

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF CIVIL ENGINEERING

SESSION: 2023-2024 (EVEN SEMESTER) II SESSIONAL TEST QUESTION PAPER SET-B

USN

Degree

Course Title

B.E

Civil Engineering Branch

Design of Pre stressed concrete Elements

90 Minutes Duration

Semester: VIII

Course Code: 18CV81

Date: 06 05 2024

Max Marks: 30

Note: Answer ONE full question from each part.							
Q No.	Question	Marks	K- Level	CO mapping			
	PART-A			10			
1(a)	Explain the IS code method of determining the ultimate moment of resistance of rectangular and flanged section PSC members.	5	K2 Understanding	CO2			
Okacio Okacio Okacio II (b)	A post-tensioned bonded pre stressed concrete beam of T section has a flange width of 1400mm and thickness of flange is 200mm. The thickness of rib is 300mm. The area of high tensile steel is 8000mm², located at an effective depth of 1800mm. If the characteristics strength of concrete and steel are 40 N/mm², 1600 N/mm² respectively. Determine the flexural strength of T section.	10 -\$10/24/02	K3 Applying	CO3			
	OR		<u> </u>				
2(a)	Explain the different types of flexural failures of PSC beam.	5	K2 Understanding	CO2			
2(b)	A Pre-Tensioned PSC beam of I section with 160mmx70mm flanges with thickness of web 70mm and overall depth is 650mm. The beam is pre stressed with 4-HTS wires of 7mm diameter at an effective depth of 265mm. If the characteristics strength of concrete and steel are 40 N/mm², 1600 N/mm² respectively. Determine the flexural strength of I section.		K3 Applying	CO3			
	PART-B						
3(a)	Explain the ways of improving the shear resistance of Structural concrete members by pre stressing technique.	5	K3 Applying	CO2			
(b)	The support section of pre stressed concrete beam of rectangular section 230mm x500mm, supports a super imposed load of 10kN/m excluding the self-weight spanning over 10m. The cable is parabolic with maximum eccentricity of 75mm at center of span and zero at supports. Design the shear reinforcement using	10	K3 Applying	соз			

	IS-code recommendations for the following data. The pre stressing force is 150 kN, f_{ck} = 40 N/mm ² , Density of concrete is 24 kN/mm ³ and f_y is 415N/mm ² .		3.	e d g
	OR .	The Auto-Observation		
4(a)	Explain the modes of shear failure.	5	K3 Applying	CO2
(b)	The support section of PSC beam (150mmx300mm) is to resist a shear of 150kN. The pre stress at centroidal axis is 5 N/mm ² , f _{ck} = 40 N/mm ² . The cover to the tension reinforcement is 45mm. Check the section for shear and Design suitable shear reinforcement ft=1.5 N/mm ² .	10	K3 Applying	CO3

mikelle

IQAC-Coordinator

Principal Dr. K. RAMA NARASIMMA

Principal/Director K S School of Engineering and Managemer Bengaluru - 560 109

Professor & Head

Dept. of Civil Engineering
K.S. Group of Institutions
K.S. School of Engineering & Management
Bangalore-580 062.