Sample copy of Assignment

K. S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SESSION: 2022-23 (EVEN SEMESTER)

ASSIGNMENT-1

Batch	2020 - 2024		
Year/Semester/Section	ш/vi/-	Department	ECE
Course Code-Title	18EC62-Embedded Systems		
Name of the Instructor	Mr. Dileep J		

Assignment No: 1 Total Marks: 15 Date of Issue: 06/04/2023 Date of Submission: 17/04/202.				
SI. No	Assignment Questions	K Level	со	Marks
1.	 a) Make use of Architectural Block diagram of ARM Cortex M3 processor to describe the functions of the various units b) Outline Advantages of Cortex M3 processors 	Applying (K3)	C01	2
2.	 a) Organize the functions of R0 to R15 and other special registers in Cortex M3 b) Construct vector table and its priorities and explain functions of exceptions 	Applying (K3)	CO1	2
3.	a) Determine the Two stack model of ARM Cortex M3 b) Build the Reset Sequence of ARM Cortex M3	Applying (K3)	C01	2
4.	 a) Make use of state diagrams to explain operation modes and privilege levels of cortex M3 b) Construct memory Map of ARM Cortex M3 processor 	Applying (K3)	C01	2
5.	 a) Estimate features of built in nested vector interrupt controller b) Make use of ARM architecture to describe Bus interface and memory protection unit briefly 	Applying (K3)	CO1	2
6.	 a) Organize applications of ARM Cortex M3 processors b) Evaluate the debugging support of Cortex M3 processors 	Applying (K3)	CO2	1
7.	Construct 3 types of program status registers with neat diagram	Applying (K3)	CO2	1
8.	Estimate shift and rotate instructions with example	Applying (K3)	CO2	1
9.	Make use of instruction set of ARM and Explain load and store instructions with example	Applying (K3)	CO2	1
10.	Determine the working of following with example BFC, RBIT, SMULL, REV16, PUSH, POP, SBFX, MRS	Applying (K3)	CO2	1

Course In charge

HOD/ECE

Professor & He: J Dept. of Electronics & Communication Engineer in K.S. School of Engineering & Management Gangalore - 560 109

K. S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SESSION: 2022-23 (EVEN SEMESTER)

ASSIGNMENT-2

Batch	2020 - 2024		
Year/Semester/Section	III/VI/-	Department	ECE
Course Code-Title	18EC62-Embedded Systems		
Name of the Instructor	Mr. Dileep J		

Assignment No: 2 Date of Issue: 28/04/2023 Date			Total Marks: 15 of Submission: 08/05/2023		
SI. No	Assignment Questions	K Level	со	Marks	
1.	 a) Make use of neat diagram to explain the organization of CMSI and its benefits b) Evaluate how CMSIS provides standard access interface f embedded software. 	Applying	CO2	1	
2.	Make use of ARM instructions to calculate the sum of 1 to 1 numbers.	Applying (K3)	CO2	1	
3.	Design typical developmental flow of ARM programming	Applying (K3)	CO2	1	
4.	Make use of ARM instructions to blink LED using 'C' Language.	Applying (K3)	CO2	1	
5.	Estimate different types of memories	Applying (K3)	CO2	1	
6.	What is an embedded system? Determine the purpose of embedded system with example for each.	Applying (K3)	C03	2	
7.	Build elements of an embedded systems with block diagram	Applying (K3)	CO3	2	
8.	a) Build the classification of embedded systemb) Construct the application areas of embedded system	Applying (K3)	CO3	2	
).	Develop the differences between i) RISC and CISC ii) Harva and Princeton Architecture iii) Big Endian and Little Endia Architecture iv) General Purpose Computing System and Embedd Operating System	an Applying	соз	2	
0.	Construct the features of the following I2C Bus, SPI bus, IrDA, Opto-coupler, Zigbee, WiFi, Bluetooth	Applying (K3)	CO3	2	

Course In charge

HODVECE

Professor & Her J Dept. of Electronics & Communication Engineering K.S. School of Engineering & Management Renatione - 560 109

K. S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SESSION: 2022-23 (EVEN SEMESTER)

ASSIGNMENT-3

2020 - 2024	nor
Department	ECE
entris	
	Department

Assig	ament No: 3 Date of Issue: 13/06/2023	of Submissi	on: 23/	06/2023
SI.	Assignment Questions	K Level	co	Marks
No L	Estimate different characteristics of Embedded system	Applying (K3)	CO4	2
2.	Develop different 'Embedded firmware design' approach in detail	Applying (K3)	CO4	2
3.	 a) Design washing machine and explain its working with diagram b) Evaluate different types of serial bus interface used in automotive communication. 	Applying (K3)	CO4	2
4.	Build Computational Models in Embedded System	Applying (K3)	CO4	2
5.	Make use of neat diagram to explain how source file to object file	Applying (K3)	CO4	2
-	transition take place. Build the operating system architecture with its diagram	Applying (K3)	CO5	2
6. 7.	Design a coin operated public telephone unit based on FSM model	Applying (K3)	C05	2
8.	Construct the classification of operating systems	Applying (K3)	C05	2
9.	Develop operational, non-operational attributes and Quality	Applying (K3)	COS	2
10.	attributes of an embedded system Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively enter the ready queue together. A new process P4 with estimated completion time 2ms enters the 'Ready' queue after 2ms. Assume all the processes contain only CPU operation and no I/O operations are involved. Calculate the waiting time and Turn Around Time (TAT) for each process and the average waiting time and Turn Around Time in the SRT scheduling.	Applying (K3)	COS	2

Course In charge

HOD/ECE

Professor & Her J Dept. of Electronics & Communication Engine K.S. School of Engineering & Managemen Swigstore - 56C 109