielectrics: Intrinsic Breakdown, avalanche breakdown, thermal breakdown, and electro mechanic breakdown. Breakdown of liquid dielectrics: Suspended particle theory, electronic Breakdown, cavity breakdown (bubble's theory), electro convection breakdown. **12 Hours**

UNIT - 4

GENERATION OF HV AC AND DC VOLTAGE: HV AC-HV transformer; Need for cascade connection and working of transformers units connected in cascade. Series resonant circuit- principle of operation and advantages. Tesla coil. HV DC- voltage doubler circuit, cock croft- Walton type high voltage DC set. Calculation of high voltage regulation, ripple and optimum number of stages for minimum voltage drop. **8 Hours**

Part - B

UNIT - 5

GENERATION OF IMPULSE VOLTAGE AND CURRENT: Introduction to standard lightning and switching impulse voltages. Analysis of single stage impulse generator-expression for Output impulse voltage. Multistage impulse generator working of Marx impulse. Rating of impulse generator. Components of multistage impulse generator. Triggering of impulse generator by three electrode gap arrangement. Trigatron gap and oscillograph time sweep circuits. Generation of switching impulse voltage. Generation of high impulse current.

UNIT - 6

MEASUREMENT OF HIGH VOLTAGES: Electrostatic voltmeter-principle, construction and limitation. Chubb and Fortescue method for HV AC measurement. Generating voltmeter- Principle, construction. Series resistance micro ammeter for HV DC measurements. Standard sphere gap measurements of HV AC, HV DC, and impulse voltages; Factors affecting the measurements. Potential dividers-resistance dividers capacitance dividers mixed RC potential dividers. Measurement of high impulse currents-Rogogowsky coil and Magnetic Links. **10 Hours**

NON-DESTRUCTIVE INSULATION TESTING TECHNIQUES: Dielectric loss and loss angle measurements using Schering Bridge, Transformer ratio Arms Bridge. Need for discharge detection and PD measurements aspects. Factor affecting the discharge detection. Discharge detection methods-straight and balanced methods. 6 Hours

UNIT - 8

HIGH VOLTAGE TESTS ON ELECTRICAL APPARATUS: Definitions of terminologies, tests on
isolators, circuit breakers, cables insulators and transformers.4 Hours

TEXT BOOKS:

- 1. High Voltage Engineering, M.S.Naidu and Kamaraju- 4th Edition, THM, 2008.
- 2. High Voltage Engineering Fundamentals, E.Kuffel and W.S. Zaengl, 2nd Edition, Elsevier Press, 2005.
- 3. High Voltage Engineering ,C.L.Wadhwa, New Age International Private limited, 1995.

REFERENCE BOOKS:

1.High Voltage Engineering Theory and Practice, Mazen Abdel-Salam, Hussein Anis, Ahdab El-Morshedy, Roshdy Radwan, 2nd Edn(Revised & Expanded) Marcel-Dekker Publishers(Special Indian Edn.).

10EE752 PROGRAMMABLE LOGIC CONTROLLERS

Subject Code	:	10EE752	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	•	52	Exam Marks	•	100

PART - A

UNIT - 1

INTRODUTION: Introduction to Programmable logic controller (PLC), role in automation (SCADA), advantages and disadvantages, hardware, internal architecture, sourcing and sinking, characteristics of I/O devices, list of input and output devices, examples of applications. I/O processing, input/output units, signal conditioning, remote connections, networks, processing inputs I/O addresses. **7 Hours**

UNIT - 2

ROGRAMMING: Ladder programming- ladder diagrams, logic functions, latching, multiple outputs, entering programs, functional blocks, programme examples like location of stop and emergency switches

8 Hours

UNIT - 3 & 4

PROGRAMMING LANGUAGES: Instruction list, sequential functions charts & structured text, jump and call subroutines. 10 Hours

PART - B

UNIT - 5

INTERNAL RELAYS: ladder programmes, battery- backed relays, one - shot operation, set and reset, master control relay. 5 Hours

UNIT - 6 & 7

Timers and counters: Types of timers, programming timers, ON and OFF- delay timers, pulse timers, forms of counter, programming, up and down counters, timers with counters, sequencer. 12 Hours UNIT - 8

Shift register and data handling: shift registers, ladder programs, registers and bits, data handling, arithmetic functions, temperature control and bottle packing applications. 10 Hours Note: Programming is to be with reference to only Mitsubhish PLC

TEXT BOOKS:

- 1. Programmable Logic controllers-W Bolton, 5th edition, Elsevier- newness, 2009.
- 2. **Programmable logic controllers principles and applications**"-John W Webb, Ronald A Reis, Pearson education, 5th edition, 2nd impression, 2007.

REFERENCE BOOKS:

- 1. **Programmable Controller Theory and Applications**, L. A Bryan, E. A Bryan, An industrial text company publication, 2nd edition, 1997.
- 2. Programmable Controllers, An Engineers Guide-E. A Paar, newness, 3rd edition, 2003.

Subject Code	:	10EE836	IA Marks	:	25
No. of Lecture Hrs./ Week	:	04	Exam Hours	:	03
Total No. of Lecture Hrs.	:	52	Exam Marks	:	100

10EE836 RENEWABLE ENERGY SOURCES

UNIT - 1

ENERGY SOURCES: Introduction, Importance of Energy Consumption as Measure of Prosperity, Per Capita Energy Consumption, Classification of Energy Resources; Conventional Energy Resources -Availability and their limitations; Non-Conventional Energy Resources – Classification, Advantages, Limitations; Comparison of Conventional and Non-Conventional Energy Resources; World Energy Scenario; Indian Energy Scenario. 4 Hours

UNIT - 2

SOLAR ENERGY BASICS: Introduction, Solar Constant, Basic Sun-Earth Angles – definitions and their representation, Solar Radiation Geometry (numerical problems), Estimation of Solar Radiation of Horizontal and Tilted Surfaces (numerical problems); Measurement of Solar Radiation Data – Pyranometer and Pyrheliometer. **6 Hours**

UNIT - 3

SOLAR THERMAL SYSTEMS: Principle of Conversion of Solar Radiation into Heat, Solar WaterHeaters (Flat Plate Collectors), Solar Cookers – Box type, concentrating dish type, Solar driers, Solar Still,Solar Furnaces, Solar Green Houses.6 Hours

UNIT - 4

SOLAR ELECTRIC SYSTEMS: Solar Thermal Electric Power Generation – Solar Pond and Concentrating Solar Collector (parabolic trough, parabolic dish, Central Tower Collector). Advantages and Disadvantages; Solar Photovoltaic – Solar Cell fundamentals, characteristics, classification, construction of module, panel and array. Solar PV Systems – stand-alone and grid connected; Applications – Street lighting, Domestic lighting and Solar Water pumping systems. **7 Hours**

ENERGY STORAGE: Introduction, Necessity of Energy Storage, and Methods of Energy Storage (classification and brief description using block diagram representation only). **3 Hours**

PART - B

UNIT - 5

WIND ENERGY: Introduction, Wind and its Properties, History of Wind Energy, Wind Energy Scenario – World and India. Basic principles of Wind Energy Conversion Systems (WECS), Classification of WECS, Parts of WECS, Derivation for Power in the wind, Electrical Power Output and Capacity Factor of WECS, Wind site selection consideration, Advantages and Disadvantages of WECS. **8 Hours**

UNIT - 6

BIOMASS ENERGY: Introduction, Photosynthesis process, Biomass fuels, Biomass conversion technologies, Urban waste to Energy Conversion, Biomass Gasification, Biomass to Ethanol Production, Biogas production from waste biomass, factors affecting biogas generation, types of biogas plants – KVIC and Janata model; Biomass program in India. **6 Hours**

UNIT - 7

ENERGY FROM OCEAN: Tidal Energy – Principle of Tidal Power, Components of Tidal Power Plant (TPP), Classification of Tidal Power Plants, Estimation of Energy – Single basin and Double basin type TPP (no derivations. Simple numerical problems), Advantages and Limitations of TPP. Ocean Thermal Energy Conversion (OTEC): Principle of OTEC system, Methods of OTEC power generation – Open Cycle (Claude cycle), Closed Cycle (Anderson cycle) and Hybrid cycle (block diagram description of OTEC); Siteselection criteria, Biofouling, Advantages & Limitations of OTEC. **6 Hours**

UNIT - 8

EMERGING TECHNOLOGIES: Fuel Cell, Small Hydro Resources, Hydrogen Energy, and Wave Energy. (Principle of Energy generation using block diagrams, advantages and limitations). **6 Hours**

TEXT BOOKS:

- 1. Non-Conventional Sources of Energy, Rai, G. D, Khanna Publishers, 4th Edition, 2007
- 2. Non-Conventional Energy Resources, Khan, B. H., TMH, 2nd Edition.

REFERENCE BOOK:

1. **Fundamentals of Renewable Energy Systems,** Mukherjee, D and Chakrabarti, S., New Age International Publishers, 2005.

MATERIAL SCIENCE AND METALLURGY

Subject Code	: 10ME32A /42A	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Crystal Structure: BCC, FCC and HCP Structures, coordination number and atomic packing factors, crystal imperfections -point line and surface imperfections. Atomic Diffusion: Phenomenon, Ficks laws of diffusion, factors affecting diffusion.

06 Hours

UNIT - 2

Mechanical Behaviour: Stress-strain diagram showing ductile and brittle behaviour of materials, linear and non linear elastic behaviour and properties, mechanical properties in plastic range, yield strength offset yield strength, ductility, ultimate tensile strength, toughness. Plastic deformation of single crystal by slip and twinning.

06 Hours

Fracture: Type I, Type II and Type III.

Creep: Description of the phenomenon with examples. three stages of creep, creep properties, stress relaxation.

Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, fatigue properties, fatigue testing and S-N diagram.

07 Hours

UNIT - 4

Solidification: Mechanism of solidification, Homogenous and Heterogeneous nucleation, crystal growth, cast metal structures. Phase Diagram I: Solid solutions Hume Rothary rule substitutional, and interstitial solid solutions, intermediate phases, Gibbs phase rule.

07 Hours

PART - B

UNIT - 5

Phase Diagram II: Construction of equilibrium diagrams involving complete and partial solubility, lever rule. Iron carbon equilibrium diagram description of phases, solidification of steels and cast irons, invariant reactions.

06 Hours

UNIT - 6

Heat treating of metals: TTT curves, continuous cooling curves, annealing and its types. normalizing, hardening, tempering, martempering, austempering, hardenability, surface hardening methods like carburizing, cyaniding, nitriding, flame hardening and induction hardening, age hardening of aluminium-copper alloys.

07 Hours

UNIT - 7

Ferrous and non ferrous materials: Properties, Composition and uses of

- Grey cast iron, malleable iron, SG iron and steel
- Copper alloys-brasses and bronzes. Aluminium alloys-Al-Cu,Al-Si,Al-Zn alloys.

06 Hours

Composite Materials: Definition, classification, types of matrix materials & reinforcements, fundamentals of production of FRP's and MMC's advantages and application of composites.

07 Hours

TEXT BOOKS:

- 1. Foundations of Materials Science and Engineering, Smith, 4th Edition McGraw Hill, 2009
- 2. Materials Science, Shackleford., & M. K. Muralidhara, Pearson Publication 2007.

REFERENCE BOOKS:

- 1. An Introduction to Metallurgy; Alan Cottrell, Universities Press India Oriental Longman Pvt. Ltd., 1974.
- 2 Engineering Materials Science, W.C.Richards, PHI, 1965
- 3. Physical Metallurgy; Lakhtin, Mir Publications
- 4. Materials Science and Engineering, V.Raghavan, PHI, 2002
- 5. Elements of Materials Science and Engineering, H. VanVlack, Addison-Wesley Edn., 1998
- Materials Science and Engineering, William D. Callister Jr., John Wiley & Sons. Inc, 5th Edition, 2001.
- 7. **The Science and Engineering of Materials,** Donald R. Askland and Pradeep.P. Phule, Cengage Learning, 4^{lh} Ed., 2003.

MECHANICAL MEASUREMENTS AND METROLOGY

Subject Code	: 10ME32B /42B	IA Marks	: 25
Hours/Week	:04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT-1

Standards of measurement: Definition and Objectives of metrology, Standards of length-International prototype meter, Imperial standard yard, Wave length standard, subdivision of standards, line and

end standard, calibration of end bars (Numerical), Slip gauges, Wringing phenomena, Indian Standards (M-81, M-12), Numerical problems on building of slip gauges.

06 Hours

UNIT-2

System of Limits, Fits, Tolerance and Gauging: Definition of tolerance, Specification in assembly, Principle of interchangeability and selective assembly limits of size, Indian standards, concept of limits of size and tolerances, compound tolerances, accumulation of tolerances, definition of fits, types of fits and their designation (IS 919-1963), geometrical tolerance, positional-tolerances, hole basis system, shaft basis system, classification of gauges, brief concept of design of gauges (Taylor's principles), Wear allowance on gauges, Types of gauges-plain plug gauge, ring gauge, snap gauge, limit gauge and gauge materials.

07 Hours

UNIT-3

Comparators and Angular measurement: Introduction to comparators, characteristics, classification of comparators, mechanical comparators-Johnson Mikrokator, sigma comparators, dial indicator, optical comparators-principles, Zeiss ultra optimeter, electric and electronic comparators-principles, LVDT, pneumatic comparators, back pressure gauges, solex comparators. Angular measurements, bevel protractor, sine principle and use of sine bars, sine centre, use of angle gauges (numericals on building of angles), clinometers.

07 Hours

UNIT-4:

Interferometer and screw thread, gear measurement: Interferometer, interferometry, autocollimator. Optical flats. Terminology of screw threads, measurement of major diameter, minor diameter, pitch, angle and effective diameter of screw threads by 2 - wire and 3 -wire methods, best size wire. Tool maker's microscope, gear tooth terminology, use of gear tooth vernier caliper and micrometer.

06 Hours

UNIT-5:

Measurements and measurement systems: Definition, significance of measurement, generalized measurement system, definitions and concept of accuracy, precision, calibration, threshold, sensitivity, hysterisis, repeatability, linearity, loading effect, system response-times delay. Errors in measurement, classification of errors. Transducers, transfer efficiency, primary and secondary transducers, electrical, mechanical, electronic transducers, advantages of each type transducers.

07 Hours

UNIT-6

Intermediate modifying and terminating devices: Mechanical systems, inherent problems, electrical intermediate modifying devices, input circuitry, ballast circuit, electronic amplifiers and telemetry. Terminating devices, mechanical, cathode ray oscilloscope, oscillographs, X-Y plotters.

06 Hours

UNIT-7

Measurement of force, torque and pressure: Principle, analytical balance, platform balance, proving ring. Torque measurement, Prony brake, hydraulic dynamometer. Pressure measurements, principle, use of elastic members, Bridgeman gauge, McLeod gauge, Pirani gauge. 06 Hours

UNIT-8

Temperature and strain measurement: Resistance thermometers, thermocouple, law of thermo couple, materials used for construction, pyrometer, optical pyrometer. Strain measurements, strain gauge, preparation and mounting of strain gauges, gauge factor, methods of strain measurement.

07 Hours

TEXT BOOKS:

- Mechanical Measurements, Beckwith Marangoni and Lienhard, Pearson Education, 6th Ed., 2006.
- 2. Engineering Metrology, R.K. Jain, Khanna Publishers, 1994.

REFERENCE BOOKS:

- 1. **Engineering Metrology,** I.C. Gupta, Dhanpat Rai Publications, Delhi.
- 2. Mechanical Measurements, R.K. Jain Khanna Publishers, 1994
- 3. **Industrial Instrumentation,** Alsutko, Jerry. D. Faulk, Cengage Asia Pvt. Ltd. 2002.
- Measurement Systems Applications and Design, Ernest O. Doebelin, 5th Ed., McGraw Hill Book Co.
- 5. **Metrology & Measurement,** Anand K. Bewoor & Vinay A. Kulkarni, Tata McGraw Hill Pvt. Ltd., New-Delhi

MANUFACTURING PROCESS – I (FUNDAMENTALS OF FOUNDRY & WELDING)

Subject Code	: 10ME35	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART – A

CASTING PROCESS

UNIT - 1

Introduction: Concept of Manufacturing process, its importance. Classification of Manufacturing processes. Introduction to Casting process & steps involved. Varieties of components produced by casting process. Advantages & Limitations of casting process.

Patterns: Definition, functions, Materials used for pattern, various pattern allowances and their importance. Classification of patterns, BIS color coding of Patterns.

Binder: Definition, Types of binder used in moulding sand.

Additives: Need, Types of additives used and their properties..

06 Hours

UNIT - 2

Sand Moulding : Types of base sand, requirement of base sand. Moulding sand mixture ingredients for different sand mixtures. Method used for sand moulding, such as Green sand, dry sand and skin dried moulds.

Cores: Definition, Need, Types. Method of making cores, Binders used, core sand moulding.

Concept of Gating & Risers. Principle and types.

Fettling and cleaning of castings. Basic steps, Casting defects, Causes, features and remedies.

Moulding Machines : Jolt type, Squeeze type, Jolt & Squeeze type and Sand slinger.

07 Hours

Special moulding Process: Study of important moulding processes, No bake moulds, Flaskless moulds, Sweep mould, CO_2 mould, Shell mould, Investment mould.

Metal moulds: Gravity die-casting, Pressure die casting, Centrifugal casting, Squeeze Casting, Slush casting, Thixo-casting and Continuous Casting Processes.

07 Hours

UNIT - 4

Melting Furnaces: Classification of furnaces. Constructional features & working principle of coke fired, oil fired and Gas fired pit furnace, Resistance furnace, Coreless Induction furnace, Electric Arc Furnace, Cupola furnace.

06 Hours

PART – B

WELDING

UNIT - 5

Welding process: Definition, Principles, Classification, Application, Advantages & limitations of welding.

Arc Welding: Principle, Metal Arc welding (**MAW**), Flux Shielded Metal Arc Welding (**FSMAW**), Inert Gas Welding (**TIG & MIG**) Submerged Arc Welding (**SAW**) and Atomic Hydrogen Welding processes. (**AHW**)

Gas Welding: Principle, Oxy – Acetylene welding, Chemical Reaction in Gas welding, Flame characteristics. Gas torch construction & working. Forward and backward welding.

07 Hours

UNIT - 6

Special types of welding: Resistance welding - principles, Seam welding, Butt welding, Spot welding and projection welding.

Friction welding, Explosive welding, Thermit welding, Laser welding and Electron beam welding.

07 Hours

Metallurgical aspect, in welding : Structure of welds, Formation of different zones during welding. Heat affected zone (HAZ). Parameters affecting HAZ. Effect of carbon content on structure and properties of steel. Shrinkage in welds & Residual stresses.

Concept of electrodes, Filler rod and fluxes. Welding defects – Detection causes & remedy.

06 Hours

UNIT - 8

Principles of soldering & brazing: Parameters involved & Mechanism. Different Types of Soldering & Brazing Methods.

Inspection Methods – Methods used for Inspection of casting and welding. Visual, Magnetic particle, Fluorescent particle, Ultrasonic, Radiography, Eddy current, Holography methods of Inspection.

06 Hours

TEXT BOOKS:

- "Manufacturing Process-I", Dr.K.Radhakrishna, Sapna Book House, 5th Revised Edition 2009.
- "Manufacturing & Technology: Foundry Forming and Welding", P.N.Rao, 3rd Ed., Tata McGraw Hill, 2003.

REFERENCE BOOKS:

- 1. **"Process and Materials of Manufacturing**", Roy A Lindberg, 4th Ed. Pearson Edu. 2006.
- "Manufacturing Technology", Serope Kalpakjian, Steuen. R. Sechmid, Pearson Education Asia, 5th Ed. 2006.

COMPUTER AIDED MACHINE DRAWING

Subject Code	:10ME36A/10ME46A	IA Marks	25
Hours/Week	: 04(1 Hrs. Theory &	Exam Hours	03
	3 Hrs Practical)		
Total Hours	: 52	Exam Marks	100

Introduction:

Review of graphic interface of the software. Review of basic sketching commands and navigational commands. Starting a new drawing sheet. Sheet sizes. Naming a drawing, Drawing units, grid and snap.

02 Hours

PART-A

UNIT - 1

Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones and Cylinders resting only on their bases (No problems on axis inclinations, spheres and hollow solids). True shape of sections.

Orthographic Views: Conversion of pictorial views into orthographic projections. of <u>simple machine parts</u> with or without section. (Bureau of Indian Standards conventions are to be followed for the drawings) Hidden line conventions. Precedence of lines.

08 Hours

UNIT - 2

Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External) BSW (Internal & External) square and Acme. Sellers thread, American Standard thread.

Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper and split pin for locking, counter sunk head screw, grub screw, Allen screw.

08 Hours

PART-B

UNIT - 3
Keys & Joints :
Parallel key, Taper key, Feather key, Gibhead key and Woodruff key
Riveted Joints: Single and double riveted lap joints, butt joints with single/double cover straps (Chain and Zigzag, using snap head rivets). cotter joint (socket and spigot), knuckle joint (pin joint) for two rods.

08 Hours

UNIT - 4 Couplings:

Split Muff coupling, Protected type flanged coupling, pin (bush) type flexible coupling, Oldham's coupling and universal coupling (Hooks' Joint)

08 Hours

PART - C

Assembly Drawings (Part drawings should be given)

- 1. Plummer block (Pedestal Bearing)
- 2. Rams Bottom Safety Valve
- 3. I.C. Engine connecting rod
- 4. Screw jack (Bottle type)
- 5. Tailstock of lathe
- 6. Machine vice
- 7. Tool Head of a shaper

18 Hours

TEXT BOOKS:

- 1. 'A Primer on Computer Aided Machine Drawing-2007', Published by VTU, Belgaum.
- 2. 'Machine Drawing', N.D.Bhat & V.M.Panchal

REFERENCE BOOKS:

- 1. **'A Text Book of Computer Aided Machine Drawing'**, S. Trymbaka Murthy, CBS Publishers, New Delhi, 2007
- 2. 'Machine Drawing', K.R. Gopala Krishna, Subhash Publication.

- 3. **'Machine Drawing with Auto CAD**', Goutam Pohit & Goutham Ghosh, 1st Indian print Pearson Education, 2005
- 4. **'Auto CAD 2006, for engineers and designers'**, Sham Tickoo. Dream tech 2005
- 5. **'Machine Drawing'**, N. Siddeshwar, P. Kanniah, V.V.S. Sastri, published by Tata McGraw Hill,2006

NOTE:

Internal assessment: 25 Marks

All the sheets should be drawn in the class using software. Sheet sizes should be A3/A4. All sheets must be submitted at the end of the class by taking printouts.

Scheme of Examination:

Two questions to be set from each Part-A, Part-B and Part-C Student has to answer one question each from Part-A and Part-B for 20 marks each. And one question from Part-C for 60 marks.

> i.e. PART-A 1 x 20 = 20 Marks PART-B 1 x 20 = 20 Marks PART-C 1 x 60 = 60 Marks

> > Total = 100 Marks

FLUID MECHANICS

Subject Code	: 10ME36B / 46B	IA Marks	25
Hours/Week	: 04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT-1

Properties of Fluids: Introduction, Types of fluid, Properties of fluids, viscosity, thermodynamic properties, surface tension, capillarity, vapour pressure and cavitation

06 Hours

Fluid Statistics: Fluid pressure at a point, Pascal's law, pressure variation in a static fluid, absolute, gauge, atmospheric and vacuum pressures, simple manometers and differential manometers. Total pressure and center of pressure on submerged plane surfaces; horizontal, vertical and inclined plane surfaces, curved surface submerged in liquid.

UNIT-3

Buoyancy and Fluid Kinematics:

Buoyancy, center of buoyancy, metacentre and metacentric height, conditions of equilibrium of floating and submerged bodies, determination of Metacentric height experimentally and theoretically.

<u>Kinematics</u>: Types of fluid flow, continuity equation in 2D and 3D (Cartesian Co-ordinates only), velocity and acceleration, velocity potential function and stream function.

07 Hours

UNIT-4

Fluid Dynamics: Introduction equation of motion, Euler's equation of motion, Bernoulli's equation from first principles and also from Euler's equation, limitations of Bernoulli's equation.

06 Hours

PART-B

UNIT-5

Fluid Flow Measurements : Venturimeter, orificemeter, pitot-tube, vertical orifice, V-Notch and rectangular notches.

<u>Dimensional Analysis</u> : Introduction, derived quantities, dimensions of physical quantities, dimensional homogeneity, Rayleigh's method, Buckingham π theorem, dimensionless numbers, similitude, types of similitudes.

07 Hours

UNIT-6

Flow through pipes : Minor losses through pipes. Darey's and Chezy's equation for loss of head due to friction in pipes. HGL and TEL.

06 Hours
UNIT-7

Laminar flow and viscous effects : Reyonold's number, critical Reynold's number, laminar flow through circular pipe-Hagen Poiseille's equation, laminar flow between parallel and stationary plates.

06 Hours

UNIT-8

Flow past immersed bodies : Drag, Lift, expression for lift and drag, boundary layer concept, displacement, momentum and energy thickness. <u>Introduction to compressible flow</u> : Velocity of sound in a fluid, Mach number, Mach cone, propagation of pressure waves in a compressible fluid. 07 Hours

TEXT BOOKS:

- Fluid Mechanics, Oijush.K.Kundu, IRAM COCHEN, ELSEVIER, 3rd Ed. 2005.
- 2. Fluid Mechanics, Dr. Bansal, R.K.Lakshmi Publications, 2004.

REFERENCE BOOKS:

- 1. Fluid Mechanics and hydraulics, Dr.Jagadishlal: Metropolitan Book Co-Ltd., 1997.
- Fluid Mechanics (SI Units), Yunus A. Cengel John M.Oimbala, 2nd Ed., Tata McGraw Hill, 2006.
- 3. **Fluid Mechanics,** John F.Douglas, Janul and M.Gasiosek and john A.Swaffield, Pearson Education Asia, 5th ed., 2006
- 4. Fluid Mechanics and Fluid Power Engineering, Kumar.D.S, Kataria and Sons., 2004
- 5. Fluid Mechanics -. Merle C. Potter, Elaine P.Scott. Cengage learning

Subject Code	: 10MEL37A / 47A	IA Marks	: 25
Hours/Week	: 03	Exam Hours	: 03
Total Hours	: 48	Exam Marks	: 50

PART – A

- 1. Preparation of specimen for Metallograpic examination of different engineering materials. Identification of microstructures of plain carbon steel, tool steel, gray C.I, SG iron, Brass, Bronze & composites.
- 2. Heat treatment: Annealing, normalizing, hardening and tempering of steel. Hardness studies of heat-treated samples.
- 3. To study the wear characteristics of ferrous, non-ferrous and composite materials for different parameters.
- 4. Non-destructive test experiments like,
 - (a). Ultrasonic flaw detection
 - (b). Magnetic crack detection

(c). Dye penetration testing. To study the defects of Cast and Welded specimens

PART - B

- 1. Tensile, shear and compression tests of metallic and non metallic specimens using Universal Testing Machine
- 2. Torsion Test
- 3. Bending Test on metallic and nonmetallic specimens.
- 4. Izod and Charpy Tests on M.S, C.I Specimen.
- 5. Brinell, Rockwell and Vickers's Hardness test.
- 6. Fatigue Test.

Scheme of Examination:

ONE	question	from	part	-A:	20	Marks
ONE	question	from	part	-B:	20	Marks
Viva -	Voice:				10	Marks

Total: 50 Marks

MECHANICAL MEASUREMENTS AND METROLOGY LABORATORY

Subject Code	: 10MEL37B / 47B	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 48	Exam Marks	: 50

PART-A: MECHANICAL MEASUREMENTS

- 1. Calibration of Pressure Gauge
- 2. Calibration of Thermocouple
- 3. Calibration of LVDT
- 4. Calibration of Load cell
- 5. Determination of modulus of elasticity of a mild steel specimen using strain gauges.

PART-B: METROLOGY

- 1. Measurements using Optical Projector / Toolmaker Microscope.
- 2. Measurement of angle using Sine Center / Sine bar / bevel protractor
- 3. Measurement of alignment using Autocollimator / Roller set
- 4. Measurement of cutting tool forces using
 - a) Lathe tool Dynamometer
 - b) Drill tool Dynamometer.
- 5. Measurement of Screw thread Parameters using Two wire or Three-wire method.
- 6. Measurements of Surface roughness, Using Tally Surf/Mechanical Comparator
- 7. Measurement of gear tooth profile using gear tooth vernier /Geartooth micrometer
- 8. Calibration of Micrometer using slip gauges
- 9. Measurement using Optical Flats

Scheme of Examination:

ONE	question	from	part	-A:	20	Marks
ONE	question	from	part	-B:	20	Marks
Viva -	Voice:				10	Marks

Total: 50 Marks

FOUNDRY AND FORGING LABORATORY

Subject Code	: 10MEL38A / 48A	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 48	Exam Marks	: 50

PART – A

1. Testing of Moulding sand and Core sand

Preparation of sand specimens and conduction of the following tests:

- 1 Compression, Shear and Tensile tests on Universal Sand Testing Machine.
- 2 Permeability test

3 Core hardness & Mould hardness tests.

- 4 Sieve Analysis to find Grain Fineness number of Base Sand
- 5 Clay content determination in Base Sand

PART – B

2. Foundry Practice

Use of foundry tools and other equipments.

Preparation of moulds using two moulding boxes using patterns or without patterns. (Split pattern, Match plate pattern and Core boxes). Preparation of one casting (Aluminum or cast iron-Demonstration only)

PART - C

3. Forging Operations :

- Calculation of length of the raw material required to do the model.
- Preparing minimum three forged models involving upsetting, drawing and bending operations.
- Out of these three models, at least one model is to be prepared by using Power Hammer.

Scheme of Examination:

_

One question is to be set from Part-A:10 marksOne question is to be set from either70 marksPart-B or Part-C:30 marksCalculation part in case of forging is made compulsory

(Forging) Viva-Voce	Model .	10 marks	
Calculation	+ Forging =	= 05 + 25 = 30 Marks	
(Forging)	Model		
Calculation	+ Foundry =	= 05 + 25 = 30 Marks	

MACHINE SHOP

Subject Code	: 10MEL38B / 48B	IA Marks	: 25
Hours/Week	: 03	Exam Hours	: 03
Total Hours	: 48	Exam Marks	: 50

PART – A

Preparation of three models on lathe involving Plain turning, Taper turning, Step turning, Thread cutting, Facing, Knurling, Drilling, Boring, Internal Thread cutting and Eccentric turning.

PART – B

Cutting of V Groove/ dovetail / Rectangular groove using a shaper. Cutting of Gear Teeth using Milling Machine.

Scheme of Examination:

ONE question from part -A:30 MarksONE question from part -B:10 MarksViva -Voice:10 Marks

Total: 50 Marks

APPLIED THERMODYNAMICS

Subject Code	: 10ME43	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT - 1

Combustion thermodynamics: Theoretical (Stoichiometric) air and excess air for combustion of fuels. Mass balance, actual combustion. Exhaust gas analysis. A./ F ratio, Energy balance for a chemical reaction, enthalpy of formation, enthalpy and internal energy of combustion, Combustion efficiency, adiabatic flow temperature.

07 Hours

UNIT-2

Gas power cycle: Air Standard cycles: Carnot, Otto, Diesel, Dual and Stirling cycles, P-V and T-S diagrams, description, efficiencies and mean effective pressures, Comparison of Otto, Diesel and dual cycles.

06 Hours

UNIT - 3

I.C. Engine: Testing of two stroke and four stroke SI and CI engines for performance Related numerical problems, heat balance, Motoring Method, Willian's line method, swinging field dynamometer, Morse test.

06 Hours

UNIT - 4

Vapour Power Cycles: Carnot vapour power cycles, drawbacks as a reference cycle, Simple Rankine cycle, description, T- S diagram, analysis for performance, comparison of Carnot and Rankine cycles. Effects of pressure and temperature on Rankine cycle performance. Actual vapour power cycles. Ideal and practical regenerative Rankine cycle, open and closed feed water heaters, Reheat Rankine cycle.

07 Hours

PART-B

UNIT - 5

Reciprocating Compressors: Operation of a single stage reciprocating compressors, work input through P-V diagram and steady state steady flow analysis. Effect of clearance and volumetric efficiency. Adiabatic, isothermal and mechanical efficiencies. Multistage compressor, saving in work, optimum intermediate pressure, inter- cooling, minimum work for compression.

06 Hours

UNIT - 6

Gas turbine and Jet propulsion: Classification of Gas turbines, Analysis of open cycle gas turbine cycle. Advantages and disadvantages of closed cycle. Methods to improve thermal efficiency, Jet propulsion and Rocket propulsion.

07 Hours

UNIT - 7

Refrigeration: Vapour compression refrigeration system ; description, analysis, refrigerating effect, capacity, power required, units of refrigeration, COP, Refrigerants and their desirable properties. Air cycle refrigeration;

reversed Carnot cycle, reversed Brayton cycle, Vapour absorption refrigeration system, steam jet refrigeration.

06 Hours

UNIT - 8

Psychometry: Atmospheric air and psychometric properties; Dry bulb temperature, wet bulb temperature, dew point temperature; partial pressures, specific and relative humidities and the relation between the two enthalpy and adiabatic saturation temperature. Construction and use of psychometric chart . Analysis of various processes; heating, cooling , dehumidifying and humidifying. Adiabatic mixing of moist air. Summer and winter air conditioning.

07 Hours

Data Hand Book :

- 1. Thermodynamic data hand book, B.T. Nijaguna.
- 2. **Properties of Refrigerant & Psychometric** (tables & Charts in SI Units), Dr. S.S. Banwait, Dr. S.C. Laroiya, Birla Pub. Pvt. Ltd., Delhi, 2008

TEXT BOOKS:

- 1. **Basic and applied Thermodynamics**, P.K. Nag, 2nd Ed., Tata McGraw Hill Pub.Co,2002
- 2. Applied Thermodynamics, Rajput, Laxmi Publication
- 3. **Applied Thermodynamics**, B.K. Venkanna, Swati B. Wadavadagi, PHI, New Delhi, 2010

REFERENCE BOOKS:

- Thermodynamics, An engineering approach, Yunus, A. Cengel and Michael A.Boies, 6th Ed., Tata McGraw Hill pub. Co., 2002,
- 2. **Fundamental of Classical Thermodynamics,** G.J. Van Wylen and R.E. Sontang Wiley eastern.

KINEMATICS OF MACHINES

Subject Code	: 10ME44	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

$\boldsymbol{P}\boldsymbol{A}\boldsymbol{R}\boldsymbol{T}-\boldsymbol{A}$

UNIT - 1

Introduction: Definitions Link or element, kinematic pairs, Degrees of freedom, Grubler's criterion (without derivation), Kinematic chain, Mechanism, Structure, Mobility of Mechanism, Inversion, Machine.

Kinematic Chains and Inversions: Inversions of Four bar chain; Single slider crank chain and Double slider crank chain.

07 Hours

UNIT - 2

Mechanisms: Quick return motion mechanisms-Drag link mechanism, Whitworth mechanism and Crank and slotted lever Mechanism.

Straight line motion mechanisms Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisms -Geneva wheel mechanism and Ratchet and Pawl mechanism. Toggle mechanism, Pantograph, Ackerman steering gear mechanism.

06 Hours

UNIT - 3

Velocity and Acceleration Analysis of Mechanisms (Graphical Methods) Velocity and acceleration analysis of Four Bar mechanism, slider crank mechanism and Simple Mechanisms by vector polygons: Relative velocity and acceleration of particles in a common link, relative velocity and accelerations of coincident Particles on separate links- Coriolis component of acceleration. Angular velocity and angular acceleration of links, velocity of rubbing.

07 Hours

UNIT - 4

Velocity Analysis by Instantaneous Center Method: Definition, Kennedy's Theorem, Determination of linear and angular velocity using instantaneous center method

Klein's Construction: Analysis of velocity and acceleration of single slider crank mechanism.

06 Hours

PART – B

UNIT - 5

Velocity and Acceleration Analysis of Mechanisms (Analytical Methods): Analysis of four bar chain and slider crank chain using analytical expressions. (Use of complex algebra and vector algebra)

06 Hours

UNIT - 6

Spur Gears: Gear terminology, law of gearing, Characteristics of involute action, Path of contact. Arc of contact, Contact ratio of spur, helical, bevel and worm gears, Interference in involute gears. Methods of avoiding interference, Back lash. Comparison of involute and cycloidal teeth. Profile Modification.

07 Hours

UNIT - 7

Gear Trains: Simple gear trains, Compound gear trains for large speed. reduction, Epicyclic gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load and torque calculations in epicyclic gear trains.

07 Hours

UNIT - 8

Cams: Types of cams, Types of followers. Displacement, Velocity and, Acceleration time curves for cam profiles. Disc cam with reciprocating follower having knife-edge, roller and flat-face follower, Disc cam with oscillating roller follower. Follower motions including SHM, Uniform velocity, uniform acceleration and retardation and Cycloidal motion.

06 Hours

TEXT BOOKS:

- 1. **"Theory of Machines"**, Rattan S.S, Tata McGraw-Hill Publishing Company Ltd., New Delhi, and 3rd edition -2009.
- 2. **"Theory of Machines",** Sadhu Singh, Pearson Education (Singapore) Pvt. Ltd, Indian Branch New Delhi, 2nd Edi. 2006

REFERENCE BOOKS:

- 1. **"Theory of Machines & Mechanisms**", J.J. Uicker, , G.R. Pennock, J.E. Shigley. OXFORD 3rd Ed. 2009.
- 2. Mechanism and Machine theory, Ambekar, PHI, 2007

Graphical Solutions may be obtained either on the Graph Sheets or on the Answer Book itself.

MANUFACTURING PROCESS – II (Metal Removing Process)

Subject Code	: 10ME45	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Theory of Metal Cutting: Single point cutting tool nomenclature, geometry. Mechanics of Chip Formation, Types of Chips. Merchants circle diagram and analysis, Ernst Merchant's solution, shear angle relationship, problems of Merchant's analysis. Tool Wear and Tool failure, tool life. Effects of cutting parameters on tool life. Tool Failure Criteria, Taylor's Tool Life equation. Problems on tool life evaluation.

07 Hours

UNIT - 2

Cutting Tool Materials: Desired properties and types of cutting tool materials – HSS, carbides coated carbides, ceramics. Cutting fluids. Desired properties, types and selection. Heat generation in metal cutting, factors

affecting heat generation. Heat distribution in tool and work piece and chip. Measurement of tool tip temperature.

07 Hours

UNIT - 3

Turning (Lathe), Shaping and Planing Machines: Classification, constructional features of Turret and Capstan Lathe. Tool Layout, shaping Machine, Planing Machine, Driving mechanisms of lathe, shaping and planing machines, Different operations on lathe, shaping machine and planing machine. Simple problems on machining time calculations

07 Hours

UNIT - 4

Drilling machines: Classification, constructional features, drilling & related operations. Types of drill & drill bit nomenclature, drill materials. Introduction to CNC machines- Principles of operation. Axes of NC machine-Coordinate systems. Basics of Manual part programming methods.

06 Hours

PART - B

UNIT - 5

Milling machines: Classification, constructional features, milling cutters nomenclature, milling operations, up milling and down milling concepts. Various milling operations.

Indexing: Simple, compound, differential and angular indexing calculations. Simple problems on simple and compound indexing.

06 Hours

UNIT - 6

Grinding machines: Types of abrasives, Grain size, bonding process, grade and structure of grinding wheels, grinding wheel types. Classification, constructional features of grinding machines (Centerless, cylindrical and surface grinding). Selection of grinding wheel. Grinding process parameters. Dressing and truing of grinding wheels.

07 Hours

UNIT - 7:

Broaching process - Principle of broaching. Details of a broach. Types of broaching machines-constructional details. Applications. Advantages and Limitations.

Finishing and other Processes Lapping and Honing operations – Principles, arrangement of set up and application. Super finishing process, polishing, buffing operation and application.

06 Hours

UNIT - 8

Non-traditional machining processes: Need for non traditional machining, Principle, equipment & operation of Laser Beam, Plasma Arc Machining, Electro Chemical Machining, Ultrasonic Machining, Abrasive Jet Machining, Water Jet Machining, Electron Beam Machining, Electron Discharge Machining and Plasma Arc Machining.

06 Hours

TEXT BOOKS:

- 1. Workshop Technology, Hazara Choudhry, Vol-II, Media Promoters & Publishers Pvt. Ltd. 2004
- 2. Production Technology, R.K.Jain, Khanna Publications, 2003.
- 3. Production Technology, HMT, Tata Mc Graw Hill, 2001.

REFERENCE BOOKS:

- 1. **Manufacturing Science**, Amitabha Ghosh and Mallik, affiliated East West Press, 2003.
- 2. Fundamentals of Metal Machining and Machine Tools, G. Boothroyd, McGraw Hill, 2000.

DESIGN OF MACHINE ELEMENTS-I

Subject Code	: 10ME52	IA Marks	25
Hours/Week	:04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT-1

Introduction: Definitions: normal, shear, biaxial and tri axial stresses, Stress tensor, Principal Stresses. Engineering Materials and their mechanical properties, Stress-Strain diagrams, Stress Analysis, Design considerations: Codes and Standards.

05 Hours

06 Hours

08 Hours

07 Hours

PART – B

UNIT - 5

Design Of Shafts: Torsion of shafts, design for strength and rigidity with steady loading, ASME codes for power transmission shafting, shafts under fluctuating loads and combined loads.

07 Hours

UNIT - 6

Cotter And Knuckle Joints, Keys And Couplings: Design of Cotter and Knuckle joints, Keys: Types of keys, Design of keys, Couplings: Rigid and flexible couplings, Flange coupling, Bush and Pin type coupling and Oldham's coupling.

07 Hours

48

Design For Static & Impact Strength:

Static Strength: Static loads and factor of safety, Theories of failure: Maximum normal stress theory, Maximum shear stress theory, Maximum strain theory, Strain energy theory, Distortion energy theory. Failure of brittle and ductile materials, Stress concentration, Determination of Stress concentration factor.

Impact Strength: Introduction, Impact stresses due to axial, bending and torsional loads, effect of inertia.

UNIT - 3

UNIT-2

Design For Fatigue Strength: Introduction- S-N Diagram, Low cycle fatigue, High cycle fatigue, Endurance limit, Modifying factors: size effect, surface effect, Stress concentration effects, Fluctuating stresses, Goodman and Soderberg relationship, stresses due to combined loading, cumulative fatigue damage.

UNIT - 4

Threaded Fasteners: Stresses in threaded fasteners, Effect of initial tension, Design of threaded fasteners under static, dynamic and impact loads, Design of eccentrically loaded bolted joints.

UNIT - 7

Riveted and Welded Joints – Types, rivet materials, failures of riveted joints, Joint Efficiency, Boiler Joints, Lozanze Joints, Riveted Brackets. Welded Joints – Types, Strength of butt and fillet welds, eccentrically loaded welded joints.

07 Hours

UNIT - 8

Power Screws: Mechanics of power screw, Stresses in power screws, efficiency and self-locking, Design of Power Screw, Design of Screw Jack: (Complete Design).

05 Hours

TEXT BOOKS:

- 1. Mechanical Engineering Design, Joseph E Shigley and Charles R. Mischke. McGraw Hill International edition, 6th Edition 2009.
- **2. Design of Machine Elements,** V.B. Bhandari, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2nd Edition 2007.

DESIGN DATA HANDBOOK:

- 1. **Design Data Hand Book,** K. Lingaiah, McGraw Hill, 2nd Ed.
- 2. **Data Hand Book,** K. Mahadevan and Balaveera Reddy, CBS Publication
- 3. **Design Data Hand Book,** H.G. Patil, I. K. International Publisher, 2010.

REFERENCE BOOKS:

- 1. Machine Design, Robert L. Norton, Pearson Education Asia, 2001.
- Design of Machine Elements, M. F. Spotts, T. E. Shoup, L. E. Hornberger, S. R. Jayram and C. V. Venkatesh, Pearson Education, 2006.
- Machine Design, Hall, Holowenko, Laughlin (Schaum's Outlines series) Adapted by S.K. Somani, Tata McGraw Hill Publishing Company Ltd., New Delhi, Special Indian Edition, 2008.
- Fundamentals of Machine Component Design, Robert C. Juvinall and Kurt M Marshek, Wiley India Pvt. Ltd., New Delhi, 3rd Edition, 2007.

Subject Code	: 10ME53	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Steam Power Plant: Different Types of Fuels used for steam generation, Equipment for burning coal in lump form, strokers, different types, Oil burners, Advantages and Disadvantages of using pulverized fuel, Equipment for preparation and burning of pulverized coal, unit system and bin system. Pulverized fuel furnaces, cyclone furnace, Coal and ash handling, Generation of steam using forced circulation, high and supercritical pressures.

07 Hours

UNIT - 2

A Brief Account Of Benson, Velox Schmidt Steam Generators. Chimneys: Natural, forced, induced and balanced draft, Calculations and numericals involving height of chimney to produce a given draft. Cooling towers and Ponds. Accessories for the Steam generators such as Superheaters, De-superheater, control of superheaters, Economizers, Air preheaters and re-heaters.

07 Hours

UNIT - 3

Diesel Engine Power Plant: Applications of Diesel Engines in Power field. Method of starting Diesel engines. Auxiliaries like cooling and lubrication system, filters, centrifuges, Oil heaters, intake and exhaust system, Layout of diesel power plant.

06 Hours

UNIT - 4

Hydro-Electric Plants: Hydrographs, flow duration and mass curves, unit hydrograph and numericals. Storage and pondage, pumped storage plants,

low, medium and high head plants, Penstock, water hammer, surge tanks, gates and valves. General layout of hydel power plants.

06 Hours

PART - B

UNIT - 5

Nuclear Power Plant: Principles of release of nuclear energy; Fusion and fission reactions. Nuclear fuels used in the reactors. Multiplication and thermal utilization factors. Elements of the nuclear reactor; moderator, control rod, fuel rods, coolants. Brief description of reactors of the following types-Pressurized water reactor, Boiling water reactor, Sodium graphite reactor, Fast Breeder reactor, Homogeneous graphite reactor and gas cooled reactor, Radiation hazards, Shieldings, Radio active waste disposal.

06 Hours

UNIT - 6

Solar Energy: Solar Extra terrestrial radiation and radiation at the earth surface, radiation-measuring instruments, working principles of solar flat plate collectors, solar pond and photovoltaic conversion (Numerical Examples).

Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, coefficient of performance of a wind mill rotor (Numerical Examples).

08 Hours

UNIT - 7

Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations.

Ocean Thermal Energy Conversion: Principle of working, Rankine cycle, problems associated with OTEC.

Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, problems associated with geothermal conversion, scope of geothermal energy.

06 Hours

UNIT - 8

Energy From Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation.

Bio Chemical Route: Biogas production from organic wastes by anaerobic fermentation, classification of bio gas plants, factors affecting bio gas generation.

Thermo Chemical Route: Thermo chemical conversion on bio mass, types of gasifiers.

06 Hours

TEXT BOOKS:

- 1. **Power Plant Engineering**, P. K. Nag Tata McGraw Hill 2nd edn 2001.
- 2. Power Plant Engineering, Domakundawar, Dhanpath Rai sons. 2003

REFERENCE BOOKS:

- 1. **Power Plant Engineering,** R. K. Rajput, Laxmi publication, New Delhi.
- 2. Principles of Energy conversion, A. W. Culp Jr., McGraw Hill. 1996
- 3. Non conventional Energy sources, G D Rai Khanna Publishers.
- 4. Non conventional resources, B H Khan TMH 2007

1.

MANUFACTURING PROCESS - III

(METAL FORMING PROCESS)

Subject Code	: 10ME55	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction And Concepts: Classification of metal working processes, characteristics of wrought products, advantages and limitations of metal working processes.Concepts of true stress, true strain, triaxial & biaxial

stresses. Determination of flow stress. Principal stresses, Tresca & Von-Mises yield criteria, concepts of plane stress & plane strain.

06 Hours

UNIT - 2

Effects Of Parameters: Temperature, strain rate, friction and lubrication, hydrostatic pressure in metalworking, Deformation zone geometry, workability of materials, Residual stresses in wrought products.

06 Hours

UNIT - 3

Forging: Classification of forging processes. Forging machines & equipment. Expressions for forging pressures & load in open die forging and closed die forging by slab analysis, concepts of friction hill and factors affecting it. Die-design parameters. Material flow lines in forging. Forging defects, Residual stresses in forging. Simple problems.

07 Hours

UNIT - 4

Rolling: Classification of Rolling processes. Types of rolling mills, expression for Rolling load. Roll separating force. Frictional losses in bearing, power required in rolling, Effects of front & back tensions, friction, friction hill. Maximum possible reduction. Defects in rolled products. Rolling variables, simple problems.

06 Hours

PART - B

UNIT - 5

Drawing: Drawing equipment & dies, expression for drawing load by slab analysis, power requirement. Redundant work and its estimation, optimal cone angle & dead zone formation, drawing variables, Tube drawing, classification of tube drawing, simple problems.

07 Hours

UNIT - 6

Extrusion: Types of extrusion processes, extrusion equipment & dies, deformation, lubrication & defects in extrusion. Extrusion dies, Extrusion of seamless tubes. Extrusion variables, simple problem

06 Hours

UNIT - 7

Sheet & Metal Forming: Forming methods, dies & punches, progressive die, compound die, combination die. Rubber forming. Open back inclinable press (OBI press), piercing, blanking, bending, deep drawing, LDR in drawing, Forming limit criterion, defects of drawn products, stretch forming. Roll bending & contouring, Simple problems

06 Hours

UNIT - 8

High Energy Rate Forming Methods: Principles, advantages and applications, explosive forming, electro hydraulic forming, Electromagnetic forming.

Powder Metallurgy: Basic steps in Powder metallurgy brief description of methods of production of metal powders, conditioning and blending powders, compaction and sintering application of powder metallurgy components, advantages and limitations.

07 Hours

TEXT BOOKS:

- 1. **Mechanical metallurgy (SI units),** G.E. Dieter, Mc Graw Hill pub.2001
- Manufacturing Process III, Dr. K.Radhakrishna, Sapna Book House, 2009.

REFERENCE BOOKS:

- 1. **Materials and Processes in Manufacturing,** E.paul, Degramo, J.T. Black, Ronald, A.K. Prentice -hall of India 2002
- 2. **Principles of Industrial metal working process,** G.W. Rowe, CBSpub. 2002
- Manufacturing Science, Amitabha Ghosh & A.K. Malik East -Westpress 2001
- 4. Technology of Metal Forming Process, Surendra kumar, PHI 2008

FLUID MECHANICS AND MACHINES LABORATORY

Subject Code	: 10MEL57	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

1. Determination of coefficient of friction of flow in a pipe.

2. Determination of minor losses in flow through pipes.

3. Determination of force developed by impact of jets on vanes.

4. Calibration of flow measuring devices

- a. Orifice Plate meter
- b. Nozzle
- c. Venturimeter
- d. V-notch

18 Hours

24 Hours

PART - B

5. Performance testing of Turbines

- a. Pelton wheel
- b. Francis Turbine
- c. Kaplan Turbines

6. Performance testing of Pumps

- a. Single stage / Multi stage centrifugal pumps
- b. Reciprocating pump
- 7. Performance test of a two stage Reciprocating Air Compressor
- 8. Performance test on an Air Blower

Scheme for Examination:

One Question from Part A	-	15 Marks (05 Writeup + 10)
One Question from Part B	-	25 Marks (05 Writeup + 20)
Viva-Voce	-	10 Marks

Total

50 Marks

ENERGY CONVERSION ENGINEERING LABORATORY

Subject Code	: 10MEL58	IA Marks	: 25
Hours/Week	:03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

1. Determination of Flash point and Fire point of lubricating oil using Abel Pensky and Marten's (closed) / Cleavland's (Open Cup) Apparatus.

- 2. Determination of Calorific value of solid, liquid and gaseous fuels.
- 3. Determination of Viscosity of a lubricating oil using Redwoods, Saybolt and Torsion Viscometers.
- 4. Valve Timing/port opening diagram of an I.C. engine (4 stroke/2 stroke).
- 5. Use of planimeter

21 Hours

PART - B

- 1. Performance Tests on I.C. Engines, Calculations of IP, BP, Thermal efficiencies, Volumetric efficiency, Mechanical efficiency, SFC, FP, A:F Ratio heat balance sheet for
 - (a) Four stroke Diesel Engine
 - (b) Four stroke Petrol Engine
 - (c) Multi Cylinder Diesel/Petrol Engine, (Morse test)
 - (d) Two stroke Petrol Engine
 - (e) Variable Compression Ratio I.C. Engine.

21 Hours

Scheme for Examination:

Total		50 Marks
Viva-Voce	-	10 Marks
One Question from Part B	-	25 Marks (05 Writeup+20)
One Question from Part A	-	15 Marks (05 Writeup+10)

COMPUTER INTEGRATED MANUFACTURING

Subject Code	: 10ME61	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT - 1

Computer Integrated Manufacturing Systems: Introduction, Automation definition, Types of automation, CIM, processing in manufacturing, Production concepts, Mathematical Models-Manufacturing lead time, production rate, components of operation time, capacity, Utilization and availability, Work-in-process, WIP ratio, TIP ratio, Problems using mathematical model equations.

8 Hours

UNIT - 2

High Volume Production System: Introduction Automated flow linesymbols, objectives, Work part transport-continuous, Intermittent, synchronous, Pallet fixtures, Transfer Mechanism-Linear-Walking beam,. roller chain drive, Rotary-rack and pinion, Rachet & Pawl, Geneva wheel, Buffer storage, control functions-sequence, safety, Quality, Automation for machining operation.

6 Hours

UNIT - 3

Analysis Of Automated Flow Line & Line Balancing: General terminology and analysis, Analysis of Tranfer Line without storage upper bound approach, lower bound approach and problems, Analysis of Transfer lines with storage buffer, Effect of storage, buffer capacity with simple problem, Partial automation-with numerical problems, flow lines with more than two stages, Manual Assembly lines, line balancing problem.

6 Hours

UNIT - 4

Minimum Rational Work Element: Work station process time, Cycle time, precedence constraints. Precedence diagram, Balance delay methods of line balancing-largest Candidate rule, Kilbridge and Westers method, Ranked positional weight method, Numerical problems covering all above methods and computerized line balancing.

6 Hours

PART-B

UNIT - 5

Automated Assembly Systems: Design for automated assembly systems, types of automated assembly system, Parts feeding devices-elements of parts delivery system-hopper, part feeder, Selectors, feed back, escapement and placement analysis of Multistation Assembly Machine analysis of single station assembly. Automated Guided Vehicle System: Introduction, Vehicle guidance and routing, System management, Quantitative analysis of AGV's with numerical problems and application.

8 Hours

UNIT - 6

Computerized Manufacturing Planning System: Introduction, Computer Aided Process Planning, Retrieval types of process planning, Generative type of process planning, Material requirement planning, Fundamental concepts of MRP inputs to MRP, Capacity planning.

6 Hours

UNIT - 7

Cnc Machining Centers: Introduction to CNC, elements of CNC, CNC machining centers, part programming, fundamental steps involved in development of part programming for milling and turning.

6 Hours

UNIT - 8

Robotics: Introduction to Robot configuration, Robot motion, programming of Robots end effectors, Robot sensors and Robot applications.

6 Hours

TEXT BOOKS:

- 2. Automation, Production system & Computer Integrated manufacturing, M. P. Groover Person India, 2007 2nd edition.
- 3. **Principles of Computer Integrated Manufacturing**, S. Kant Vajpayee, Prentice Hall India.

REFERENCE BOOKS:

- 1. **Computer Integrated Manufacturing**, J. A. Rehg & Henry. W. Kraebber.
- 2. CADICAM by Zeid, Tata McGraw Hill.

S

DESIGN OF MACHINE ELEMENTS – II

Total Hours	: 52	Exam Marks	100
Hours/Week	: 04	Exam Hours	03
Subject Code	: 10ME62	IA Marks	25

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Curved Beams: Stresses in curved beams of standard cross sections used in crane hook, punching presses & clamps, closed rings and links **Cylinders & Cylinder Heads**: Review of Lame's Equations; compound cylinders, stresses due to different types of fits, cylinder heads, flats.

08 Hours

UNIT - 2

Belts Ropes and Chains: Flat belts: Length & cross section, Selection of V-belts, ropes and chains for different applications.

05 Hours

UNIT - 3

Springs: Types of springs - stresses in Helical coil springs of circular and non-circular cross sections. Tension and compression springs, springs under fluctuating loads, Leaf Springs: Stresses in leaf springs.

Equalized stresses, Energy stored in springs, Torsion, Belleville and Rubber springs.

08 Hours

UNIT - 4

Spur & Helical Gears: Spur Gears: Definitions, stresses in gear tooth: Lewis equation and form factor, Design for strength, Dynamic load and wear load. Helical Gears: Definitions, formative number of teeth, Design based on strength, dynamic and wear loads.

07 Hours

PART – B

UNIT - 5

Bevel and Worm Gears: Bevel Gears: Definitions, formative number of teeth, Design based on strength, dynamic and wear loads. Worm Gears: Definitions, Design based on strength, dynamic, wear loads and efficiency of worm gear drives.

07 Hours

UNIT - 6

Clutches & Brakes: Design of Clutches: Single plate, multi plate and cone clutches. Design of Brakes: Block and Band brakes: Self locking of brakes: Heat generation in Brakes.

05 Hours

UNIT - 7

Lubrication and Bearings: Lubricants and their properties, Mechanisms of Lubrication bearing modulus, coefficient of friction, minimum oil film thickness, Heat Generated, Heat dissipated, Bearing Materials, Examples of journal bearing and thrust bearing design.

07 Hours

UNIT - 8

IC Engine Parts: Design of piston, connecting rod and crank shaft.

05 Hours

DESIGN DATA HANDBOOK:

- 1. **Design Data Hand Book**, K. Lingaiah, McGraw Hill, 2nd Ed.
- 2. **Data Hand Book,** K. Mahadevan and Balaveera Reddy, CBS Publication
- 3. **Design Data Hand Book,** H.G. Patil, I. K. International Publisher, 2010.

TEXT BOOKS:

- 1. Mechanical Engineering Design, Joseph E Shigley and Charles R. Mischke. McGraw Hill International edition, 6th Edition 2003.
- 2. Design of Machine Elements, V. B Bhandari, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2nd Edition 2007

REFERNCE BOOKS:

- 1. Machine Design, Robert L. Norton, Pearson Education Asia, 2001.
- Design of Machine Elements, M. F. Spotts, T. E. Shoup, L. E. Hornberger, S. R. Jayram and C. V. Venkatesh, Pearson Education, 2006.
- 3. Machine Design, Hall, Holowenko, Laughlin (Schaum's Outlines series) Adapted by S.K. Somani, Tata McGraw Hill Publishing Company Ltd., New Delhi, Special Indian Edition, 2008.
- 4. Machine Design, A CAD Approach: Andrew D DIMAROGONAS, John Wiley Sons, Inc, 2001.

HEAT AND MASS TRANSFER

Subject Code	: 10ME63	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Introductory Concepts And Definitions: Modes of heat transfer: Basic laws governing conduction, convection, and radiation heat transfer; Thermal conductivity; convective heat transfer coefficient; radiation heat transfer;

combined heat transfer mechanism. Boundary conditions of $1^{\,\rm st},\,2^{nd}$ and 3^{rd} kind

Conduction: Derivation of general three dimensional conduction equation in Cartesian coordinate, special cases, discussion on 3-D conduction in cylindrical and spherical coordinate systems (No derivation). One dimensional conduction equations in rectangular, cylindrical and spherical coordinates for plane and composite walls. Overall heat transfer coefficient. Thermal contact resistance.

07 Hours

UNIT - 2

Variable Thermal Conductivity: Derivation for heat flow and temperature distribution in plane wall. Critical thickness of insulation without heat generation, Thermal resistance concept & its importance. Heat transfer in extended surfaces of uniform cross-section without heat generation, Long fin, short fin with insulated tip and without insulated tip and fin connected between two heat sources. Fin efficiency and effectiveness. Numerical problems.

06 Hours

UNIT - 3

One-Dimensional Transient Conduction: Conduction in solids with negligible internal temperature gradient (Lumped system analysis), Use of Transient temperature charts (Heisler's charts) for transient conduction in slab, long cylinder and sphere; use of transient temperature charts for transient conduction in semi-infinite solids. Numerical Problems.

06 Hours

UNIT - 4

Concepts And Basic Relations In Boundary Layers: Flow over a body velocity boundary layer; critical Reynolds number; general expressions for drag coefficient and drag force; thermal boundary layer; general expression for local heat transfer coefficient; Average heat transfer coefficient; Nusselt number. Flow inside a duct- velocity boundary layer, hydrodynamic entrance length and hydro dynamically developed flow; flow through tubes (internal flow discussion only). Numericals based on empirical relation given in data handbook.

Free Or Natural Convection: Application of dimensional analysis for free convection- physical significance of Grashoff number; use of correlations of free convection in vertical, horizontal and inclined flat plates, vertical and horizontal cylinders and spheres, Numerical problems.

07 Hours

PART – B

UNIT - 5

Forced Convections: Applications of dimensional analysis for forced convection. Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. Use of various correlations for hydro dynamically and thermally developed flows inside a duct, use of correlations for flow over a flat plate, over a cylinder and sphere. Numerical problems.

06 Hours

UNIT - 6

Heat Exchangers: Classification of heat exchangers; overall heat transfer coefficient, fouling and fouling factor; LMTD, Effectiveness-NTU methods of analysis of heat exchangers. Numerical problems.

06 Hours

UNIT - 7

Condensation And Boiling: Types of condensation (discussion only) Nusselt's theory for laminar condensation on a vertical flat surface; use of correlations for condensation on vertical flat surfaces, horizontal tube and horizontal tube banks; Reynolds number for condensate flow; regimes of pool boiling, pool boiling correlations. Numerical problems. Mass transfer definition and terms used in mass transfer analysis, Ficks First law of diffusion (no numericals).

07 Hours

UNIT - 8

Radiation Heat Transfer: Thermal radiation; definitions of various terms used in radiation heat transfer; Stefan-Boltzman law, Kirchoff's law, Planck's law and Wein's displacement law. Radiation heat exchange between two parallel infinite black surfaces, between two parallel infinite gray surfaces; effect of radiation shield; intensity of radiation and solid angle;

Lambert's law; radiation heat exchange between two finite surfacesconfiguration factor or view factor. Numerical problems.

07 Hours

TEXT BOOKS:

- 1. Heat & Mass transfer, Tirumaleshwar, Pearson education 2006
- 2. Heat transfer-A basic approach, Ozisik, Tata McGraw Hill 2002

REFERENCE BOOKS:

- 1. **Heat transfer, a practical approach,** Yunus A- Cengel Tata Mc Graw Hill
- 2. Principles of heat transfer, Kreith Thomas Learning 2001
- 3. **Fundamentals of heat and mass transfer,** Frenk P. Incropera and David P. Dewitt, John Wiley and son's.
- 4. Heat transfer, P.K. Nag, Tata McGraw Hill 2002.

FINITE ELEMENT METHODS

Subject Code	: 10ME64	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART-A

UNIT-1

Introduction: Equilibrium equations in elasticity subjected to body force, traction forces, and stress-strain relations for plane stress and plane strains. General description of Finite Element Method, Application and limitations. Types of elements based on geometry. Node numbering, Half band width.

07 Hours

UNIT-2

Basic Procedure: Euler - Lagrange equation for bar, beam (cantilever / simply supported fixed) Principle of virtual work, principle of minimum potential energy, Raleigh's Ritz method. Direct approach for stiffness matrix formulation of bar element. Galerkin's method.

07 Hours

UNIT-3

Interpolation Models: Interpolation polynomials- Linear, quadratic and cubic. Simplex complex and multiplex elements. 2D PASCAL's triangle. CST elements-Shape functions and Nodal load vector, Strain displacement matrix and Jacobian for triangular and rectangular element.

07 Hours

UNIT-4

Solution of 1-D Bars: Solutions of bars and stepped bars for displacements, reactions and stresses by using penalty approach and elimination approach. Guass-elimination technique.

06 Hours

PART-B

UNIT-5

Higher Order Elements: Langrange's interpolation, Higher order one dimensional elements-Quadratic and cubic element and their shape functions. Shape function of 2-D quadrilateral element-linear, quadric element Isoparametric, Sub parametric and Super parametric elements. numerical integration : 1, 2 and 3 gauge point for 1D and 2D cases.

06 Hours

UNIT-6

Trusses: Stiffness matrix of Truss element. Numerical problems.

06 Hours

UNIT-7

Beams: Hermite shape functions for beam element, Derivation of stiffness matrix. Numerical problems of beams carrying concentrated, UDL and linearly varying loads.

06 Hours

UNIT-8

Heat Transfer: Steady state heat transfer, 1D heat conduction governing equations. Functional approach for heat conduction. Galerkin's approach for heat conduction. 1D heat transfer in thin fins.

07 Hours

TEXT BOOKS:

- 1. **Finite Elements in Engineering**, T.R.Chandrupatla, A.D Belegunde, 3rd Ed PHI.
- 2. **Finite Element Method in Engineering**, S.S. Rao, 4th Edition, Elsevier, 2006.

REFERENCE BOOKS:

- 1. **"Finite Element Methods for Engineers"** U.S. Dixit, Cengage Learning, 2009
- 2. Concepts and applications of Finite Element Analysis, R.D. Cook D.S Maltus, M.E Plesha, R.J.Witt, Wiley 4th Ed, 2009
- 3. **Finite Element Methods**, Daryl. L. Logon, Thomson Learning 3rd edition, 2001.
- 4. **Finite Element Method**, J.N.Reddy, McGraw -Hill International Edition.

MECHATRONICS & MICROPROCESSOR

Subject Code	: 10ME65	IA Marks	: 25
Hours/Week	: 04	Exam Hours	: 03
Total Hours	: 52	Exam Marks	: 100

PART - A

UNIT - 1

Introduction to Mechatronic Systems: Measurement and control systems Their elements and functions, Microprocessor based controllers.

06 Hours

UNIT - 2

Review of Transducers and Sensors: Definition and classification of transducers. Definition and classification of sensors. Principle of working and applications of light sensors, proximity sensors and Hall effect sensors.

07 Hours

UNIT - 3

Electrical Actuation Systems: Electrical systems, Mechanical switches, solid-state switches, solenoids, DC & AC motors, Stepper motors and their merits and demerits.

06 Hours

UNIT - 4

Signal Conditioning: Introduction to signal conditioning. The operational amplifier, Protection, Filtering, Wheatstone bridge, Digital signals Multiplexers, Data acquisition, Introduction to Digital system. Processing Pulse-modulation.

07 Hours

PART – B

UNIT - 5

Introduction to Microprocessors: Evolution of Microprocessor, Organization of Microprocessors (Preliminary concepts), basic concepts of programming of microprocessors.

Review of concepts - Boolean algebra, Logic Gates and Gate Networks, Binary & Decimal number systems, memory representation of positive and negative integers, maximum and minimum integers. Conversion of real, numbers, floating point notation, representation of floating point numbers, accuracy and range in floating point representation, overflow and underflow, addition of floating point numbers, character representation.

07 Hours

UNIT - 6

Logic Function: Data word representation. Basic elements of control systems 8085A processor architecture terminology such as CPU, memory and address, ALU, assembler data registers, Fetch cycle, write cycle, state, bus, interrupts. Micro Controllers. Difference between microprocessor and micro controllers. Requirements for control and their implementation in microcontrollers. Classification of micro controllers.

UNIT - 7

07 Hours

Organization & Programming of Microprocessors: Introduction to organization of INTEL 8085-Data and Address buses, Instruction set of 8085, programming the 8085, assembly language programming.

06 Hours
Central Processing Unit of Microprocessors: Introduction, timing and control unit basic concepts, Instruction and data flow, system timing, examples of INTEL 8085 and INTEL 4004 register organization.

06 Hours

TEXT BOOKS:

- 1. **Mechatronics,** W.Bolton, Longman, 2Ed, Pearson Publications, 2007.
- 2. Microprocessor Architecture, Programming And Applications With 8085/8085A, R.S. Ganokar, Wiley Eastern.

REFERENCE BOOKS:

- 1. **Mechatronics and Microprocessors,** K.P.Ramchandran, G.K.Vijayraghavan, M.S.Balasundran, Wiley, 1st Ed, 2009
- 2. Mechatronics Principles, Concepts and applications Nitaigour and Premchand Mahilik Tata McGraw Hill- 2003.
- 3. Mechatronics Principles & applications, Godfrey C. Onwubolu, Elsevier..
- 4. **Introduction Mechatronics & Measurement systems**, David.G. Aliciatore & Michael. B. Bihistaned, Tata McGraw Hill, 2000.

HEAT & MASS TRANSFER LABORATORY

Subject Code	: 10MEL67	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

- 1. Determination of Thermal Conductivity of a Metal Rod.
- 2. Determination of Overall Heat Transfer Coefficient of a Composite wall.
- 3. Determination of Effectiveness on a Metallic fin.
- 4. Determination of Heat Transfer Coefficient in a free Convection on a vertical tube.

- 5. Determination of Heat Transfer Coefficient in a Forced Convention Flow through a Pipe.
- 6. Determination of Emissivity of a Surface.

21 Hours

PART - B

- 1. Determination of Steffan Boltzman Constant.
- 2. Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchangers
- 3. Experiments on Boiling of Liquid and Condensation of Vapour
- 4. Performance Test on a Vapour Compression Refrigeration.
- 5. Performance Test on a Vapour Compression Air Conditioner
- 6. Experiment on Transient Conduction Heat Transfer

21 Hours

Scheme for Examination:		
One Question from Part A	-	20 Marks (05 Write up +15)
One Question from Part B	-	20 Marks (05 Write up +15)
Viva-Voce	-	10 Marks
Total		50 Marks

COMPUTER AIDED MODELING AND ANALYSIS LABORATORY

Subject Code	: 10MEL68	IA Marks	: 25
Hours/Week	: 03	Exam Hours	:03
Total Hours	: 42	Exam Marks	: 50

PART - A

Study of a FEA package and modeling stress analysis of

a. Bars of constant cross section area, tapered cross section area and stepped bar

6 Hours

b. Trusses – (Minimum 2 exercises)

3 Hours

c. Beams – Simply supported, cantilever, beams with UDL, beams with varying load etc (Minimum 6 exercises)

12 Hours

PART - B

a)	Stress an	nalysis of a rectangular plate with a circular hole
		3 Hours
b)	Therma	Analysis – 1D & 2D problem with conduction and
	convecti	on boundary conditions(Minimum 4 exercises)
		9 Hours
c)	Dynami	c Analysis
	1)	Fixed – fixed beam for natural frequency determination
	2)	Bar subjected to forcing function
	3)	Fixed - fixed beam subjected to forcing function

9 Hours

REFERENCE BOOKS:

- 1. **A first course in the Finite element method,** Daryl L Logan, Thomason, Third Edition
- 2. Fundaments of FEM, Hutton McGraw Hill, 2004
- 3. Finite Element Analysis, George R. Buchanan, Schaum Series

Scheme for Examination:

Total		50 Marks
Viva-Voce	-	10 Marks
One Question from Part B	-	20 Marks (05 Write up +15)
One Question from Part A	-	20 Marks (05 Write up +15)

HYDRAULICS AND PNEUMATICS

Subject Code	: 10ME73	IA Marks	25
Hours/Week	: 04	Exam Hours	03
Total Hours	: 52	Exam Marks	100

PART – A

UNIT -1

Introduction to Hydraulic Power: Definition of hydraulic system, advantages, limitations, applications, Pascal's law, structure of hydraulic control system, problems on Pascal's law.

The source of Hydraulic Power: Pumps Classification of pumps, Pumping theory of positive displacement pumps, construction and working of Gear pumps, Vane pumps, Piston pumps, fixed and variable displacement pumps, Pump performance characteristics, pump Selection factors, problems on pumps.

07 Hours

UNIT -2

Hydraulic Actuators and Motors: Classification cylinder and hydraulic motors, Linear Hydraulic Actuators [cylinders], single and double acting cylinder, Mechanics of Hydraulic Cylinder Loading, mounting arrangements, cushioning, special types of cylinders, problems on cylinders, construction and working of rotary actuators such as gear, vane, piston motors, Hydraulic Motor Theoretical Torque, Power and Flow Rate, Hydraulic Motor

Performance, problems, symbolic representation of hydraulic actuators (cylinders and motors).

06 Hours

UNIT - 3

Control Components in Hydraulic Systems: Classification of control valves, Directional Control Valves- Symbolic representation, constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, check valves, Pressure control valves - types, direct operated types and pilot operated types. Flow Control Valves - compensated and non-compensated FCV, needle valve, temperature compensated, pressure compensated, pressure and temperature compensated FCV, symbolic representation.

07 Hours

UNIT - 4

Hydraulic Circuit Design And Analysis: Control of Single and Double -Acting Hydraulic Cylinder, Regenerative circuit, Pump Unloading Circuit, Double Pump Hydraulic System, Counter balance Valve Application, Hydraulic Cylinder Sequencing Circuits, Automatic cylinder reciprocating system, Locked Cylinder using Pilot check Valve, Cylinder synchronizing circuit using different methods, factors affecting synchronization, Hydraulic circuit for force multiplication, Speed Control of Hydraulic Cylinder, Speed Control of Hydraulic Motors, Safety circuit, Accumulators, types, construction and applications with circuits.

06 Hours

PART - B

UNIT - 5

Maintenance of Hydraulic System: Hydraulic Oils - Desirable properties, general type of Fluids, Sealing Devices, Reservoir System, Filters and Strainers, wear of Moving Parts due to solid -particle Contamination, temperature control (heat exchangers), Pressure switches, trouble shooting.

06 Hours

Introduction to Pneumatic Control: Definition of pneumatic system, advantages, limitations, applications, Choice of working medium. Characteristic of compressed air. Structure of Pneumatic control System, fluid conditioners and FRL unit.

Pneumatic Actuators: Linear cylinder - Types, Conventional type of cylinder- working, End position cushioning, seals, mounting arrangements-Applications. Rod - Less cylinders types, working, advantages, Rotary cylinders- types construction and application, symbols.

07 Hours

UNIT-7

Pneumatic Control Valves: DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction, use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols. Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, speed control of cylinders - supply air throttling and Exhaust air throttling and Exhaust air throttling. **Signal Processing Elements:** Use of Logic gates - OR and AND gates in

pneumatic applications. Practical Examples involving the use of logic gates, Pressure dependant controls- types - construction - practical applications, Time dependent controls principle. Construction, practical applications.

07 Hours

UNIT-8

Multi- Cylinder Application: Coordinated and sequential motion control, Motion and control diagrams. Signal elimination methods, Cascading method- principle, Practical application examples (up to two cylinders) using cascading method (using reversing valves).

Electro- Pneumatic Control: Principles - signal input and out put, pilot assisted solenoid control of directional control valves, Use of relay and contactors. Control circuitry for simple signal cylinder application.

Compressed Air: Production of compressed air- Compressors Preparation of compressed air-Driers, Filters, Regulators, Lubricators, Distribution of compressed air Piping layout.

06 Hours

TEXT BOOKS:

- 1. **"Fluid Power with Applications"**, Anthony Esposito, Sixth edition, Pearson Education, Inc, 2000.
- 2. 'Pneumatics and Hydraulics', Andrew Parr, Jaico Publishing Co

REFERENCE BOOKS:

- 1. 'Oil Hydraulic systems', Principles and Maintenance S. R. Majurr, Tata McGraw Hill Publishing Company Ltd. - 2001
- 2. **'Industrial Hydraulics', Pippenger, Hicks''** McGraw Hill, New York
- 3. 'Hydraulic & Pneumatic Power for Production', Harry L. Stewart
- 4. **'Pneumatic Systems',** S. R. Majumdar, Tata McGraw Hill Publish 1995
- 5. Power Hydraulics' Michael J Pinches & John G Ashby, Prentice Hall

OPERATION RESEARCH

Subject Code	: 10ME74	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART- A

UNIT -1

Introduction: Evolution of OR, definition of OR, scope of OR, application areas of OR, steps (phases) in OR study, characteristics and limitations of OR, models used in OR, linear programming (LP) problem-formulation and solution by graphical method.

04 Hours

UNIT -2

Solution Of Linear Programming Problems: The simplex methodcanonical and standard form of an LP problem, slack, surplus and artificial variables, big M method and concept of duality, dual simplex method.

08 Hours

Transportation Problem: Formulation of transportation problem, types, initial basic feasible solution using different methods, optimal solution by MODI method, degeneracy in transportation problems, application of transportation problem concept for maximization cases. Assignment Problem-formulation, types, application to maximization cases and travelling salesman problem.

08 Hours

UNIT -4

Integer Programming: Pure and mixed integer programming problems, solution of Integer programming problems-Gomory's all integer cutting plane method and mixed integer method, branch and bound method, Zero-One programming.

06 Hours

PART-B

UNIT -5

Pert-CPM Techniques: Introduction, network construction - rules, Fulkerson's rule for numbering the events, AON and AOA diagrams; Critical path method to find the expected completion time of a project, floats; PERT for finding expected duration of an activity and project, determining the probability of completing a project, predicting the completion time of project; crashing of simple projects.

08 Hours

UNIT -6

Queuing Theory: Queuing systems and their characteristics, Pure-birth and Pure-death models (only equations), empirical queuing models - M/M/1 and M/M/C models and their steady state performance analysis.

06 Hours

UNIT -7

Game Theory: Formulation of games, types, solution of games with saddle point, graphical method of solving mixed strategy games, dominance rule for solving mixed strategy games.

06 Hours

Sequencing: Basic assumptions, sequencing 'n' jobs on single machine using priority rules, sequencing using Johnson's rule-'n' jobs on 2 machines, 'n' jobs on 3 machines, 'n' jobs on 'm' machines. Sequencing 2 jobs on 'm' machines using graphical method.

06 Hours

TEXT BOOKS:

- 1. **Operations Research**, P K Gupta and D S Hira, Chand Publications, New Delhi 2007
- 2. Operations Research, Taha H A, Pearson Education

REFERNCE BOOKS:

- 1. Operations Research, A P Verma, S K Kataria & Sons, 2008
- 2. Operations Research, Paneerselvan, PHI
- 3. **Operations Research,** A M Natarajan, P Balasubramani, Pearson Education, 2005
- 4. **Introduction to Operations Research,** Hillier and Liberman,8th Ed., McGraw Hill
- 5. **Operations Research** S.D. Sharma, Ledarnath Ramanath & Co, 2002

NON-CONVENTIONAL ENERGY SOURCES

Subject Code	: 10ME754	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART A

UNIT – 1

Introduction : Energy source, India's production and reserves of commercial energy sources, need for non-conventional energy sources, energy alternatives, solar, thermal, photovoltaic. Water power, wind biomass, ocean temperature difference, tidal and waves, geothermal, tarsands and oil shale, nuclear (Brief descriptions); advantages and disadvantages, comparison (Qualitative and Quantitative).

6 Hours

Solar Radiation : Extra-Terrestrial radiation, spectral distribution of extra terrestrial radiation, solar constant, solar radiation at the earth's surface, beam, diffuse and global radiation, solar radiation data.

Measurement of Solar Radiation : Pyrometer, shading ring pyrheliometer, sunshine recorder, schematic diagrams and principle of working.

Solar Radiation Geometry : Flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, zenith angle, solar altitude angle expression for the angle between the incident beam and the normal to a plane surface (No derivation) local apparent time. Apparent motion of sum, day length, numerical examples.

9 Hours

UNIT - 3

Radiation Flux on a Tilted Surface : Beam, diffuse and reflected radiation, expression for flux on a tilted surface (no derivations) numerical examples.

Solar Thermal Conversion : Collection and storage, thermal collection devices, liquid flat plate collectors, solar air heaters concentrating collectors (cylindrical, parabolic, paraboloid) (Quantitative analysis); sensible heat storage, latent heat storage, application of solar energy water heating. Space heating and cooling, active and passive systems, power generation, refrigeration. Distillation (Qualitative analysis) solar pond, principle of working, operational problems.

9 Hours

UNIT - 4

Performance Analysis of Liquid Flat Plate Collectors : General description, collector geometry, selective surface (qualitative discussion) basic energy-balance equation, stagnation temperature, transmissivity of the cover system, transmissivity – absorptivity product, numerical examples. The overall loss coefficient, correlation for the top loss coefficient, bottom and side loss coefficient, problems (all correlations to be provided). Temperature distribution between the collector tubes, collector heat removal factor, collector efficiency factor and collector flow factor, mean plate temperature, instantaneous efficiency (all expressions to be provided). Effect of various parameters on the collector performance; collector orientation, selective surface, fluid inlet temperature, number covers, dust.

4 Hours

UNIT – 5

Photovoltaic Conversion : Description, principle of working and characteristics, applications.

Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, elementary design principles; coefficient of performance of a wind mill rotor, aerodynamic considerations of wind mill design, numerical examples.

8 Hours

UNIT – 6

Tidal Power : Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations.

Ocean Thermal Energy Conversion : Principle of working, Rankine cycle, OTEC power stations in the world, problems associated with OTEC.

Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, geothermal plants in the world, problems associated with geothermal conversion, scope of geothermal energy.

7 Hours

UNIT - 7

Energy from Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation, bio gas production from organic wastes by anaerobic fermentation, description of bio-gas plants, transportation of bio-gas, problems involved with bio-gas production, application of bio-gas, application of bio-gas in engines, advantages.

4 Hours

UNIT – 8

Hydrogen Energy : Properties of Hydrogen with respected to its utilization as a renewable form of energy, sources of hydrogen, production of hydrogen, electrolysis of water, thermal decomposition of water, thermo chemical production bio-chemical production.

Storage & Transportation Methods : Gaseous, cryogenic and metal hydrides, application of hydrogen, domestic and industrial safe burning of hydrogen.

5 Hours

TEXT BOOKS:

- 1. Non-Conventional Energy Sources by *G.D. Rai K*, Khanna Publishers, 2003.
- 2. Solar energy, by *Subhas P Sukhatme* Tata McGraw Hill, 2nd Edition, 1996.

REFERENCE BOOKS:

- 1. Renewable Energy Sources and Conversion Technology by *N.K.Bansal, Manfred Kleeman & Mechael Meliss*, Tata McGraw Hill, 2001.
- 2. Renewable Energy Resources, *John W.Twidell Anthony D. Weir El*, BG 2001.
- 3. Solar Power Engineering, P.K.Nag, Tata McGraw Hill, 2003.

CONTROL ENGINEERING

Subject Code	: 10ME82	IA Marks	: 25
Hours/Week	:04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction: Concept of automatic controls, Open loop and closed loop systems, Concepts of feedback, requirements of an ideal control system, Types of controllers- Proportional, Integral Proportional Integral, Proportional Integral Differential controllers.

06 Hours

UNIT-2

Mathematical Models: Transfer function models, models of mechanical systems, models of electrical circuits, DC and AC motors in control systems, models of thermal systems, models of hydraulic systems, pneumatic system, Analogous systems: Force voltage, Force current.

06 Hours

UNIT - 3

Block Diagrams and Signal Flow Graphs: Transfer Functions definition, function, block representation of systems elements, reduction of block diagrams, Signal flow graphs: Mason's gain formula.

Hours

Transient and Steady State Response Analysis: Introduction, first order and second order system response to step, ramp and impulse inputs, concepts of time constant and its importance in speed of response. System stability: Routh's-Hurwitz Criterion.

06 Hours

PART - B

UNIT - 5

Frequency Response Analysis: Polar plots, Nyquist stability criterion, Stability analysis, Relative stability concepts, Gain margin and phase margin, M&N circles.

06 Hours

UNIT - 6

Frequency Response Analysis Using Bode Plots: Bode attenuation diagrams, Stability analysis using Bode plots, Simplified Bode Diagrams.

07 Hours

UNIT - 7

Root Locus Plots: Definition of root loci, General rules for constructing root loci, Analysis using root locus plots.

06 Hours

UNIT 8

System Compensation and State Variable Characteristics of Linear Systems: Series and feedback compensation, Introduction to state concepts, state equation of linear continuous data system. Matrix representation of state equations, controllability and observability, Kalman and Gilberts test.

07 Hours

TEXT BOOKS :

- 1. **Modern Control Engineering,** Katsuhiko Ogatta, Pearson Education, 2004.
- 2. **Control Systems Principles and Design,** M.Gopal, 3rd Ed., TMH,2000.

REFERENCE BOOKS :

- 1. **Modern Control Systems**, Richard.C.Dorf and Robert.H.Bishop, Addison Wesley,1999
- 2. **System dynamics & control**, Eronini-Umez, Thomson Asia pte Ltd. singapore, 2002.
- 3. Feedback Control System, Schaum's series. 2001.

ELECTIVE-IV (GROUP - D)

TRIBOLOGY

Subject Code	: 10ME831	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

PART – A

UNIT - 1

Introduction To Tribology: Properties of oils and equation of flow: Viscosity, Newton's Law of viscosity, Hagen-Poiseuille Law, Flow between parallel stationary planes, viscosity measuring apparatus. Lubrication principles, classification of lubricants.

06 Hours

UNIT - 2

Hydrodynamic Lubrication: Friction forces and power loss in lightly loaded bearing, Petroff's law, Tower's experiments, mechanism of pressure development in an oil film, Reynold's investigation and Reynold's equation in 2D.

06 Hours

UNIT - 3

Idealized Journal Bearing: Introduction to idealized journal bearing, load carrying capacity, condition for equilibrium, Sommerfeld's numbers and significance of it; Partial bearings, end leakages in journal bearing, numerical problems.

07 Hours

Slider / Pad Bearing With A Fixed And Pivoted Shoe: Pressure distribution, Load carrying capacity, coefficient of friction, frictional resistance in a pivoted shoe bearing, numerical examples.

07 Hours

PART – B

UNIT - 5

Oil Flow And Thermal Equilibrium Of Journal Bearing: Oil flow through bearings, self-contained journal bearings, bearings lubricated under pressure, thermal equilibrium of journal bearings.

06 Hours

UNIT - 6

Hydrostatic Lubrication: Introduction to hydrostatic lubrication, hydrostatic step bearings, load carrying capacity and oil flow through the hydrostatic step bearing.

06 Hours

UNIT - 7

Bearing Materials: Commonly used bearings materials, properties of typical bearing materials. Advantages and disadvantages of bearing materials.

07 Hours

UNIT - 8

Behavior Of Tribological Components: Selection, friction, Wear of ceramic materials, wear measurements, effects of speed, temperature and pressure. Tribological measures, Material selection, improved design, surface engineering

07 Hours

TEXT BOOKS:

- 1. **Fundamentals of Tribology**, Basu S K., Sengupta A N., Ahuja B. B., , PHI 2006
- 2. Introduction to Tribology Bearings, Mujumdar B. C., S. Chand company pvt. Ltd 2008.

REFERENEC BOOKS:

- 1. **Theory and Practice of Lubrication for Engineers,** Fuller, D., New York company 1998
- 2. **Principles and Applications of Tribology,** Moore, Pergamaon press 1998
- 3. **Tribology in Industries,** Srivastava S., S Chand and Company limited, Delhi 2002
- 4. Lubrication of bearings Theoretical Principles and Design, Redzimovskay E I., Oxford press company 2000

AUTOMOTIVE ENGINEERING

Subject Code	: 10ME844	IA Marks	: 25
Hours/Week	: 04	Exam Hours	:03
Total Hours	: 52	Exam Marks	: 100

$\mathbf{PART} - \mathbf{A}$

UNIT - 1

Engine Components And Cooling & Lubrication Systems: Spark Ignition (SI) & Compression Ignition (CI) engines, cylinder – arrangements and their relatives merits, Liners, Piston, connecting rod, crankshaft, valves, valve actuating mechanisms, valve and port timing diagrams, Types of combustion chambers for S.I.Engine and C.I.Engines, Compression ratio, methods of a Swirl generation, choice of materials for different engine components, engine positioning, cooling requirements, methods of cooling, thermostat valves, different lubrication arrangements.

07 Hours

UNIT - 2

Fuels, Fuel Supply Systems For Si And Ci Engines: Conventional fuels, alternative fuels, normal and abnormal combustion, cetane and octane numbers, Fuel mixture requirements for SI engines, types of carburetors, C.D.& C.C. carburetors, multi point and single point fuel injection systems, fuel transfer pumps, Fuel filters, fuel injection pumps and injectors.

07 Hours

UNIT - 3

Superchargers And Turbochargers: Naturally aspirated engines, Forced Induction, Types pf superchargers, Turbocharger construction and operation, Intercooler, Turbocharger lag.

06 Hours

UNIT - 4

Ignition Systems: Battery Ignition systems, magneto Ignition system, Transistor assist contacts. Electronic Ignition, Automatic Ignition advance systems.

06 Hours

Power Trains: General arrangement of clutch, Principle of friction clutches, Torque transmitted, Constructional details, Fluid flywheel, Single plate, multi-plate and centrifugal clutches.

Gear box: Necessity for gear ratios in transmission, synchromesh gear boxes, 3, 4 and 5 speed gear boxes. Free wheeling mechanism, planetary gears systems, over drives, fluid coupling and torque converters, Epicyclic gear box, principle of automatic transmission, calculation of gear ratios, Numerical calculations for torque transmission by clutches.

08 Hours

UNIT - 6

Drive To Wheels: Propeller shaft and universal joints, Hotchkiss and torque tube drives, differential, rear axle, different arrangements of fixing the wheels to rear axle, steering geometry, camber, king pin inclination, included angle, castor, toe in & toe out, condition for exact steering, steering gears, power steering, general arrangements of links and stub axle, over steer, under steer and neutral steer, numerical problems, types of chassis frames.

06 Hours

UNIT - 7

Suspension, Springs And Brakes: Requirements, Torsion bar suspension systems, leaf spring, coil spring, independent suspension for front wheel and rear wheel. Air suspension system.

Types of brakes, mechanical compressed air, vacuum and hydraulic braking systems, construction and working of master and wheel cylinder, brake shoe arrangements, Disk brakes, drum brakes, Antilock –Braking systems, purpose and operation of antilock-braking system, ABS Hydraulic Unit, Rear-wheel antilock & Numerical Problems

06 Hours

UNIT - 8

Automotive Emission Control Systems: Automotive emission controls, Controlling crankcase emissions, Controlling evaporative emissions, Cleaning the exhaust gas, Controlling the air-fuel mixture, Controlling the combustion process, Exhaust gas recirculation, Treating the exhaust gas, Airinjection system, Air-aspirator system, Catalytic converter, Emission standards- Euro I, II, III and IV norms, Bharat Stage II, III norms.

6 Hours

TEXT BOOKS:

- Automotive mechanics, William H Crouse & Donald L Anglin, 10th Edition Tata McGraw Hill Publishing Company Ltd., 2007
 Automotive Mechanics, S. Srinivasan, 2nd Ed., Tata McGraw Hill
- Automotive Mechanics, S. Srinivasan, 2nd Ed., Tata McGraw Hill 2003.

REFERENCE BOOKS:

- 1. **Automotive mechanics: Principles and Practices**, Joseph Heitner, D Van Nostrand Company, Inc
- 2. **Fundamentals of Automobile Engineering,** K.K.Ramalingam, Scitech Publications (India) Pvt. Ltd.
- Automobile Engineering, R. B. Gupta, Satya Prakashan, 4th edn. 1984.
- 4. Automobile engineering, Kirpal Singh. Vol I and II 2002.

SEMESTER I

MANAGING ORGANIZATIONS

Sub Code	: 12MBA11	IA Marks	: 50	
No. of Lectur	e Hrs /week : 04	Exam Hrs.	: 03	
Total No. of	Lecture Hrs. : 56	Exam Marks	: 100	
Practical Con	nponent : 01 Hr/ Week			

Part A- Principles of Management

Module I : Introduction

(6 Hours)

Management: Introduction, definition of management, nature, purpose and functions, levels and types of managers, managerial roles, skills for managers, evolution of management thought, Fayol's fourteen principles of management and recent trends in management.

Module II: Planning and organizing (12 Hours)

Planning: Nature of planning, planning process, objectives, MBO, strategies, level of strategies, policies, methods and programs, planning premises, decision making, process of decision making, types of decisions, techniques in decision making.

Organizing: Organization structure, formal and informal organizations, principles of organizations-chain of command, span of control, delegation, decentralization, empowerment.

Functional, divisional, geographical, customer based and matrix organizations, tram based structures, virtual organizations, boundary less organizations.

Module III: Controlling

(4 Hours)

Controlling, importance of controlling, controlling process, types of control, factors influencing control effectiveness.

Recommended Books

- 1. Essentials of Management-Koontz, 8/e, McGraw Hill
- 2. Management: Text and Cases-VSP Rao, Excel Books
- 3. MGMT, An Innovative approach to teaching and learning Principles of Management, Chuck Williams, Cengage Publications, 2010
- 4. Principles and practices of Management, Kiran Nerkar, Vilas Chopde, Dreamtech Press, 2011
- 5. Management Theory & practice Chandan J. S, Vikas Publishing House.
- 6. Management Theory & Practice Text & Cases Subba Rao P & Hima Bindu, Himalaya Publication.

Part B- Organizational Behaviour

Module IV: Introduction

(4 hours)

Organizational Behaviour: Introduction, definition, historical development, fundamental principles of OB, contributing disciplines, challenges and opportunities.

Module V: Foundations of Individual Behaviour (14 Hours)

Individual behaviour: Foundations of individual behavior.

Ability: Intellectual abilities, Physical ability, the role of disabilities.

Personality: Meaning, formation, determinants, traits of personality, Big five and MBTI, personality attributes influencing OB.

Attitude: Formation, components of attitudes, relation between attitude and behaviour.

Perception: Process of perception, factors influencing perception, link between perception and individual decision making.

Emotions: Affect, mood and emotion and their significance, basic emotions, emotional intelligence, self awareness, self management, social awareness, relationship management.

Module VI: Motivation and Leadership

Motivation: Meaning, theories of motivation-needs theory, two factor theory, Theory X and Y, application of motivational theories.

Leadership: Meaning, styles of leadership, leadership theories, trait theory, behavioural theories, managerial grid, situational theories-Fiedler's model, SLT, transactional and transformation leadership.

Module VII: Group Behaviour

(4 Hours)

Definition, types, formation of groups, building effective teams.

Conflict: Meaning, nature, types, process of conflict, conflict resolution.

Power and politics: Basis of power, effectiveness of power tactics. The ethics of behaving politically.

Module VIII: Organizational culture (4 Hours)

Importance, managing culture. Work stress and its management.

Practical Component

- Studying organizational structures of any 10 companies and classifying them into different types of organizations which are studied in Module 2 and justifying why such structures are chosen by those organizations.
- Preparing the leadership profiles of any 5 business leaders and studying their leadership qualities and behaviours with respects to the trait, behavioural and contingency theories studied.
- Identifying any five job profiles and listing the various types abilities required for those jobs and also the personality traits/attributes required for the jobs identified.

Note: Faculty can either identify the organizations/ leaders/jobs or students can be allowed to choose the same.

RECOMMENDED BOOKS:

1. Organizational behaviour, Stephen P Robbins, Timothy A. Judge, Neharika Vohra, Pearson, 14th Edition, 2012.

2. Introduction to Organisational Behaviour – Michael Butler, Jaico Publishing House,

- 3. Organization Behaviour Ashwathappa, Himalaya Publication House
- 4. ORGB Nelson, Quick, Khanelwal, 2/e, Cengage Learning, 2012.
- 5. Organizational behaviour Anada Das Gupta, Biztantra, 2011.
- 6. Organizational behaviour: A modern approach Arun Kumar and Meenakshi, Vikas Publishing House, 2011.
- 7. Organizational behaviour Rao V. S. P, Excel Books, 2009.

REFERENCE BOOKS:

1. Organizational Behaviour - Fred Luthans, 12/e, Mc-Graw Hill International, 2011.

2. Management and organizational Behaviour - Laurie J Mullins, Pearson education

3. Fundamentals of organizational behaviour - Slocum/Hillriegel.

Cengene Learning

4. Organizational Behaviour - Aquinas P. G, Excel Books.

ACCOUNTING FOR MANAGEMENT

Sub Code : 12MBA14	IA Marks	: 50
No. of Lecture Hrs /week : 04	Exam Hrs.	: 03
Total No. of Lecture Hrs. : 56	Exam Marks	: 100
Practical Component : 01 Hr/ Week		
Ratio of Theory to problems $= 40:60$		

Module I: Introduction to Accounting

(4 Hours)

Need and Types of Accounting, Users of Accounting, concepts and conventions of Accounting, Accounting Equations.

Module II: Preparation of Books of Accounts(10 Hours)

Journals, Subsidiary books, three column cash book, ledgers and trial balance. (Problems only on three column cash book)

Module III: Preparation of Financial Statements(12 Hours)

Preparation of final accounts of sole traders and companies (excluding partnership) in horizontal format (students are to be introduced to vertical formats also)

Module IV: Analysis of Financial Statements(14 Hours)

Comparative, common size and trend analysis, Ratio Analysis, Preparation of financial statements using ratios, Cash flow Statement.

Module V: Accounting Standards and IFRS(4 Hours)

IFRS and proposed changes in Indian Accounting Standards.

Module VI: Audit Report

(4 Hours)

Audit Report, Directors' Report and basics of MAOCARO 1998 (Amended 2003)

Module VII:

(2 Hours)

Corporate Governance, Human Resource Accounting, Forensic Accounting Window Dressing

Module VIII: Income Tax

(6 Hours)

Heads of Income, Salary, Profit in lieu of salary, Perquisites, deductions u/s 80C, Income Tax Rates – For Individuals only (Only Theory)

Practical Components:

- Collecting Annual reports of the companies and analyzing the financial statements using different techniques and presenting the same in the class.
- Analyzing the companies' cash flow statements and presenting the same in the class.
- Exposing the students to usage of accounting software's (Preferably Tally)
- Filling up of ITR forms

RECOMMENDED BOOKS:

- 1. Financial Accounting: A Managerial Prespective Narayanaswamy R, 4/e ,PHI, 2011 (Based on IFRS).
- 2. Accounting For Managers Jawaralal, 5/e, Himalaya Publishing House, 2011.
- 3. Financial Accounting Dhanesh K. Khatri, McGraw Hill, 2011
- A Text book of Accounting For Management Maheswari S. N, Maheswari Sharad K. Maheswari, 2/e, Vikas Publishing house (P) Ltd.
- 5. Financial Accounting For Management-Ramachandran N & Ram Kumar Kakani, 3/e TMH Publications, 2011.
- 6. Financial Accounting Tulsian P. C, 1/e, Pearson Education.
- 7. Accounting for managers –Madegowda J, Himalaya Publishing House.
- 8. Advanced Accountancy- Gupta R. L & Radhaswamy M–Sultan Chand Publications
- 9. Financial Accounting Jain and Narang, Kalyani Publishers
- Direct Taxes Vinod Singhania and Kapil Singhania, Taxman Publications

REFERENCE BOOKS:

- 1. Financial Accounting for Management: An Analytical Perspective– Ambrish Gupta, 1/e, Pearson Education.
- 2. Introduction to Financial Statement Analysis Ashish K Bhatta charya, Elsevier India
- 3. Accounting for Managers: Text & Cases Bhattacharya, 3/e, Vikas Publications, 2004.
- 4. Financial Accounting for Business Managers Ashish K. Bhattacharya, 2/e, PHI, 2005.
- 5. Financial Accounting Raman B. S, Vol I & Vol II, United Publishers, 1/e, 2009.
- 6. Financial Accounting (IFRS update)– Gary A. Porter & Curtis L. Norton, 6/e, Cengage Learning.
- 7. Accounting For Business Managers Sakshi Vasudeva, Himalaya Publishing House.
- 8. Accounting For Management Arora M. N., Himalaya Publishing House.
- 9. Essentials of Financial Accounting Bhattacharya, 2/e, Prentice Hall India, (Based on IFRS)
- 10. Comdex (Computer and Financial Accounting with Tally 9.0 Course Kit). Dream Tech.
- 11. Comdex Tally 9, Namrata Agrawal- DreamTech.
- 12. IFRS: A Practical approach Jasmine Kaur, McGraw Hill.
- 13. Income Tax Gaur & Narang, Kalyani Publishers.
- 14. Financial Accounting Paul Kimmet, Jerry Weygant & Donald Kieso Wiley Publications.

MANAGERIAL COMMUNICATION

Sub Code	: 12MBA16	IA Marks	: 50	
No. of Lectur	e Hrs /week : 04	Exam Hrs.	: 03	
Total No. of	Lecture Hrs. : 56	Exam Marks	: 100	
Practical Cor	nponent : 01 Hr/ Week			

Module I: Introduction

(6Hours)

Meaning & Definition, Role, Classification – Purpose of communication – Communication Process – Characteristics of successful communication – Importance of communication in management – Communication structure in organization – Communication in conflict resolution - Communication in

crisis. Communication and negotiation. Communication in a cross-cultural setting

Module II: Oral Communication

(6Hours)

Meaning – Principles of successful oral communication – Barriers to communication – Conversation control – Reflection and Empathy: two sides of effective oral communication. Modes of Oral Communication. Listening as a Communication Skill, Non verbal communication.

Module III: Written Communication (6Hours)

Purpose of writing – Clarity in writing – Principles of effective writing – Approaching the writing process systematically: The 3X3 writing process for business communication: Pre writing – Writing – Revising – Specific writing features – Coherence – Electronic writing process.

Module IV: Business Letters and Reports (8Hours)

Introduction to business letters – Types of Business Letters - Writing routine and persuasive letters – Positive and Negative messages Writing Reports: Purpose, Kinds and Objectives of reports – Organization & Preparing reports, Short and Long reports Writing Proposals: Structure & preparation. Writing memos

Module V: Case Method of Learning

Understanding the case method of learning – Different types of cases – Difficulties and overcoming the difficulties of the case method – Reading a case properly (previewing, skimming, reading, scanning) – Case analysis approaches (Systems, Behavioural, Decision, Strategy) – Analyzing the case – Dos and don'ts for case preparation – Discussing and Presenting a Case Study

Module VI

(6Hours)

(8Hours)

Presentation skills: What is a presentation – Elements of presentation – Designing & Delivering Business Presentations – Advanced Visual Support for Managers

Negotiation skills: What is negotiation – Nature and need for negotiation – Factors affecting negotiation – Stages of negotiation process – Negotiation strategies

Module VII

(6Hours)

Employment communication: Introduction – Composing Application Messages - Writing CVs – Group discussions – Interview skills **Impact of Technological Advancement on Business Communication** – Technology-enabled Communication - **Communication networks** – Intranet – Internet – e mails – SMS – teleconferencing – videoconferencing

Module VIII: Group Communication(10Hours)Meetings – Planning meetings – objectives – participants – timing – venue ofmeetings – leading meetings. Meeting Documentation: Notice, Agenda,Resolution & Minutes.

Seminars – workshop – conferences

Media management – The press release – Press conference – Media interviews

Etiquette Advantage in Business Communication

Practical Components:

- Demonstrate the effect of noise as a barrier to communication
- Make students enact and analyze the non-verbal cues
- Give exercises for clarity and conciseness in written communication.
- Group Activity: Form Student groups and ask them to write a persuasive letter and proposal for an innovative product or service. Circulate the work from each group among all other groups and ask them to evaluate the letter and proposal in line with possible responses to a letter (pleased, displeased, neither pleased nor displeased but interested, not interested)
- A suitable case is to be selected and administered in the class sticking to all the guidelines of case administering and analysis. Demonstrate using Communication Equipments like Fax, Telex, Intercoms, etc,
- Demonstrating Video conferencing & teleconferencing in the class.
- Conduct a mock meeting of students in the class identifying an issue of their concern. The students should prepare notice, agenda and minutes of the meeting.

- Business etiquettes to be demonstrated in role play by students
- Each student to give presentation of 5 minutes (this can be spread throughout the semester)and to be evaluated by the faculty

RECOMMENDED BOOKS:

- Business Communication : Concepts, Cases And Applications Chaturvedi P. D, & Mukesh Chaturvedi ,2/e, Pearson Education, 2011 (Module 1, 2, 4, 5, & 7).
- Business Communication: Process And Product Mary Ellen Guffey, 3/e, Cengage Learning, 2002. (Module 3)
- 3. Communication Rayudu C. S, HPH.
- 4. Business Communication Lesikar, Flatley, Rentz & Pande, 11/e, TMH, 2010 (Module 1, 2, 4, 5, & 7).
- 5. Advanced Business Communication Penrose, Rasberry, Myers, 5/e, Cengage Learning, 2004 (Module 1, 5, 6 & 8).
- 6. BCOM Lehman, DuFrene, Sinha, Cengage Learning, 2/e 2012
- 7. Business Communiacation Madhukar R. K, 2/e, Vikas Publishing House.

REFERENCE BOOKS:

- 1. Effective Technical Communication Ashraf Rizvi M, TMH, 2005.
- 2. Business Communication Sehgal M. K & Khetrapal V, Excel Books.

3. Business Communication – Krizan, Merrier, Jones, 8/e, Cengage Learning, 2012.

4. Basic Business Communiaction – Raj Kumar, Excel Books, 2010.

Website:

http://www.fundula.com/allcourses

SEMESTER II

BUSINESS, GOVERNMENT AND SOCIETY

Sub Code: 12MBA21	IA Marks	50
No.of Lecture Hrs/week : 04	Exam Hrs.	: 03 Hours
Total No. of Lecture Hrs. : 56	Exam Marks	: 100
Practical Component : 01 Hr/ Week		

Module I: The Study of Business, Government and Society (BGS) (4 Hours)

Importance of BGS to Managers – Models of BGS relationships – Market Capitalism Model, Dominance Model, Countervailing Forces Model and Stakeholder Model – Global perspective – Historical Perspective

Module II: The Dynamic Environment (4 Hours)

Historical Forces changing the Business Environment – Key environments of Business – Power dimensions of Business – Theoretical perspective – Sociological perspective

Module III: Corporate Governance

(8 Hours)

Introduction, Definition, Market model and control model, OECD on corporate governance, A historical perspective of corporate governance, Issues in corporate governance, relevance of corporate governance, need and importance of corporate governance, benefits of good corporate governance, the concept of corporate, the concept of governance, theoretical basis for corporate governance, obligation to society, obligation to investors, obligation to employees, obligation to customers, managerial obligation, Indian cases

Module IV: Public Policies

(8 Hours)

The role of public policies in governing business, Government and public policy, classification of public policy, areas of public policy, need for public

policy in business, levels of public policy, elements of public policy, the corporation and public policy, framing of public policy, business and politicslevels of involvement, business, government, society and media relationship government regulations in business, justification of regulation, types of regulation, problems of regulation

Module V: Environmental concerns and corporations (6 Hours)

History of environmentalism, environmental preservation-role of stakeholders, international issues, sustainable development, costs and benefits of environmental regulation, industrial pollution, role of corporate in environmental management, waste management and pollution control, key strategies for prevention of pollution, environmental audit, Laws governing environment

Module VI: Business Ethics

(6 Hours)

Meaning of ethics, business ethics, relation between ethics and business ethics, evolution of business ethics, nature of business ethics, scope, need and purpose, importance, approaches to business ethics, sources of ethical knowledge for business roots of unethical behavior, ethical decision making, some unethical issues, benefits from managing ethics at workplace, ethical organizations

Module VII: Corporate Social Responsibility (6 Hours)

Types and nature of social responsibilities, CSR principles and strategies, models of CSR, Best practices of CSR, Need of CSR, Arguments for and against CSR, CSR Indian perspective, Indian examples

Module VIII: Business Law

(14 Hours)

Law of contract, meaning of contract, agreement, essential elements of a valid contract, classification of contracts, proposal and acceptance, free consent, void agreements

Negotiable instruments act 1881: Nature and Characteristics of Negotiable instruments, Kinds of Negotiable Instruments – Promissory Notes, Bills of Exchange and Cheques. Parties to Negotiable Instruments, Negotiation, Presentment, Discharge and Dishonor of Negotiable Instrument, Law of agency, Bailment & Pledge:

Sale of goods act 1930: Definition of Sale, Sale v/s Agreement to Sell, Goods, price and Time, Condition and Warranties, Express and Implied Condition, "Doctrine of Caveat Emptor", Performance of Contract of sale, Right of Unpaid Seller.

Intellectual property law, law relating to patents, law relating to copyrights, law relating to trade mark

Practical Component:

- Students are expected to study any five CSR initiatives by Indian organizations and submit a report for the same.
- A group assignment on "The relationship between Business, Government and Society in Indian Context and relating the same with respect the models studied in module 1.
- Case studies/Role plays related ethical issues in business with respect to Indian context.

RECOMMENDED BOOKS:

- 1. Business, Government, and Society: A Managerial Perspective, Text and Cases John F. Steiner, 12/e, McGraw-Hill, 2011.
- 2. Business and Government Francis Cherunilam, HPH.
- 3. Corporate Governance: principles, policies and practices Fernando A. C, 2/e, Pearson, 2011.
- 4. Business Ethics and Corporate Governance Ghosh B. N, Tata McGraw-Hill, 2012.
- 5. Business Law for Managers, Goel P. K, Biztantra, 2012.
- 6. Corporate Social Responsibility: A Study of CSR Practices in Indian Industry, Baxi C. V & Rupamanjari Sinha Ray, Vikas Publishing House, 2012.

REFERENCE BOOKS:

- 1. Business and Society Lawrence and Weber, 12/e, Tata McGraw-Hill, 2010.
- 2. Business Ethics Bajaj P. S & Raj Agarwal, Biztantra, 2012.
- 3. Corporate Governance Keshoo Prasad, 2/e, PHI.
- 4. Corporate Governance, Ethics and social responsibility -Balachandran V, & Chandrashekharan V, 2/e, PHI, 2011.
- 5. Corporate Governance Machiraju H. R, HPH.
- 6. Business Ethics and Corporate Governance Prabakaran S, Excel Books.
- 7. Corporate Goverance Badi N. V, Vrinda Publications, 2012.
- 8. Civic Sense Prakash Pillappa, Excel Books, 2012.

36

MACRO BUSINESS ENVIRONMENT

Sub Cod e: 12MBA23	IA Marks	: 50
No. of Lecture Hrs /week : 04	Exam Hrs.	: 03
Total No. of Lecture Hrs. : 56	Exam Marks	: 100
Practical Component : 01 Hr/ Week		

Module I

(8 Hours)

Indian Economy and Business environment: Nature and Scope, Structure of the Business Environment – Internal and External environment.

Political and Legal Environment: overview, Philosophies, Political System, Judiciary, Constitution of India.

Economic Environment: overview, Nature of Indian Economy, Features of Indian Economy, Charges in recent times.

Socio - Cultural Environment: Socio Cultural factors affecting the Business.

Module II

(8 Hours)

Globalisation and Indian Business Environment: Meaning and Implications, Phases, Globalisation Impact on Indian Economy across Sectors. Modes of entry strategies.

India's Foreign Trade Policies – Recent Developments, Global outsourcing, MNCs and FDI in Retail, Infrastructure, Pharma. Insurance, Banking & Finance and Automobile. Impact of WTO ON India's foreign trade. Technological Environment: Technology and Development, Integrating technology with Business. India and Global Knowledge Market.

Module III

(6 Hours)

International Business Environment: Review of the global economy, The global recession, Business environment in Developed and Developing Countries.

International trade theories.

GATT and WTO: Agreements and Implications.

International cultural aspects- Values and norms, religion and ethics, language, education, impact of cultural differences on business.

Module IV

(8 Hours)

Measuring the Economy: Basic economic Concepts, Open and Closed Economies, Primary, Secondary and Tertiary sectors and their contribution to the economy. SWOT Analysis for the Indian economy. Measuring GDP and GDP Growth rate. Components of GDP.

Business Cycle- Features, Phases, Economic Time series – Economic indicators, Correlation, persistence, coherence.

Inflation: Types, Measurement, Kinds of Price Indices.

Employment and unemployment rates: Measurement.

National Income: Estimates, Trends, Measurement, Problems in measuring National Income.

Module V

(8 Hours)

Industrial Policies and Structure: Planning- Problems in industrial development during the plan period, Classification of industries based on ownership. Industrial policies, Industrial strategy for the future, New industrial policy 1991.

Structure of Indian Industry: Public and Private Sector Enterprises, Objectives of PSUs, Performance and shortcomings. Private Sector– growth, problems and prospects. SSI – Role in Indian Economy. Disinvestments in Indian public sector Units since 1991.

Industry Analysis: Textiles, Electronics, Automobile, FMCG, Telecom, Pharma Sectors.

Module VI

Economic policies: Privatisation-Problems and prospects. Fiscal Policy: Objectives, Instruments, Union Budget, Reforms -Raja Chelliah Committee Recommendations, Taxes, Role of Government.

Monetary Policy: Money, Measures of money supply, Monetary system in India, Monetary policy- Tools for credit control. Structure of the Banking system, RBI and its functions, Banking structure reforms - Narasimham committee recommendations.

MODULE VII

(6 Hours)

Infrastructure in the Indian Economy- Infrastructure and economic Development, Energy, Power, Transport system- Railways, Road transport, Water transport and Air Transport.Power.

Communication System in India, Development of IT Sector in India – its contributions to Indian economy.

Importance of Human resources development- Measures of Human development, Human Development index. Major thrust areas in human resource development.

Module VIII

(4 hours)

Agriculture and Business: Role of Agriculture in Economic Development, Trends in Agricultural Production, Agro based Industries, Dependence of Business on Agriculture, Corporate India Initiatives.

Practical Component

- A Debate on 'Should the government allow cultivation of BT crops in India'.
- 'Indian Shining' a debate on for and against.
- International Cultural environment- The problems faced by MNC's A Case study.
- 'Disinvestment in PSU's since 1991'- A case study
- Exposure of INR to the Fluctuation of USD and the impact on Indian companies receivables and payables.
- Tracking of business cycle for India using GDP data.
- A case study on Bangalore Metro Rail project.
- Corporate India initiatives for rural developments
 - 41

RECOMMENDED BOOKS:

- 1. Economic Environment of Business Misra S. K & Puri V. K., 6/e, Himalaya publishing house, 2010.
- 2. Business Environment :Text and Cases Justin Paul, 3/e, McGraw Hill, 2011.
- 3. Macro Economic Theory Vaish M. C, 14/e, Vikas Publishing House, 2010
- 4. Business Environment Fernando, 1/e, Pearson, 2011.
- 5. Indian Economy Datt and Sundharam, 64th Edition, S Chand, 2011.
- International Business: Competing in the Global Marketplace -Charles W. L. Hill & Jain, 6/e, TMH, 2009.

REFERENCE BOOKS:

- Principles of Macro Economics –Mankiw, 4/e, Cengage Learning, 2011.
- Macro Economics Andrew. B. Abel, & Ben S. Bernanke, 7/e, Pearson Education, 2011.
- 3. Macro Economic Theory Kennedy, 1/e, PHI, 2011.
- Macro Economics: Theory and Policy Vanitha Agarwal, 1/e, Pearson, 2010.
- 5. Macro Economics- Hall & Papell, 6/e, Viva Books, 2010.
- The Business Environment Wetherly & Otter, 1/e, Oxford University Press, 2010.
- 7. Business Environment Suresh Bedi, Excel Books.

Exam: Only Theory questions.

MARKETING MANAGEMENT

Sub Code: 12MBA24	IA Marks	50
No.of Lecture Hrs/week : 04	Exam Hrs.	: 03 Hours
Total No. of Lecture Hrs. : 56	Exam Marks	: 100
Practical Component : 01 Hr/ Week		

Module I

(7 Hours)

Introduction: Nature and scope of marketing, Evolution, Various marketing orientations, Marketing Vs Selling concepts, Consumer need, Want and

demand concepts, Marketing Environment – Assessing the impact of micro and macro environment. Marketing challenges in the globalized economic scenario.

Module II

(7 Hours)

Understanding Consumer Behaviour: Buying motives, Factors influencing buying behaviour, Buying habits, Stages in consumer buying decision process, Types of consumer buying decisions, Organizational buying Vs House hold buying, Consumer Protection Act, 1986 – An Introduction.

Module III

(8 Hours)

Market Segmentation, Targeting, Positioning & Branding

Segmentation: Meaning, Factors influencing segmentation, Market Aggregation, Basis for segmentation, Segmentation of Consumer and Industrial markets.

Targeting: Meaning, Basis for identifying target customers, Target Market Strategies,

Positioning: Meaning, Product differentiation strategies, Tasks involved in positioning

Branding: Concept of Branding, Brand Types, Brand equity, Branding Strategies

Module IV

(7 Hours)

Product Decisions: Concept, product hierarchy, New product development, diffusion process, Product Life cycle, Product mix strategies and merchandise planning and strategies.

Packaging / **Labeling:** Packaging as a marketing tool, requirement of good packaging, Role of labeling in packaging

Module V

(4 Hours)

Pricing Decisions: Pricing concepts for establishing value, Pricing strategies-Value based, Cost based, Market based, Competitor based, New

product pricing - Price Skimming & Penetration pricing,

Module VI

(5 Hours)

Distribution Decisions: Meaning, Purpose, Channel alternatives, Factors affecting channel choice, Channel design and Channel management decisions, Channel conflict, Distribution system, Multilevel Marketing (Network Marketing)

Module VII

(9 Hours)

Integrated Marketing Communications: Concept of communication mix, communication objectives, steps in developing effective communication, Stages in designing message

Advertising: Advertising Objectives, Advertising Budget, Advertising Copy, AIDA model, Advertising Agency Decisions

Sales Promotion: Sales Promotion Mix, Kinds of promotion, Tools and Techniques of sales promotion, Push-pull strategies of promotion.

Personal selling: Concept, Features, Functions, Steps/process involved in Personal Selling,

Publicity / Public Relation: Meaning, Objectives, Types, Functions of Public Relations

Direct Marketing: Meaning, Features, Functions, Basic concepts of ecommerce, e-business, e-marketing, m-Commerce, m-marketing, enetworking.

Module VIII

(5 Hours)

Marketing Planning: Meaning, Concepts of Marketing plan, Steps involved in planning.

Marketing Organisation: Factors influencing the size of the marketing organization, various types of marketing structures/organisation
Marketing Audit: Meaning, Features of marketing audit, various components of marketing audit.

CASE STUDIES ON INDIAN CONTEXT ONLY

(4 Hours)

Practical Components:

- Consider a few products like mobile phone, shoes, clothes etc and analyse their buying motives.
- Analyse the various colleges in a city how are they segmented? If you were to start a new MBA college, how would you position it? What would your parameters be?
- Analyse the product life cycle of a few common products like jeans, pagers, desktop computers etc etc.
- Go to a supermarket and study the pricing, packaging and advertising strategy of some FMCG companies like Levers, Godrej, ITC, Brittania, Parle, and others in some products like soaps, biscuits, juices etc.
- Take any consumer product like soaps, biscuits etc and study the marketing organization of the company producing it.

RECOMMENDED BOOKS:

- 1. Marketing Management: A South Asian Perspective Kotler, Keller, Koshy & Jha, 13/e, Pearson Education, 2012.
- 2. Marketing : An Introduction Rosalind Masterson & David Pickton, 2/e, Sage Publications, 2010.
- Marketing Management Tapan Panda, 2/e, Excel Publication, 2007.
- 4. Marketing Management Ramaswamy V. S. & Namakumar S, 4/e, Macmillan Publishers, 2011.
- 5. Fundamentals of Marketing Management Etzel M. J, B J Walker & William J. Stanton, 14/e, TMH, 2010.
- 6. Marketing Management Arun Kumar & Meenakshi N, 2/e, Vikas, 2011.
- Marketing Management K Karunakaran, 3/e, 2012, Himalaya Publishing House,

REFERENCE BOOKS:

1. Marketing Management-Rajan Saxena, 4/e, Cenage Learning.

2. Marketing- Lamb, Hair, Sharma Mc Danniel, 1/e, Cengage Learning 2012.

3. Marketing: Marketing in the 21st Century - Evans & Berman, 2/e, Cengage Learning,

2005.

4. Marketing : Planning, Implementation, and Control - William M. Pride, Ferrell O. C ,

Cengage Learning, 2010.

- 5. Applied Case Studies in Marketing Shajahan S, Primus Books,
- 2011.
- 6. Marketing In India: Text and Cases- Neelamegham S, 4/e, Vikas.

Website:

http://www.fundula.com/allcourses

FINANCIAL MANAGEMENT

Sub Code: 12MBA25	IA Marks	: 50
No. of Lecture Hrs /week : 04	Exam Hrs.	: 03
Total No. of Lecture Hrs. : 56	Exam Marks	: 100
Practical Component : 01 Hr/ Week		

Module I

(5 Hours)

Financial management – Introduction to financial management, objectives of financial management – profit maximization and wealth maximization. Changing role of finance managers. Interface of Financial Management with other functional areas. **Indian financial system** – Primary market, Secondary market – stocks & commodities market, Money market, Forex markets. (Theory Only)

Module II

(5 Hours)

Sources of Financing: Shares, Debentures, Term loans, Lease financing, Hybrid financing, Venture capital investing, Warrants. Angel investing Private equity, Warrants and convertibles (Theory Only)

Module III

(10 Hours)

Time value of money –Future value of single cash flow & annuity, present value of single cash flow, annuity & perpetuity. Simple interest & Compound interest, Capital recovery & loan amortization.

Module IV

Cost of Capital Cost of capital – basic concepts. Cost of debenture capital, cost of preferential capital, cost of term loans, cost of equity capital (Dividend discounting and CAPM model). Cost of retained earnings. Determination of Weighted average cost of capital (WACC) and Marginal cost of capital.

Module V

Investment decisions — Investment evaluation techniques – Net present value, Internal rate of return, Modified internal rate of return, Profitability index, Payback period, Discounted pay back period, Accounting rate of return. Estimation of cash flow for new project, replacement projects.

Module VI

Working capital management – factors influencing working capital requirements. Current asset policy and current asset finance policy. Determination of operating cycle and cash cycle. Estimation of working capital requirements of a firm.(Does not include Cash, Inventory & Receivables Management)

Module VII

Capital structure and dividend decisions – Planning the capital structure. (No capital structure theories to be covered) Leverages – Determination of operating leverage, financial leverage and total leverage. Dividend policy – Factors affecting the dividend policy - dividend policies- stable dividend, stable payout. (No dividend theories to be covered).

Module VIII

(4 Hours)

Emerging Issues in Financial management: Derivatives, Mergers and Acquisitions, Behavioral Finance, Financial Modelling, Financial engineering, risk management. (Theory Only).

Practical Components:

• Identifying the small or medium sized companies and understanding the Investment evaluation techniques used by them.

47

(8 Hours)

(10 Hours)

(6 Hours)

(8 Hours)

- Using the annual reports of selected companies, students can study the working capital management employed by them. Students can also compare the working capital management of companies in the same sector.
- Students can choose the companies that have gone for stock split and Bonus issue in the last few years and study the impact of the same on the stock price.

RECOMMENDED BOOKS:

- 1. Financial Management Khan M. Y.& Jain P. K, 6/e, TMH, 2011.
- 2. Financial Management Pandey I. M, 10/e, Vikas.
- 3. Financial Management Prasanna Chandra, 8/e, TMH, 2011.
- 4. Financial Management, Kapil, Pearson Education, 2011.
- 5. Financial Management, Srivastav, Oxford University press, 2011.

REFERENCE BOOKS:

- 1. Fundamentals of Financial Management Brigham & Houston, 10/e, Cengage Learning.
- 2. Fundamentals of Financial Management Vanhorns & Bhandari, Pearson Education.
- 3. Contemporary Financial Management Kothari & Dutta, Macmillan India Ltd.
- 4. Fundamentals of Corporate Finance Stephen A. Ross, Wester Field, Jordan, 8/e, McGraw Hill, 2010.
- 5. Fundamentals of Financial Management –Vanhorne & Wachowicz, 13/e, PHI, 2011.
- 6. Corporate Finance Damodaran, 2/e, Wiley India (P) Ltd., 2004
- 7. Financial Management Shah, Wiley India (P) Ltd.
- 8. Principles of Managerial Finance Gitman, 10/e, Pearson Education, 2004
- 9. Principles of Corporate Finance: Theory & Practice Brealy and Myers, 10/e, TMH, 2012.
- 10. Financial Management & Policy- Vanhorne, James C., 12/e, Pearson, 2002
- 11. Fundamentals of Financial Management Sharan, 2/e, Pearson, 2005.
- 12. Financial Management Paresh P. Shah, 2/e, Biztantra.
- Financial Management: Comprehensive Text Book with case Studies – Ravi M. Kishore, 7/e, Taxmann.
- 14. Financial Management Sudarshan Reddy, H P H

Website: http://www.fundula.com/allcourses

48

SALES AND RETAIL MANAGEMENT

Sub Code: 12MBAMM312	IA Marks	50
No.of Lecture Hrs/week : 04	Exam Hrs.	: 03 Hours
Total No. of Lecture Hrs. : 56	Exam Marks	: 100
Practical Component : 01 Hr/ Week		

PART – A

SALES MANAGEMENT

Module I

(8 Hours)

Introduction to sales management: Meaning, Personal Selling, the sales management process Emerging Trends in Sales Management, Qualities and Responsibilities of a sales manager. **Selling skills & selling strategies:** selling and buying styles, selling situations, selling skills, selling process

Module II

(6Hours)

Sales organization: Meaning, Factors influencing structure, organisational principle and design key account sales, sales process automation, emerging organisational designs **Management of Sales Territory & Sales Quota:**

Sales territory, meaning, size, designing, sales quota, procedure for setting sales quota, Types of sales quota, Methods of setting sales Quota.

Module III

(6 Hours)

Recruitment and selection of sales force: Hiring process, sources, selection process. **Training:** - process, types of training and training methods, designing a sales training programme,

Sales force motivation: Nature of motivation, Importance, Process and factors in the motivation, **Compensation**: - Meaning, Types compensation plans and **evaluation**: - of sales force by performance and appraisal process.

Case Studies on Sales Management

(2 Hours)

PART – B

RETAIL MANAGEMENT

Module V

(7 Hours)

Retailing: - Meaning, Nature, Classification, Growing Importance of Retailing, Factors Influencing Retailing, Functions of Retailing, and Retail as a career. Developing and applying Retail Strategy, Strategic Retail Planning Process, Retail Organization, The changing Structure of retailing, Classification of Retail Units, Types of Retail Formats

Module VI

(7 Hours)

Setting up Retail organization: Size and space allocation, location strategy, factors Affecting the location of Retail, Retail location Research and Techniques, Objectives of Good store Design.

Store Layout and Space planning: Types of Layouts, role of Visual Merchandiser, Visual Merchandising Techniques, Controlling Costs and Reducing Inventories Loss, Exteriors, Interiors.

Store Management: Responsibilities of Store Manager, Store Security, Parking Space Problem at Retail Centers, Store Record and Accounting System, Coding System, Material Handling in Stores, Management of modern retails stores.

Module VII

(6 Hours)

Emergence of Organized Retiling: Traditional Retailing, Organized Retailing in India, Retailing in rural India, Retail Environment in India, FDI in retailing, Role of IT in retailing, Emerging trends in organized retailing

Retail Pricing: Factors influencing retail pricing, Retail pricing strategies, Retail promotion strategies

Relationship Marketing in Retailing: Management & Evaluation of Relationships in Retailing, Retail Research in Retailing: Importance of Research in Retailing, Trends in Retail Research, Areas of Retail Research. Customer Audits, Brand Management in retailing **Case Studies** (2Hours)

Practical Components:

- Interview a salesperson and write a brief report about what they like and dislike about their jobs, their salary, travelling allowances, sales quotas, why they chose a sales career, and what does it take to succeed in this profession.
- Go to a kirana store and a supermarket and compare the following: a) store arrangement b) No of brands carried c) pricing policies - are discounts given? d) service - personal or impersonal? Etc etc.
- Go to around three kirana stores in your neighbourhood (around 2 kms) and discuss with them the importance of location, pricing, credit policy, etc . What percentages of goods is sold 'loose' in each locality and compare this with the approximate income range of the customers? What are the retailers losses when a customer defaults in payment? Does he make up for it by increasing his prices to other customers?
- Ask your friends if they would buy certain goods like groceries, vegetables, socks, mobile, pens etc from the roadside vendor as against a regular shop. Group the products into low risk and high risk ones. Does this buying behavior also depend on the personality of the individual doing the buying? Or the one doing the selling?
- Student can make a presentation on any product or the services of student choice, covering selling strategies and one day work exposure towards merchandising in any big retail outlets of respective places where institute is operating. Rural colleges can send the students to the city nearby to observe the merchandising planning in retail outlets and to make a small report.

RECOMMENDED BOOKS:

- 1. Sales & Distribution Management Tapan K. Panda & Sunil Sahadev, 6/e, Oxford University Press.
- 2. Managing of Sales Force Spiro Stanton Rich, 11/e, TMH, 2003.
- 3. Sales Management: Text and Cases Ghosh P. K, HPH.
- 4. Integrated Retail Management James R. Ogden & Denise T. Ogden, Biztantra, 2003.
- 5. Retail Management Levy & Weitz, 8/e, TMH, 2012.
- 6. Retailing Management Swapana Pradhan, 4/e, TMH, 2012.
- 7. Retail Marketing Management Dravid Gilbert, 2/e, Pearson Education.
- 8. The Art of Retailing A. J. Lamba, McGraw Hill.
- 9. Retail Management: A Strategic Approach Barry Berman, Joel R. Evans, Pearson.

REFERENCE BOOKS:

- 1. Sales & Retail Management : An Indian Perspective S.L. Gupta, 1/e, 2007, Excell books.
- 2. Salesmanship and Sales Management Sahu P. K & Raut K. C, 3/e, Vikas Publishing House.
- Sales Management Douglas J. Dalrymple, William L Crowe, John Wiley & Co.
- Sales & Distribution Management: An Indian Perspective Gupta S. L, Excel Books, 2010.
- 5. Principles of Retail Management Rosemary Varley, Mohammed Rafiq, Palgrave Macmillan, 2009..
- 6. Retail Management -Chetan Bajaj, Oxford University press.
- 7. Managing Retailing -Sinha, Piyush Kumar & Uniyal & Oxford University Press, 2010.
- 8. Retail Management Arif Sheikh, HPH.

Website:

http://www.fundula.com/allcourses

HUMAN RESOURCE MANAGEMENT

Sub Code: 12MBA26	IA Marks	50
No.of Lecture Hrs/week : 04	Exam Hrs.	: 03 Hours
Total No. of Lecture Hrs. : 56	Exam Marks	: 100
Practical Component : 01 Hr/ Week		

Module I

(6 Hours)

Introduction, meaning and significance of HRM. Historical evolution of HRM. Major functions of HRM. Line functions and staff functions. Principles of HRM. HR Competencies. Institutions of repute which impart HRM education in India. Professional Associations in HRM. Career opportunities in HRM.

Module II

(6 Hours)

(8 Hours)

Pre-recruitment functions of HRM- Organizational structure, Job analysis, HR Planning and budget approval. Strategic decision to outsource, engage contract workers or to recruit people on company role.

Module III

Recruitment, selection and appointment: Meaning and significance of recruitment, process of recruitment, sources of recruitment, cost-benefit analysis of recruitment. Meaning and significance of selection, process of selection, selection techniques- tests, interviews and salary negotiation. Meaning and significance of appointment, process of appointment, legal aspects of employment contract, joining formalities and induction.

Module IV

(8 Hours)

Training and development: Meaning and significance of training and development, Process of training development, needs analysis, training design, training implementation and training evaluation. Methods of trainingon the job methods and off the job methods.

Module V

Compensation and benefits: Meaning and significance of compensation and benefits. Basic salary, allowances, incentives, perks, and benefits. Structured pay scales of the government sector and cost to company approach of the private consultant. Statutory aspects of compensation and benefits.

Module VI

Performance management: Meaning and significance of performance management. Process of performance management. Types of performance appraisal system. Performance goal setting, performance coaching and monitoring, performance evaluation and performance feedback. Aligning performance outcome to career and succession planning.

Module VII

(8 Hours)

Employee Relations: Meaning and significance of employee relations. Employee relation in unionized and non-unionized organizations. Handling employee grievances. Employee discipline and domestic enquiry. Legal aspects of employee relations with reference to trade union Act, industrial employment standing orders Act and Industrial Disputes Act. Statutory aspects of health, welfare and safety of employees.

Module VIII

(6 Hours)

Career and succession planning: Meaning, significance and process of career planning. Career stages, responsibility for career planning and career anchors. Meaning, significance and process of succession planning. Continuity of leadership and its impact on business.

Practical Component:

- Expose students to simulated recruitment exercises- Job profile, personal profile, advertisements etc.
- Expose students to standard selection tests followed in various sectors.
- Exploring performance appraisal practices in various sectors.
- Exploring training and development practices.
- Exploring employee separation practices.

50

(6 Hours)

(8 Hours)

- Give a job analysis case and ask the students to prepare job description and job specification.
- Conduct a debate on company employees versus contract employees.
- Give a case and ask the students to prepare the recruitment advertisement for a news paper.
- Ask the students to prepare an appointment letter for the post of office manager of a company known to you.
- Give a performance goal setting case and ask the students to perform dyadic role paying.

RECOMMENDED BOOKS:

- 1. Essentials of Human Resource Management and Industrial Relations P Subba Rao, HPH.
- 2. Human Resource Management Seema Sanghi, Macmillan, 2011.
- 3. Human Resource Management Cynthia D. Fisher, 1/e, Cengage Learning..
- 4. Human Resource Management Biswajeet Pattanayak, 3/e, PHI.
- 5. Human Resources Management: A South Asian Perspective, Snell, Bohlander, & Vohra, Cengage Learning, 16th Rep., 2012.
- 6. Human Resource Management Lawrence S. Kleeman, Biztantra , 2012.
- 7. A Text Book of Human Resource Management Dwivedi R. S, Vikas Publishing House.
- 8. Human Resource Management Rao V. S. P, Excel Books, 2010.

REFERENCE BOOKS:

- 1. Human Resource Management John M. Ivancevich, 10/e, McGraw Hill.
- 2. Human Resource Management in practice Srinivas R. Kandula, PHI, 2009
- 3. Managing Human Resources Luis R Gomez-Mejia, David B. Balkin, Robert L. Cardy, 6/e, PHI, 2010.
- 4. Human Resource Management David A. Decenzo, Stephen P. Robbins, 10/e, Wiley India Pvt. Ltd., 2011.
- 5. Personnel Management Memoria, HPH.

Website:

http://www.fundula.com/allcourses