

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SESSION: 2021-2022 (ODD SEMESTER) I SESSIONAL TEST QUESTION PAPER

SET-A

Degree

B.E

USN

Semester: III

Branch Course Title Duration

Electronics and Communication Engineering Digital System Design

90 Minutes

Course Code: 18EC34 Date: 03/12/2021

Max Marks: 30

	Note: Answer ONE full question from each	part.		
Q No.	Question	Marks	K- Level	CO mapping
	PART-A			
1(a)	Determine the minimal SOP form of $f(A,B,C,D) = \Sigma m$ (0,1,2,3,6,7,8,9,14,15) using K-Map method.	5	Applying (K3)	COI
(b)	Develop suitable logic circuit to implement the logic function determined in 1 a) using only NAND gates.	5	Applying (K3)	COI
(c)	Design a 4:2 priority encoder with a valid output.	5	Applying (K3)	CO2
	OR			
2(a)	Determine the minimal POS form of $f(A,B,C,D) = \pi M$ (0,1,2,3,6,8,9,14,15) + $\Sigma d(7,12)$ using K-map method.	5	Applying (K3)	CO1
(b)	Develop suitable logic circuit to implement the logic function determined in 2 a) using only NOR gates.	5	Applying (K3)	CO1
(e)	Design a 4-bit binary to gray converter and realize it using XOR gates.	5	Applying (K3)	CO2
	PART-B		-	
3(a)	Determine the canonical form for following: f1 = A + BC + AC*D f2 = A(B+C*)(A+C*+D)	5	Applying (K3)	COL
(b)	Develop suitable logic circuit to implement the logic functions in 3 a) using only NAND and/or NOR gates.	5	Applying (K3)	COI
(e)	Establish the following Boolean function using 3 to 8 decoder with active high enable and active high output, $f(A,B,C,D) = \Sigma m$ (0,3,6,9,12,15).	5	Applying (K3)	CO2
	OR			
4(a)	Determine the minimal SOP form of $f(A,B,C,D) = \Sigma m$ (1,3,6,8,9,10,12,14) $+\Sigma d(7,13)$ using Quine-McClusky method.	5	Applying (K3)	CO1
(b)	Develop suitable logic circuit to implement the logic function determined in 4 a) using only NAND gates.	5	Applying (K3)	COI
(c)	Establish the following Boolean function using 74138 f(A,B,C,D) = Σ m (1,3,7,9,14,15).(74138 has two active low and one active high enable inputs and produces active high output).	5	Applying (K3)	CO2

Course Incharge

HOD ECE

IQAC- Coordinator

Principal

Professor & Head Dept. of Electronics & Communication Engineering K. S. School of Engineering & Manage-

Dr. K. RAMA NARASIMHA Principal/Director K S School of Engineering and Manageme-

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SESSION: 2021-2022 (ODD SEMESTER) I SESSIONAL TEST QUESTION PAPER

USN

SET-B

Degree Branch

B.E

Electronics and Communication Engineering

Semester : III

Course Code : 18EC34 Date : 03/12/2021

Course Title Duration

Digital System Design
 90 Minutes

Max Marks : 30

Note: Answer ONE full question from each part.

	Note: Answer ONE full question from each	part.		
Q No.	Question	Marks	K- Level	CO mapping
	PART-A			
1(a)	Determine the minimal POS form of $f(A,B,C,D) = \Sigma$ m (2,3,4,10, 13,14,15) $+\Sigma d(7,9,11)$ using K-map method.	5	Applying (K3)	COI
(b)	Develop suitable logic circuit to implement the logic function determined in 2 a) using only NAND gates.	5	Applying (K3)	CO1
(c)	Design a 4-bit Excess-3 to BCD converter and realize it using basic gates,	5	Applying (K3)	CO2
	OR		(160)	
2(a)	Determine the minimal POS form of $f(A,B,C,D) = \pi M$ $(0,1,2,4,5,8,9,10,14,15) + \Sigma d(3,13)$ using K-map method.	5	Applying (K3)	CO1
(b)	Develop suitable logic circuit to implement the logic function determined in 2 a) using only NOR gates.	5	Applying (K3)	CO1
(c)	Design a 4 gray to binary converter and realize it using suitable gates.	5	Applying (K3)	CO2
	PART-B			
3(a)	Determine the minimal form of $f(A,B,C,D) = \Sigma$ m (3,4,7,10,12,14,15) + $\Sigma d(2,11)$ using Quine-McClusky method.	5	Applying (K3)	COI
(b)	Develop suitable logic circuit to implement the logic function determined in 2 a) using only NAND gates.	5	Applying (K3)	COI
(c)	Establish the following Boolean function using 74139 dual 2:4 decoder $f(A,B,C) = \pi M$ (1,3,5,7) (74139 has an active low enable and active low outputs)	5	Applying (K3)	CO2
	OR			
4(a)	Determine the minimal form of $f(A,B,C,D) = \Sigma$ m $(0,2,3,8,9,14,15) + \Sigma d(1,5,12)$ using Quine-McClusky method.	5	Applying (K3)	CO1
(b)	Develop suitable logic circuit to implement the logic function determined in 4 a) using only NAND gates.	5	Applying (K3)	COI
(c)	Establish the following Boolean function using 74138 $f(A,B,C,D) = \Sigma m$ (0 ,2,6, 10,12,15).(74138 has two active low and one active high enable inputs and produces active high output)	5	Applying (K3)	CO2

(3)

Course Nacharge

HOD ECE Professor & Head

IQAC-Coordinator

Principal

pept. of Electronics & Communication Engineering K. S. School of Engineering & Management Bangalore-555 Advancement Dr. K. RAMA NARASIMHA
Principal/Director
K S School of Engineering and Management.
Bengaluru - 560 109

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SESSION: 2021-2022 (ODD SEMESTER) II SESSIONAL TEST QUESTION PAPER

SET-A

Degree Branch

Electronics and Communication Engineering

Semester: III

USN

Course Code: 18EC34

Course Title

Digital System Design

Date: 13/01/2022

Duration

90 Minutes

Max Marks: 30

Note: Answer ONE full question from each part.				
Q No.	Question	Marks	K- Level	CO mapping
	PART-A			
1(a)	Design a 8-bit magnitude comparator using 7485 ICs.	5	Applying (K3)	CO2
(b)	Construct a clocked D flip flop using NAND gates and explain it's operation with necessary truth table and waveforms.	5	Applying (K3)	CO3
(c)	Design a 3 bit synchronous counter using JK flip flops and explain it's operation with necessary waveforms and truth table.	5	Applying (K3)	CO3
	OR			
2(a)	Explain the working of carry look ahead adder and obtain expression for carry propagate and carry generate functions	5	Applying (K3)	CO2
(b)	Construct a MS-JK flip flop using only NAND gates and explain it's operation.	5	Applying (K3)	CO3
(c)	Develop a switch debouncer using SR flip flop and explain it's operation with necessary waveforms.	5	Applying (K3)	CO3
	PART-B			-
3(a)	Develop a function generator to generate the function $f(a,b,c,d) = \sum m(0,4,8,10,14,15)$ using 8:1 Mux with a,b,c as select lines.	5	Applying (K3)	CO2
(b)	Construct a 4-bit ring counter using JK flip flops and explain it's working using relevant waveforms.	5	Applying (K3)	CO3
(c)	Explain the universal shift register with relevant logic diagram and the truth table.	5	Understanding (K2)	CO3
4(a)	Explain the structure of programmable logic arrays (PLA) and construct any SOP function using PLA.	5	Applying (K3)	CO2
(b)	Obtain characteristic equation for J-K and T flip flops.	5	Applying (K3)	СОЗ
(e)	Explain the PISO and PIPO operation of shift register with relevant logic diagram and the truth table.	5	Understanding (K2)	CO3

Professor & Head

IQAC- Coordinator

Principal

ept. of Electronics & Communication Engineers K. S. School of Engineering & Managemer Bangalore-550 109

Dr. K. RAMA NARASIMHA Principal/Director K S School of Engineering and Management Rengalusu - 569 169

sanjay - baburao . nayak@kssem . edu . in Mail id :-

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SESSION: 2021-2022 (ODD SEMESTER) II SESSIONAL TEST QUESTION PAPER

USN

SET-B

Degree Branch B.E

Electronics and Communication Engineering

Semester Course Code :

18EC34

Course Title Duration

Digital System Design

Date : 13/01/2022

Max Marks: 30

Note: Answer ONE full question from each part.

Q No.	Question	Marks	K- Level	CO mapping
	PART-A			
l(a)	Develop an 8-bit parallel adder/subtractor using 7483 ICs.	5	Applying (K3)	CO2
(b)	Construct a MS-JK flip flop using only NAND gates and explain it's operation.	5	Applying (K3)	CO3
(e)	Design a 3 bit asynchronous up-down counter using JK flip flops and explain it's operation with necessary waveforms and truth table.	5	Applying (K3)	C03
	OR			
2(a)	Establish a carry look ahead adder and obtain expression for carry propagate and carry generate functions.	5	Applying (K3)	CO2
(b)	Construct a clocked SR flip flop using NAND gates and explain it's operation with necessary truth table and waveforms.	5	Applying (K3)	CO3
(c)	Develop a 4-bit twisted ring counter and explain it's working using relevant waveforms.	5	Applying (K3)	CO3
	PART-B			
3(a)	Develop a function generator to generate the function $f(a,b,c,d) = \Sigma m(0,4,8,10,14,15)$ using 4:1 Mux with a,b as select lines.	5	Applying (K3)	CO2
(b)	Obtain characteristic equation for J-K and D flip flops.	5	Applying (K3)	CO3
(c)	Explain the SISO and SIPO operation of shift register with relevant logic diagram and the truth table.	5	Understanding (K2)	СОЗ
	OR			
4(a)	Design a 2-bit magnitude comparator and implement it using basic gates.	5	Applying (K3)	CO2
(b)	Construct a 4-bit ring counter using D flip flops and explain it's working using relevant waveforms.	5	Applying (K3)	СОЗ
(c)	Explain the universal shift register with relevant logic diagram and the truth table.	5	Understanding (K2)	CO3

Course Incharge

Professor & Head

IQAC-Coordinator

Principal

ot. of Electronics & Communication Engineering K. S. School of Engineering & Management

Dr. K. RAMA NARASIMHA Principal/Director K S School of Engineering and Management Bengaluru - 560 109

Muilid: sanjay. baburao. nayak@kssem. edu. in

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SESSION: 2021-2022 (ODD SEMESTER)

USN

III SESSIONAL TEST QUESTION PAPER

SET-A

Degree Branch B.E

Electronics and Communication Engineering Digital System Design

Semester: III

Course Code: 18EC34

Course Title Duration

Date: 15/03/2022 Max Marks: 30

90 Minutes

Q No.	Question	Marks	K- Level	CO mappin
	PART-A			
1(a)	Design a synchronous decade counter using JK Flip Flops.	10	Applying (K3)	CO4
(b)	Design a Moore type Sequence detector to detect a serial input sequence of 1101,	5	Applying (K3)	CO5
	A sequential circuit with 2JK Flip Flop A and B and input X and output			
2(a)	F is shown in fig 2(a). Fig 2(a) i. Derive the state table. ii. Construct the state diagram. iii. What functionality is achieved by this circuit?	10	Applying (K3)	C04
(b)	Develop the state model for BCD to excess-3 code converter.	5	Applying (K3)	COS
	PART-B		(110)	
(9)	Design a clocked sequential circuit which operates according to the state diagram shown in fig below. Implement the circuit using negative edge triggered J-K Flip Flops.	10	Applying (K3)	C04

	% (S ₀) 1/6 (S ₁) 1/8 (S ₂) -%			
(b)	Fig. 3(a) Develop a serial adder with accumulator to add two 4 bit numbers.	5	Applying (K3)	CO5
4(a)	Develop the state model for circuit shown in fig 4(a):	10	Applying (K3)	CO4
(b)	Design a Mealy type Sequence detector to detect a serial input sequence of 1101.	5	Applying (K3)	COS

Course Incharge

IQAC- Coordinator

Principal

Professor & Hesd
Sept. of Electronics & Communication Engineering
k.S. School of Engineering & Manageman
Suggiture - 560 109

Dr. K. RAMA NARASIMHA
Principal/Director
K S School of Engineering and Management
Bengaluru - 560 109

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT, BANGALORE - 560109 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SESSION: 2021-2022 (ODD SEMESTER)

USN

III SESSIONAL TEST QUESTION PAPER SET-B

Degree Branch

Electronics and Communication Engineering Digital System Design

Course Code: 18EC34 Date: 15/03/2022

Semester : III

Course Title Duration

90 Minutes

Max Marks: 30

			0.000	
	Note: Answer ONE full question from eac	h part.		
Q No.	Question	Marks	K- Level	CO mappin
	PART-A			1
1(a)	Design a mod 6 self correcting synchronous counter using D Flip Flops to count the sequence 0,2,3,6,5,1,0,	10	Applying (K3)	CO4
(b)	Design a Moore type Sequence detector to detect a serial input sequence of 1101.	5	Applying (K3)	CO5
	OR Develop the state model for clocked sequential circuit which operates	-		
2(a)	flip flops.	10	Applying (K3)	CO4
(b)	Design a Mealy type Sequence detector to detect a serial input sequence of 101.	5	Applying (K3)	CO5
	PART-B			
3(a)	Fig 3(a)	10	Applying (K3)	C04

	A sequential circuit with 2D Flip Flop A and B and input X and output Y is shown in fig 3(a). Develop the state model and state diagram.			
(b)	With the help of neat block diagram explain the operation of serial adder with accumulator.	5	Understanding (K2)	CO5
l(a)	Design a Mealy type Sequence detector to detect a serial input sequence of 101 in a given sequence of 001101100101011.	10	Applying	
-	Differentiate between Moore and Mealy models with the help of		(K3)	CO ₄

(9)

Course Incharge

HODECE

IQAC- Coordinator

Principal

Professor & Hess

Nept. of Electronics & Communication Engineering &S. School of Engineering & Management Sangalore - 560 109 Dr. K. RAMA NARASIMHA
Principal/Director
K S School of Engineering and Management
Bengaluru - 560 109